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Abstract

Generalization in Visual Question Answering
(VQA) requires models to answer questions
about images with contexts beyond the training
distribution. Existing attempts primarily refine
unimodal aspects, overlooking enhancements
in multimodal aspects. Besides, diverse inter-
pretations of the input lead to various modes
of answer generation, highlighting the role of
causal reasoning between interpreting and an-
swering steps in VQA. Through this lens, we
propose Cognitive pathways VQA (CopVQA)
improving the multimodal predictions by em-
phasizing causal reasoning factors. CopVQA
first operates a pool of pathways that capture
diverse causal reasoning flows through inter-
preting and answering stages. Mirroring hu-
man cognition, we decompose the responsibil-
ity of each stage into distinct experts and a
cognition-enabled component (CC). The two
CCs strategically execute one expert for each
stage at a time. Finally, we prioritize answer
predictions governed by pathways involving
both CCs while disregarding answers produced
by either CC, thereby emphasizing causal rea-
soning and supporting generalization. Our ex-
periments on real-life and medical data con-
sistently verify that CopVQA improves VQA
performance and generalization across base-
lines and domains. Notably, CopVQA achieves
a new state-of-the-art (SOTA) on the PathVQA
dataset and comparable accuracy to the cur-
rent SOTA on VQA-CPv2, VQAv2, and VQA-
RAD, with one-fourth of the model size.

1 Introduction

The Visual Question Answering (VQA) task in-
volves answering questions about images, requir-
ing multimodal processing and common sense un-
derstanding [Antol et al., 2015]. VQA research
has various applications, including autonomous
systems [Deruyttere et al., 2019, Zablocki et al.,
2022], healthcare [Binh D. Nguyen, 2019, Koval-
eva et al., 2020], and education [He et al., 2017].

However, real-life multimodal data diversity poses
a challenge for VQA models to achieve Out-of-
Distribution (OOD) generalization, which involves
performing well on data beyond the training distri-
bution instead of relying on independent and iden-
tically distributed (iid) data [Zhang et al., 2021,
Goyal and Bengio, 2022, Kawaguchi et al., 2022].
Recent studies have highlighted a risk of OOD gen-
eralization in VQA, where models may respond
solely based on the question and ignore the input
image due to correlations between the question and
answer distribution [Niu et al., 2021, Wen et al.,
2021] that exist in human knowledge. For example,
questions starting with "Is this...?" are typically
expected to be yes/no questions (e.g. , "Is this a
cat?") rather than multiple-choice questions (e.g. ,
"Is this a cat or dog?"), leading to possible correct
answers with a simple "yes" or "no".

There are many attempts to solve this issue, such
as (1) reducing the linguistic correlation [Niu et al.,
2021, Wen et al., 2021] by avoiding answers gen-
erated from only the question used as input, (2)
strengthening the visual processing [Yang et al.,
2020], and (3) balancing the answer distribution by
generating new image-question pairs [Chen et al.,
2020, Gokhale et al., 2020, Si et al., 2022]. How-
ever, these approaches tend to overlook the crit-
ical aspect of enhancing multimodal predictions,
instead focusing on unimodal aspects (either lan-
guage or visual) or the data itself. Our assumption
is that enhancing the quality of multimodal pre-
dictions would be a potential route for improving
generalization in VQA.

In fact, solving the VQA task requires the in-
tegration of multimodal processing and common
sense knowledge. Consequently, VQA can be con-
ceptualized as a two-stage process: input inter-
preting and answering, which involves generating
an interpretation of the multimodal input and an-
swering the question by querying the knowledge
space. Besides, similarly to how humans tackle the
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VQA task, the input misunderstanding can harm
the answering stage, posing a risk to the overall
performance of VQA. Therefore, comprehending
the causal reasoning behind this two-stage process
becomes crucial to improving the VQA task.

In this work, we propose Cognitive pathways
VQA (CopVQA) to boost the causal reasoning
in VQA to enhance the OOD generalization.
CopVQA derives from the findings of knowledge
modularity and cognitive pathways from cogni-
tive neuroscience [Baars, 2005, Kahneman, 2011,
Goyal and Bengio, 2022], which mentions (1) the
human brain organizes independent modules to han-
dle distinct knowledge pieces and (2) the commu-
nication efficacy among these modules supports
the generalization. We decompose each interpret-
ing and answering stage into a set of experts and
a cognition-enabled component (CC) strategically
activates one expert for each stage at a time. By
this approach, CopVQA disentangles the VQA task
into specialized experts connected by pathways
through interpreting-answering process. Subse-
quently, we extend the biases in VQA that are also
from the monolithic procedure (instead of expert
selection) besides the linguistic correlation. Finally,
we emphasize answers governed by the disentan-
gled stages with multimodal input and disregard
other answers, including ones from the monolithic
procedure and from unimodal input.

The contributions of this work are summarized
as follows: (1) we propose CopVQA to improve
OOD generalization by enhancing causal reasoning
that is compatible with diverse VQA baselines and
domains; (2) to our best knowledge, CopVQA is
the first work that formulates VQA as two layers of
cognitive pathways, further facilitating research on
causal reasoning in VQA; and (3) we achieve the
new SOTA for the PathVQA dataset and mark the
comparable results to the current SOTAs of VQA-
CPv2, VQAv2, and VQA-RAD datasets with only
one-four of the model sizes.

