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Abstract

In recent years, NLP practitioners have con-
verged on the following practice: (i) import
an off-the-shelf pretrained (masked) language
model; (ii) append a multilayer perceptron atop
the CLS token’s hidden representation (with
randomly initialized weights); and (iii) fine-
tune the entire model on a downstream task
(MLP-FT). This procedure has produced mas-
sive gains on standard NLP benchmarks, but
these models remain brittle, even to mild adver-
sarial perturbations. In this work, we demon-
strate surprising gains in adversarial robustness
enjoyed by Model-tuning Via Prompts (MVP),
an alternative method of adapting to down-
stream tasks. Rather than appending an MLP
head to make output prediction, MVP appends a
prompt template to the input, and makes predic-
tion via text infilling/completion. Across 5 NLP
datasets, 4 adversarial attacks, and 3 different
models, MVP improves performance against
adversarial substitutions by an average of 8%
over standard methods and even outperforms
adversarial training-based state-of-art defenses
by 3.5%. By combining MVP with adversarial
training, we achieve further improvements in
adversarial robustness while maintaining per-
formance on unperturbed examples. Finally,
we conduct ablations to investigate the mech-
anism underlying these gains. Notably, we
find that the main causes of vulnerability of
MLP-FT can be attributed to the misalignment
between pre-training and fine-tuning tasks, and
the randomly initialized MLP parameters.1

1 Introduction

Pre-trained NLP models (Devlin et al., 2019; Liu
et al., 2019) are typically adapted to downstream
tasks by (i) appending a randomly initialized multi-
layer perceptron to their topmost representation
layer; and then (ii) fine-tuning the resulting model
on downstream data (MLP-FT). More recently,

∗ Equal contribution.
1Code is available at https://github.com/acmi-lab/mvp.

work on large language models has demonstrated
comparable performance without fine-tuning, by
just prompting the model with a prefix containing
several examples of inputs and corresponding target
values (Brown et al., 2020). More broadly, prompt-
ing approaches recast classification problems as
sequence completion (or mask infilling) tasks by
embedding the example of interest into a prompt
template. The model’s output is then mapped to a
set of candidate answers to make the final predic-
tion. Prompting has emerged as an effective strat-
egy for large-scale language models (Lester et al.,
2021), and its utility has also been demonstrated
for masked language models (Gao et al., 2021).

While fine-tuned models perform well on in-
distribution data, a growing body of work demon-
strates that they remain brittle to adversarial pertur-
bations (Jin et al., 2020; Li et al., 2020; Morris et al.,
2020a). Even small changes in the input text, such
as replacement with synonyms (Ebrahimi et al.,
2018b), and adversarial misspellings (Ebrahimi
et al., 2018a; Pruthi et al., 2019) drastically de-
grade the accuracy of text classification models.
While prompting has become a popular approach
for adapting pretrained models to downstream data,
little work has considered interactions between
adaptation strategies and adversarial robustness.

In this work, first, we demonstrate surprising ben-
efits of Model-tuning Via Prompts (MVP) in terms of
robustness to adversarial substitutions, as compared
to the standard approach of fine-tuning models with
an MLP head (MLP-FT). Notably, MVP, which
does not utilize any sort of adversarial training or
prompt optimization/engineering already yields
higher adversarial robustness compared to the state-
of-the-art methods utilizing adversarial training by
an average of 3.5% across five datasets (classifica-
tion, boolean question answering, and paraphrase
detection), 3 models (BERT, RoBERTa, and GPT-2)
and four attacks (word and character-level substi-
tutions) (§5). Moreover, we find that combining
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Figure 1: An illustration of (a) Standard Finetuning, and (b) Model-tuning via Prompts. The adjoining accuracy
metrics correspond to a RoBERTa model trained on the BoolQ dataset.

MVP with single-step adversarial training can fur-
ther boost adversarial robustness, resulting in com-
bined robustness gains of more than 10% over the
baselines. This happens without any loss in accuracy
on unperturbed inputs, indicating how the objective
of adversarial training couples well with MVP.

So far, prior works have not explored the idea
of fine-tuning all the parameters of a model via
prompts (we call this setup full-model full-data fine-
tuning). We only see instances of (i) fine-tuning the
full model via prompts in a few-shot setting (Gao
et al., 2021), or (ii) fine-tuning additional tunable
parameters using prompts on top of a frozen model
by utilizing the complete training set (Li and Liang,
2021). We believe the idea of full-model full-data
fine-tuning via prompts has not been used until now
because clean accuracy improvements forMVP over
MLP-FT are negligible, and the robustness advan-
tages of MVP were previously undiscovered.

Second, we show that MVP as a method for clas-
sification is more (i) sample efficient, and (ii) has
higher effective robustness than MLP-FT (§5.1).
That is, MVP requires fewer training samples to
achieve the same clean accuracy; and for any given
clean accuracy, the robust accuracy of MVP is
higher than MLP-FT. Through ablation studies
(§5.3), we find that (i) adding multiple prompt tem-
plates makes it harder to fool the model; and (ii)
having multiple candidate answers has a small but
positive impact on the robustness.

Third, to explain our observations, we test a set
of hypotheses (§6), including (i) random parameter
vulnerability—is adding a randomly initialized lin-
ear head the source of adversarial vulnerability for
MLP-FT?; (ii) pretraining task alignment—can the
gains in robustness be attributed to the alignment be-
tween the fine-tuning and pretaining tasks in MVP?;
and (iii) semantically similar candidates—are pre-
dictions by MVP more robust because the candidate
answer is semantically similar to the class label?

Through experiments designed to test these hypothe-
ses, we find that (i) in the absence of pretraining,
MVP and MLP-FT have similar robustness perfor-
mance, supporting the hypothesis of pretraining task
alignment; (ii) adding extra uninitialized parameters
to MVP leads to a sharp drop in robustness, whereas
removing the dense (768,768) randomly initialized
weight matrix from MLP-FT improves the robust-
ness of the model significantly; (iii) even random
candidate answers such as ‘jack’, and ‘jill’ result in
similar robustness gains, suggesting that when fine-
tuning through prompts, the choice of candidate
answers is inconsequential (in contrast, this choice
is known to be crucial for few-shot classification).

Fourth, we perform a user study (§7) to assess the
validity of adversarial examples. We find that human
annotators were 23% more likely to find adversarial
examples to have been perturbed as opposed to clean
examples. Moreover, humans achieved 11% lower
accuracy on adversarial examples as compared to
clean examples with average confidence on the label
of perturbed examples being 15% lower. This high-
lights that a large fraction of adversarial examples
are already detected by humans, and often change
the true label of the input, signifying that MVP is
more robust than crude statistics discussed in §5. Fu-
ture work will benefit from developing better eval-
uation strategies for the robustness of NLP models.

Fifth, going beyond adversarial robustness,
we investigate the robustness gains of MVP over
MLP-FT on out-of-distribution (OOD) tasks. We
find that MVP improves robustness by 2% across
5 different OOD sentiment analysis tasks (§ 5.2).

In summary, we demonstrate that models tuned
via prompts (MVP) are considerably more robust
than the models adapted through the conventional
approach of fine-tuning with an MLP head. Our
findings suggest that practitioners adopt MVP as a
means of fine-tuning, regardless of the training data
size (few-shot or full data) and model capacity.
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2 Related Work

Adversarial Attacks and