2 Related Work

The generalization restriction in VQA arises from
biases between questions and answers in human
knowledge, where certain question types exhibit
strong correlations with predictable answers based
on common knowledge. These biases are also
reflected in VQA datasets. For example, in the
VQAv1 dataset [Antol et al., 2015], a VQA model
can quickly achieve an accuracy of around 40% on

sport-related questions by simply providing the an-
swer "tennis." To further challenge the generaliza-
tion ability of the VQA models, the VQA Changing
Priors (VQA-CPv2) dataset [Agrawal et al., 2017]
is introduced. This dataset is deliberately designed
to feature different answer distributions between
its train and test sets. Therefore, the emergence of
the VQA-CP dataset has brought about a signifi-
cant shift in the VQA landscape, demanding that
VQA models go beyond exploiting correlations and
overcoming biases from the given training data.

Among attempts of capturing language biases,
RUBi [Cadene et al., 2019] introduces a notewor-
thy approach that computes the answer probability
using only the input question, thereby capturing
linguistic biases. Then, the question-only branch
carrying the biases is used to compute a mask that
aims to mitigate biased prediction of unimodal in-
put from the multimodal prediction. Building upon
this line of research, CFVQA [Niu et al., 2021]
pioneers a comprehensive causal-effect view of
VQA that subtracts the impact of the question-only
branch, represented as the answer logit, from the
overall answer logit (further discussed in Section 3).
Similarly, DVQA [Wen et al., 2021] proposes sub-
tracting the question-only branch’s impact from the
multimodal branch in the hidden layer. By doing
so, DVQA aims to mitigate biased predictions be-
fore passing the output through the classifier model
for final answer prediction.

In this study, we delve deeper into capturing
biases using separate branches and subsequently
eliminate them. However, besides the linguistic cor-
relations, we assume another potential restriction
in VQA generalization is the monolithic approach
across the diverse scenarios of the multimodal in-
put. Therefore, we attempt to eliminate answers by
monolithic procedures involved in interpreting and
answering stages parallelly emphasize answers by
disentanglement approach.

3 Preliminaries: Causality view in VQA

Introduced in CFVQA [Niu et al., 2021], the causal
graph of VQA is depicted in Figure 1a in which the
inputs V and Q cause an answer A, and a mediator1

K represents the knowledge space. We have the
direct paths, which are Q → A and V → A,
representing the answers based solely on unimodal

1To explore the reasons for input effecting on the output,
Pearl [2009], Pearl and Mackenzie [2018] mention the term
mediator to dissect the effect into direct and indirect effects.
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Figure 1: The conventional causal-effect view of the
VQA task and the proposed Cognitive pathways VQA,
which enhances the causal reasoning aspect

input (either question or image). In contrast, the
indirect path, (V,Q) → K → A, represents the
answer by considering the multimodal input and
the interaction in the knowledge space.

With a single mediator K, the idea of CFVQA
is to capture the language prior by the Q → A
branch, which involves only the question and pro-
duces an answer logit Zq. Likewise, the answer
produced through K with multimodal input is Zk.
Subsequently, they produce the final answer logit as
follows, where c is a parameter for normalization:

Zfinal = logσ(Zk + Zq)− logσ(Zq + c)

Regarding optimization, they utilize Cross-Entropy
loss (CELoss) and define L = CELoss(logσ(Zk +
Zq), a) + CELoss(logσ(Zq), a).

4 Cognitive pathways VQA - CopVQA

In this section, we present CopVQA from multiple
viewpoints, which are the overview in Section 4.1,
the causal-effect view of CopVQA in Section 4.2,
and the CopVQA implementation in Section 4.3.

4.1 CopVQA overview
The CopVQA, depicted in Figure 2, serves as a
VQA backbone that emphasizes causal reasoning
in multimodal prediction. CopVQA mitigates the
negative consequences of disregarding causal rea-
soning, yet enhancing generalization. Initially, we
explore the knowledge space as (1) multimodal
knowledge for interpreting the multimodal input,
and (2) commonsense knowledge for answering
based on the interpretation obtained. Additionally,
assuming that different interpretations of the input
lead to diverse ways of answering, we perceive the
use of monolithic procedures for interpreting and
answering across diverse multimodal input as a po-
tential bias that hampers generalization, extending
beyond the linguistic correlations discussed in prior

work. Consequently, we define a non-biased ap-
proach as one that commits to integrating the mul-
timodal input and strategically considering proper
knowledge pieces for interpreting and answering,
rather than relying on monolithic procedures.

Each intepreting and answering stages involves
diverse distinct experts with a cognition-enabled
component (CC) that activates one expert at a time.
Consequently, we define a complete reasoning flow
as selecting an appropriate expert pair for the inter-
preting-answering process. In contrast, incomplete
reasoning flows rely on monolithic procedures or
utilize unimodal input. Finally, we attempt to em-
phasize the prediction obtained through the full
reasoning flow and disregard the ones from incom-
pleted reasoning flows.

4.2 CopVQA from causal-effect view
To establish a solid connection between the com-
prehensive overview and implementation details of
CopVQA, we present the causal-effect view of the
proposed architecture in this section.

The causal view of CopVQA presented in Figure
1b, contains the input pair (V,Q) that leads to an
answer A, controlled by the two sets of cognitive
pathways denoted as mediators Cop1 and Cop2.
Specifically, we have direct paths: Q → A and
V → A; and indirect paths including Case 1:
(V,Q) → Cop1 → A, Case 2: Q → Cop2 → A,
and Case 3: (V,Q) → Cop1 → Cop2 → A.

Specifically, any path that does not involve Cop1
(Q → A, V → A, and Q → Cop2 → A) are cat-
egorized as unimodal paths, as it does not involve
multimodal interpretation. Likewise, indirect paths
that bypass Cop2 (e.g. (V,Q) → Cop1 → A)
are considered monolithic ones2, as it does not in-
volve expert selection for both interpreting and
answering. Finally, CopVQA emphasizes the
effect from completed reasoning flow, which is
(V,Q) → Cop1 → Cop2 → A, and eliminates
effects of incompleted reasoning flows, including
unimodal and monolithic paths.

4.3 Implementation Details
We design cognitive pathways as a Mixture of Ex-
perts [Jacobs et al., 1991] (MoE), which disentan-
gles a task into specialized experts. Mathemati-
cally, an MoE setup M contains (1) N experts
{E1, E2, . . . , EN} with distinct parameters and (2)

2Q → Cop2 → A is also a monolithic path as it does not
involve both cognition layers. However, for simplicity, we
only mention this path as an unimodal path.
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(a) The causal graphs of four different kinds of reasoning flows and the corresponding computational flows in CopVQA
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Figure 2: CopVQA from the causal-effect view aligned to computational flows. CopVQA emphasizes the full causal
reasoning flow (green), simultaneously eliminating effects from monolithic (blue) and unimodal (red) flows.

gating model G : Rd → RN . As described in Equa-
tion 1, with input x ∈ Rd, the output y is the sum
of results from N experts weighted by g, produced
by G. We conduct g = Gumbel-max(G(x)) with a
Gumbel-max to achieve a 1-hot-like probability.

y =

N∑

n=1

gi × En(x), (1)

4.3.1 Computational Flow in CopVQA
We describe the computational flow in CopVQA
by introducing the notations and 2-stage process.

Given the pre-processed question q ∈ Rdq and
image v ∈ Rdv , where dq and dv are the shapes
of the modalities, the VQA model aims to predict
the answer â, which is an index in the vocabulary
set size of V . In the interpreting stage, CopVQA

produces an interpretation as a di-dimensional vec-
tor, denoted as i ∈ Rdi . In the answering stage,
CopVQA conducts a classifier model that outputs
Zjk ∈ RV , where j, k ∈ {0, 1}. Specifically, j is
1 when the interpretation i is governed by experts
from Cop1 in interpreting, and 0 otherwise (gov-
erned by a monolithic procedure). We analogously
define k ∈ {0, 1} for Cop2 in the answering stage.
Obtaining the answer â can be done by getting the
max value’s index of logσ(Zjk).

Notation 1: Denote MI and MA as MoE se-
tups align Cop1 for Interpreting and Cop2 for
Answering, respectively. N1 experts in MI is
designed to map Rdq → Rdi responding to the
interpreting stage; similarly, N2 experts in MA

map Rdi → RV responding to the answering stage.
The cognition-enabled components align to G(·)
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in each MoE, which are GI : Rdq → RN1 and
GA : Rdi → RN2 for the interpreting and answer-
ing stages, respectively.

Notation 2: We denote monolithic procedures
W 1

M : Rdq → Rdi and W 2
M : Rdi → RV for the

interpreting and answering stages, respectively.
Stage 1 - Input interpreting: Let imul ∈ Rdi be

the multimodal interpretation and iq ∈ Rdi be the
unimodal interpretation, described in Equation 2.
Specifically, imul is computed by passing q through
Cop1 and subsequently applying a Fusion function
(follow the baselines, details in Section 5.3) on v to
obtain a multimodal interpretation. Likewise, iq is
obtained from the input question q alone by W 1

M .

imul = Fusion(Cop1(q), v), iq = W 1
M (q) (2)

Stage 2 - Answering: In this step, we compute
the pool of outputs from multiple reasoning flows.
Let Z11, described in Equation 3, align to the full
causal reasoning flow governed by both cognition
layers. Likewise, Z10, as in Equations 4, represents
the monolithic path that involves only Cop1. Fi-
nally, Z01 and Z00, formulated in Equations 5 and
6, represent for the output from unimodal paths.

Z11 = Cop2(imul) (3)

Z10 = W 1
M (imul) (4)

Z01 = Cop2(iq) (5)

Z00 = W 2
M (iq) (6)

4.3.2 Training and Inference Time
Output finalizing As discussed in Section 4.2,
CopVQA emphasizes the impact of the fully causal
reasoning flow and eliminates the impacts of the
incompleted reasoning flows. Inspired by the Niu
et al. [2021] as introduced in Section 3, we design
strategies for output finalizing, loss functions, and
answer finalizing for the inference time in Equa-
tions 7, 8, and 9, respectively, with a is the target
answer and the LossFn function is inherited from
particular baselines.

Zfinal = logσ(Z11 + Z10 + Z01 + Z00)

− logσ(Z10 + Z01 + Z00) (7)

Ltotal = LossFn(logσ(Z11+Z10+Z01+Z00), a)

LM = LossFn(logσ(Z10), a)

LU = LossFn(logσ(Z01), a)

+LossFn(logσ(Z00), a)

LCopV QA = Ltotal + LM + LU (8)

Inference: â = argmax(logσ(Zfinal)) (9)

Model architecture Experts in the Model of Ex-
perts (MoE) framework have a common architec-
ture but carry distinct parameters. Denote a layer
l : Rin → Rout with a hidden size h in a particular
baseline that is in charge of interpreting or answer-
ing stages, we design l′ : Rin → Rout with the
hidden size h′. Subsequently, individual experts
and the monolithic models in CopVQA share the
same architecture as l′. Precisely, h′ is fine-tuned
to achieve the optimal result. Through experimen-
tation, we have discovered that selecting values for
h′ such that the total number of parameters in all
experts and monolithic models does not exceed the
number of parameters in l tends to yield optimal re-
sults. This observation regarding the adjustment of
h′ aligns with the principles of knowledge modular-
ity, which we discuss in more detail in Appendix C.
As a result, CopVQA does not increase parameters
beyond those present in the baseline model.

5 Experiment Setup

We conducted experiments to validate: H1 - Causal
reasoning in multimodal prediction benefits VQA
performance (Section 6.1), H2 - Causal reasoning
in multimodal prediction enhances OOD general-
ization (Section 6.1), and H3 - The disentangled
architecture is crucial for reasoning (Section 6.2).

5.1 Datasets

To examine H1, we conduct experiments on
four datasets in two domains: (1) real-life im-
ages: VQA-CPv2 [Agrawal et al., 2017] and
VQAv2 [Goyal et al., 2017] and (2) medical data:
PathVQA [He et al., 2021] and VQA-RAD [Lau
et al., 2018]. Questions in VQA-CPv2 and VQAv2
are divided into three types: "Yes/No" (Y/N), Num-
ber (Num.), and Other, with 65 categories of ques-
tion pre-fix (such as "Is it...?"). PathVQA catego-
rizes "Y/N" questions separately from "Free-form"
questions, whereas VQA-RAD categorizes ques-
tions with limited answer candidates as "Close"
and the remaining questions as "Open" type.

To examine H2, we investigate results on the
VQA-CPv2 dataset, a valuable benchmark for as-
sessing OOD generalization in VQA. This dataset
features substantial variations in answer distribu-
tion per question category between the training and
test sets, making it an ideal choice for evaluating
the models’ ability in OOD scenarios.
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Test set VQAv2 VQA-CPv2
Method Y/N Num. Other Overall Gap Y/N Num. Other Overall Gap
RUBi† - - - 61.1 - 68.7 20.3 43.2 47.1 -
SCR† 78.8 41.6 54.5 62.2 - 72.4 10.9 48.0 49.5 -
Mutant† 82.1 42.5 53.3 62.6 - 88.9 49.7 50.7 61.7 -
CFVQA 81.3±0.2 43.4±0.3 50.1±0.1 60.7±0.1 - 90.4±0.3 21.3±0.7 45.2±0.2 55.0±0.2 -

+CopVQA 81.4±0.3 43.8±0.2 52.4±0.2 62.2±0.3 +1.5 91.1±0.3 41.6±0.2 46.4±0.1 57.8±0.3 +2.8
DVQA 81.7±0.3 42.8±0.4 56.7±0.2 64.3±0.3 - 88.5±0.2 48.7±0.6 50.1±0.1 61.1±0.1 -

+CopVQA 82.6±0.2 45.2±0.3 59.0±0.3 67.5±0.2 +3.2 92.1±0.3 59.4±0.4 61.4±0.3 67.9±0.3 +6.8

Table 1: Accuracy comparison on VQAv2 and VQA-CPv2 datasets. The best scores are bolded.

Test set PathVQA VQA-RAD
Method Y/N Free-form Overall Gap Open Close Overall Gap
MMQ 83.6±0.4 13.5±0.5 48.6±0.2 - 52.4±1.4 75.3±1.1 66.8±0.4 -

+ CopVQA 85.3±0.1 16.6±0.1 50.9±0.3 +2.3 56.5±0.9 77.1±0.6 70.2±0.3 +3.4

Table 2: Accuracy comparison on PathVQA and VQA-RAD datasets. The best scores are bolded.

5.2 Baselines

We implement and compare CopVQA to baselines
that do not emphasize the causal reasoning in mul-
timodal prediction. In VQA-CPv2 and VQAv2,
we implement CopVQA on CFVQA [Niu et al.,
2021] and DVQA [Wen et al., 2021] baselines that
attempts to eliminate the language priors. Besides,
to fulfill the comparison, we compare CopVQA to
approaches that strengthen visual processing: SCR
[Wu and Mooney, 2019]; balancing answers distri-
bution: Mutant [Gokhale et al., 2020]3. In medi-
cal datasets, we conduct CopVQA on PathVQA’s
SOTA - MMQ [Binh D. Nguyen, 2019], which
leverage significant features by meta-annotation.

5.3 Implementation details

We fine-tune N1 and N2 with each baseline and
maintain consistent configurations, including the
optimizer, number of epochs, and batch sizes.
For the DVQA baseline, the best setting for the
(N1, N2) pair is (3, 3). In contrast, for the CFVQA
and MMQ baselines, the optimal pair is (5, 5).

CFVQA employs Fusion as the Block factory
fusion from Ben-Younes et al. [2019] and trains by
CrossEntropy loss. Likewise, based on the UpDn
[Anderson et al., 2017], DVQA designs Fusion as
the multiplication of the pre-processed v and q and
uses BinaryCrossEntropy as LossFn. On the other
hand, the baseline MMQ, based on BAN [Kim
et al., 2018], designs Fusion as the recurrent multi-
plication of the processed v, q, and BAN’s result on
v and q, and utilizes the BinaryCrossEntropy loss.

3We compare to Mutant that based on UpDn [Anderson
et al., 2017] since DVQA and our DVQA-based CopVQA
share the common foundation of UpDn.

6 Experimental Results and Discussion

6.1 Quantitative Results

Overall, CopVQA outperforms all baselines in both
iid and OOD. Specifically, Table 1 presents results
on VQAv2 and VQA-CPv2, and Table 2 shows
results on PathVQA and VQA-RAD. Baselines
marked with a "†" are reported results from the orig-
inal paper, while others are our reproduced mean
and standard error on 5 random seeds. The "Gap"
shows the improvement of CopVQA from the re-
produced baseline, with a "-" for unreported results.
In addition, Table 4 in the Appendix compares the
sizes and training time between the models.

Proving H1, CopVQA reveals the consistent
improvement in all answer categories regardless
of baselines and domains. Notably, in VQAv2,
CopVQA achieves a +1.5% and +3.2% higher than
CFVQA and DVQA baselines, respectively, in the
Overall score. In medical datasets, CopVQA marks
the improved ability in the medical VQA task with
a +2.3 and +3.4 points higher MMQ baseline.

Proving H2, regardless of the based models,
CopVQA demonstrates the effectiveness of causal
reasoning in generalization by outperforming base-
lines in VQA-CPv2 by a large margin. Specifically,
CopVQA acquires a remarkable improvement of
+2.8% in CFVQA-based and +6.8% in DVQA-
based in the Overall score. Notably, CopVQA
shows exceptional performance on the Number
type, with +20.3 and +12.7 points increased from
the CFVQA and DVQA baselines, respectively.

Compared to current SOTAs, CopVQA achieves
a new SOTA on PathVQA with +2.3 points higher
than MMQ, the previous SOTA. Besides, CopVQA
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Figure 3: Sample of debiased cases, listing the labels with top probability. The green and red labels are the correct
and incorrect answers, respectively.
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Figure 4: Answer distributions on VQA-CPv2 and the
comparison of debiasing ability. CopVQA produces the
most similar distributions as in the test set.

is comparable to MMBS [Si et al., 2022], the cur-
rent SOTA of VQA-CPv2 and VQAv2, with only
one-fourth of the model size (details in Table 4 in
Appendix). Specifically, MMBS gains 68.39% and
69.43% Overall scores on VQA-CPv2 and VQAv2,
respectively, with over 200M parameters, while
DVQA+CopVQA marks 67.9% and 67.5% with
less than 52M parameters. Lastly, CopVQA marks
1.9 points lower than CLIP [Eslami et al., 2021] -
current VQA-RAD’s SOTA.

Compared to other approaches in VQA-CPv2
and VQAv2, Table 1 indicates that CopVQA is sig-
nificantly better than SCR. Specifically, CopVQA
achieves a comparable accuracy or even higher than
Mutant without data augmentation.

6.2 Qualitative Results
We investigate H3 by the underlying performance
of CopVQA on VQA-CPv2 and VQA-RAD. We
denote CopVQA based on DVQA and CFVQA on
VQA-CPv2 as CopVQA(D) and CopVQA(C), and
based on MMQ on VQA-RAD as CopVQA(M).

Discussion on the debiased samples Figure 3
compares debiasing results with values obtained
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Figure 5: The proportion of experts selection from Cop1
and Cop2 assignment during the inference time.

by applying softmax on the answer logit. In Fig-
ure 3a shows that CopVQA accurately answers the
question by treating it as a multiple-choice type,
whereas the baselines are trapped by bias toward
Yes/No type, resulting in incorrect answers. In ad-
dition, CopVQA models list other high-probability
answers relevant to the correct one, such as "stuffed
animal" or "puppy". In Figure 3b, CopVQA gives
the correct answer, while MMQ struggles to recog-
nize the question’s purpose and gives an incorrect
one. We provide more samples in Appendix B.

Debiased answers distribution Figure 4 de-
picts the distribution of answers collected from
the entire train set, test set, and models’ prediction
during inference. The analysis demonstrates that
CopVQA(D) produces the most accurate distribu-
tion that resembles the test set by mitigating the
biased answers found in DVQA in both examples.
Likewise, CopVQA(C) exhibits the generalizabil-
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Figure 6: Ablation studies to clarify the individual effect of components in CopVQA design. The original design
CopVQA demonstrates the dominant performance over all variants.

ity over CFVQA as it removes the strongly biased
answers "2" in Figure 4a and "right" in Figure 4b.
Appendix B discusses more on models’ success and
failure cases in the debiased answer distribution.

Discussion on mechanisms selection Figure
5 presents the proportion of expert-pair selection
from Cop1 and Cop2 over N1 ×N2 combinations.
CopVQA consistently assigns the non-overlapping
of experts to separate answer categories. For in-
stance, in CopVQA(D), Cop1 assigns experts 2, 1,
and 3 for the Y/N, Number, and Other types, respec-
tively, in most of cases. This pattern aligns with the
strategy of CopVQA, where experts specialize in
distinct contexts of the multimodal input and com-
monsense knowledge space. Moreover, we observe
that CopVQA allot more than one answering ex-
pert for Number type by a visible proportion, which
adapts to the diverse skills required, explaining the
significant improvement of CopVQA on this type.

7 Ablation Studies

Individual effects in CopVQA We conduct abla-
tions to observe the effect of components in Equa-
tions 7. The analysis confirms the dominance of
CopVQA over the modified versions. Figure 6 com-
pares the Overvall score of Zfinal to ones from:
(1) Z11, Z10, and ZU (the sum of Z01 and Z00).
Values of Z10 are significantly lower than those
of Zfinal, supporting the assumption that disentan-
gled architectures benefit VQA.
(2) !Z11, !Z10 and !Z00 denote results of Zfinal

when Z11, Z10, or ZU is excluded from Zfinal in
inference, respectively. It indicates the importance
of monolithic and unimodal paths when !Z10, !Z01,
and !Z00 are far from Zfinal.
(3) Zrand

final as the score of Zfinal when experts
are randomly selected in inference. Zrand

final drops
dramatically, proving the vital role of selecting a
proper pair of experts to improve accuracy.
(4) ZX

final as the score of Zfinal when we break
the causal structure in Figure 2 and incorpo-
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CopVQA(D)
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30
40
50
60

30
40
50

20
30
40
50
60
70

Figure 7: Overall accuracy comparison over various
configurations of N1 and N2 in CopVQA.

rate v in computing Z01, or designing ZX
01 =

Cop2(Fusion(W
1,X
M (q), v)). ZX

final is comparable
but does not exceed Zfinal in all models, proving
the pivot of the original causal structure design and
the balance of monolithic and unimodal paths.
We collect scores from the best checkpoint for
CopVQA(M) and Zrand

final, and from the best score
over epochs for CopVQA(D) and CopVQA(C).

Number of experts in Cop1 and Cop2 Figure 7
indicates results from multiple (N1, N2) pairs. We
observe that values in the range of 3 to 5 experts
tend to yield higher scores, with the pair of dupli-
cated values achieving the highest scores, while
pairs with values of 2 and 10 result in significantly
lower scores. This finding suggests that an ap-
propriate balance between experts in two sets of
pathways is crucial to acquire high performance.

8 Conclusion

We proposed CopVQA, a novel framework to im-
prove OOD generalization by leveraging causal rea-
soning in VQA. CopVQA emphasizes the answer
with a full reasoning flow governed by disentan-
gled knowledge space and cognition-enabled com-
ponent in both interpreting and answering stages
while eliminating answers in incompleted reason-
ing flows, which involve unimodal input or mono-
lithic procedures. CopVQA outperforms baselines
across domains in iid and OOD. Notably, CopVQA
achieves new SOTA on PathVQA and comparable
results with the current SOTAs of other datasets
with significantly fewer parameters.
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Limitations

Despite being touted as a robust backbone that en-
hances generalization in the VQA task through its
emphasis on causal reasoning in multimodal pro-
cessing, the CopVQA method exhibits certain limi-
tations that should be acknowledged, including:

• Sensitive in data with limited occurrences
such as brand names or country names, which
poses challenges for effective debiasing. We
further discuss this point in Appendix B.2.

• Require careful finetuning for each baseline
and dataset, involving tuning hyperparame-
ters like N1, N2, and experts’ architecture to
achieve optimal performance.
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Figure 8: Comparison of validation results during the
training process.

A Further discussion on experiment
details

A.1 Datasets

The VQA-CPv2 and VQAv2 are two popular
datasets in the VQA domain. We follow a stan-
dardized downloading process and input preprocess
of CFVQA for CopVQA(C) and from DVQA for
CopVQA(D). This ensures consistency and com-
parability across different approaches. Similarly,
in the case of PathVQA and VQA-RAD from the
MMQ baseline, similar guidelines are followed to
ensure a standardized experimental setup. In addi-
tion, Table 3 indicates the training, validation, and
test splits of each datasets.

A.2 Validation along epochs

In Figure 8, the validation results indicate that the
proposed CopVQA outperforms the baseline mod-
els DVQA and CFVQA by a significant margin.
The performance of CopVQA is noticeably bet-
ter, showcasing its effectiveness in visual question
answering. Additionally, when compared to the
MMQ baseline, CopVQA demonstrates compara-
ble performance, with a slight improvement. These
findings highlight the superiority of CopVQA in
addressing the task of VQA, surpassing existing
baseline models and exhibiting promising potential
in the field.

A.3 The role of disentangling ability

To verify the role of the disentangling ability of
experts, we conduct an ablation that adjusts the
number of experts to be activated by G of both Cog-
nitive pathways and in both training and inference
time. Particularly, we modify the G to achieve a
k-hot-like instead of 1-hot-like probability.

The comparison in Figure 9 demonstrates the
dominant performance of CopVQA with only one
expert activated by each set of pathways. Likewise,
increasing k to 2 or 3 significantly drops VQA

CopVQA(D) CopVQA(C) CopVQA(M)
50

55

60

65

70

Ac
cu

ra
cy

Number of activated experts
1 2 3

Figure 9: Ablation study on the essential role of the
disentangling ability of experts.

accuracy, with a broader range of errors. This anal-
ysis results confirm the essential role of the disen-
tangling ability of each expert that learns distinct
knowledge to enhance the performance and reserve
the robustness of the proposed CopVQA.

B Further discussion on qualitative
analysis

B.1 Debiased samples

Figure 10 presents cases where CopVQA correctly
answers questions that other baselines fail to an-
swer correctly. The primary reason for this success
is the improved understanding of the question’s pur-
pose by CopVQA. It effectively addresses biases
and avoids potential pitfalls that lead to incorrect
answers. Additionally, in VQA-CPv2, CopVQA
takes into consideration the relationships between
related answers, which further enhances its accu-
racy and robustness. For instance, the answers
"outdoor" and "indoor" have a high probability in
the third sample, while baselines consider "yes"
and "no" as other potential answers. Overall, the
qualitative analysis demonstrates the effectiveness
of CopVQA in mitigating biases and improving the
performance of VQA systems.

Figure 11 shows cases where all models’ predic-
tions are correct. It is observed that in the majority
of these cases, the proposed method CopVQA gen-
erates a higher probability for the correct answer
compared to baselines. The higher probabilities as-
signed by CopVQA reflect its ability to capture im-
portant visual cues, contextual information, and se-
mantic relationships in disentangled architectures,
thereby outperforming the baseline models in terms
of answer quality. This analysis highlights the supe-
rior performance of CopVQA in producing reliable
and accurate answers in VQA.
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Datasets Num. Questions Num. Images Train Validation Test
VQA-CPv2 438K∗ 121K∗ 409K 219K -
VQAv2 1,105K 204K 443K 214K 453K
PathVQA 32K 4.9K 19K 6K 6K
VQA-RAD 3.5K 315 3K - 451

Table 3: Dataset indication. "∗" denotes the summary in the train set only. "-" marks the not reported information.
"K" stands for one thousand.

Question:             What signal are these traffic lights?
Correct answer:   Yellow

go
red

yellow
 4.59

 19.64
 48.92

CopVQA(D)

stop
yellow
green

 2.56
 18.18

 21.11
DVQA

green
red and yellow

yellow
 6.81

 8.98
 20.28

CopVQA(C)

red
yellow

yes
 0.95

 17.6
 22.0

CFVQA

The mass is found in which part of the pancreas?

Correct answer:  
CopVQA(M):  
MMQ:          

Yes
Yes
Posteriorly

Question:             In how many directions have the zebras unk off to run?
Correct answer:   1

2
3
1

 6.48
 18.2

 68.91
CopVQA(D)

0
4
3

 3.96
 27.02

 34.61
DVQA

4
0
1

 11.88
 12.01

 38.64
CopVQA(C)

5
2
3

 1.79
 27.17

 37.47
CFVQA

Is this a ct image?                          

Correct answer:  
CopVQA(M):  
MMQ:          

No
No
Pa

Question:             Are the people playing in an indoor or outdoor setting?
Correct answer:   Outdoor

dress
indoor

outdoor
 0.66

 12.68
 79.06

CopVQA(D)

no
yes

outdoor
 1.07

 22.26
 65.46

DVQA
yard

grass
outdoor

 0.75
 3.17

 75.0
CopVQA(C)

neither
yes

indoor
 0.76

 20.53
 66.92

CFVQA

(a) VQA-CPv2

What image plane is this?                    

Correct answer:  
CopVQA(M):  
MMQ:          

Axial
Axial
Coronal

(b) VQA-RAD

Figure 10: Examples of cases effectively debiased by CopVQA over baselines. The green labels are the correct
answers while the red labels are the incorrect answers.

Test set VQA-CPv2 VQAv2
Method Params Duration Params Duration
CFVQA 48.33M x 47.89M x

+CopVQA 47.20M 0.96x 46.24M 0.91x
DVQA 54.21M x 52.12M x

+CopVQA 51.09M 0.87x 51.29M 0.93x

Test set PathVQA VQA-RAD
Method Params Duration Params Duration
MMQ 28.15M x 20.07M x

+CopVQA 28.06M 0.98x 20.02M 0.94x

Table 4: Comparison of model size and proportion of
average training duration over 5 runs. All models are
trained on the same single NVIDIA RTX A6000.

Figure 12 shows cases where all models’ pre-
dictions are incorrect. It is observed that a sig-
nificant portion of these cases falls into two cat-
egories: complex counting tasks and ambiguous
answers. Complex counting tasks often involve
intricate arrangements or a large number of objects,
which pose challenges for the models in accurately
counting and identifying the objects. The inherent
complexity of these tasks can lead to errors in the
predictions of all models, including CopVQA. Ad-
ditionally, cases with ambiguous answers present
difficulties for the models, as the correct answer
may vary depending on the interpretation or sub-
jective judgment. For example, the second sample
can be categorized in both complex counting tasks
and ambiguous answers where (1) the image in-
cluding many people with dark clothes in a dark
background, (2) the input is the duplication of 4
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Question:             What is the color of the scissors?
Correct answer:   Red

red and black
pink
red

 3.76
 12.78

 71.43
CopVQA(D)

black
red and black

red
 0.65

 1.87
 4.24

DVQA
orange

red and white
red

 3.84
 7.06

 50.39
CopVQA(C)

red and white
pink
red

 0.18
 0.98

 80.96
CFVQA

What organ system is shown?                  

Correct answer:  
CopVQA(M):  
MMQ:          

Brain
Brain
Brain

Question:             Is anyone sitting on the bench?
Correct answer:   No

unknown
0

no
 0.47
 1.5

 93.4
CopVQA(D)

unknown
none

yes
 0.74
 0.95

 95.91
DVQA

not sure
1

no
 0.55
 0.93

 88.22
CopVQA(C)

none
0

no
 0.55
 1.01

 98.39
CFVQA

Is the patient lying supine?                 

Correct answer:  
CopVQA(M):  
MMQ:          

Yes
Yes
Yes

Question:             How many people are in the picture?
Correct answer:   1

10
2
1

 0.13
 3.24

 91.1
CopVQA(D)

0
2
1

 0.2
 43.42

 52.02
DVQA

no
0
1

 0.21
 0.45

 94.03
CopVQA(C)

yes
3
1

 0.44
 39.24

 53.99
CFVQA

(a) VQA-CPv2

Why is the pancreas abnormal?                

Correct answer:  
CopVQA(M):  
MMQ:          

Enlarged
Enlarged
Enlarged

(b) VQA-RAD

Figure 11: Examples of cases where all models successfully answer the questions. The green labels are the correct
answers while the red labels are the incorrect answers.

images, since (3) the target answer likely to only
rely on 1 image piece. In such instances, all models
struggle to provide accurate responses, resulting in
incorrect predictions across the board. These find-
ings emphasize the existing limitations and chal-
lenges in VQA systems when it comes to intricate
counting tasks and handling ambiguous answers.

B.2 Answers Distribution

Figure 13 indicates the analysis of answer distribu-
tion in VQA, across the train, test sets, and predic-
tions, where all models successfully overcome the
biases. Firstly, it becomes evident that biases exist
in the VQA-CPv2 dataset as the answer distribution
in the train and test sets significantly differ. How-
ever, despite these challenges, all models demon-
strate successful debiasing. Notably, CopVQA out-
performs the baseline models by producing a test
set distribution that aligns more closely with the
ground truth, indicating a notable improvement in
its ability to generate likely answers.

Figure 14 shows cases where all models fail to
perform well and biased answers persist in the pre-
dictions, several observations can be made. Firstly,
there are strong biases present, indicated by the
stark disparity between the answer distributions in

the train and test sets. This implies that the models
have not effectively generalized from the training
data to handle the biases present in the test set.
Additionally, the models may struggle with pro-
viding accurate answers for categories that have
limited occurrences, such as specific brand names
that appear only a few times in the dataset. These
challenges highlight the need for further improve-
ment in handling biases and addressing rare answer
categories to enhance the overall performance of
VQA models.

C Design principles inspired from
Knowledge modularity

In the context of machine learning, modulariza-
tion refers to the decomposition of complex sys-
tems or models into smaller, more manageable
modules [Kahneman, 2011, Lindauer et al., 2019,
Zhang et al., 2020, Kwon et al., 2019, Sayyed and
Kulkarni, 2021, Garibaldi, 2021, Goyal and Ben-
gio, 2022]. In the realm of knowledge modularity
and machine learning, this principle suggests that
breaking down complex tasks or models into mod-
ular components can lead to more effective and
efficient learning. The advantage of this modular
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Question:             What number is on the bus?
Correct answer:   160

38
15
23

 6.22
 8.28

 15.11
CopVQA(D)

23
51
56

 11.46
 15.34
 16.14

DVQA
51
10
23

 10.32
 10.96

 19.06
CopVQA(C)

56
38
10

 8.38
 11.06
 11.68

CFVQA

What type of artifact is shown in this image?

Correct answer:  
CopVQA(M):  
MMQ:          

Motion
Mri diffusion weighted
T2 weighted

Question:             How many people are in the image?
Correct answer:   15

50
20

100
 6.52

 7.81
 11.63

CopVQA(D)

100
50

many
 5.18

 6.82
 11.96

DVQA
20

100
lot

 16.97
 18.98

 23.13
CopVQA(C)

20
50
lot

 13.05
 16.04
 17.02

CFVQA

Are the structures in the pancreas cystic
or solid?

Correct answer:  
CopVQA(M):  
MMQ:          

Cystic
Not sure
Not sure

Question:             What part of the dog is hidden from view?
Correct answer:   Face

face
ears

head
 15.54

 21.06
 53.51

CopVQA(D)

ears
dog

head
 5.52

 16.52
 31.45

DVQA
nose
eyes
head

 6.77
 6.79

 41.9
CopVQA(C)

neck
dog
legs

 12.04
 12.15

 13.49
CFVQA

Which hemisphere of the brain are the lesions
located in?

Correct answer:  
CopVQA(M):  
MMQ:          

Right hemisphere
Kidneys
Bilateral

Question:             Are all the apples the same color?
Correct answer:   Yes

not sure
yes
no

 8.08
 8.95
 9.32

CopVQA(D)

unknown
yes
no

 2.14
 18.55

 48.46
DVQA

unknown
0

no
 5.38
 5.75

 46.96
CopVQA(C)

some
0

no
 2.57

 14.02
 61.88

CFVQA

(a) VQA-CPv2

What structure is depicted?                  

Correct answer:  
CopVQA(M):  
MMQ:          

Brain
Axial
Mr t2 weighted

(b) VQA-RAD

Figure 12: Examples of cases that all models failed to remove biases. The green labels are the correct answers while
the red labels are the incorrect answers.

approach is that it allows for the development of
specialized modules that can be individually op-
timized (learning independently by Gumbel-max
activation function in CopVQA), leading to im-
proved performance on specific subtasks. It also
promotes reusability, as modular components can
be shared or combined to address related tasks or
domains. Furthermore, modularization in machine
learning facilitates interpretability and explainabil-
ity. Since each module focuses on a specific as-
pect of the task, it becomes easier to understand
and analyze the contributions of each module to
the overall decision-making process. This trans-
parency can be particularly valuable in domains
where interpretability is crucial, such as healthcare
or autonomous systems.
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(c) What is the person ... ?

Figure 13: Answers distributions on VQA-CPv2 in the cases that all models are successful.
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Figure 14: Answers distributions on VQA-CPv2 in cases where all models failed.
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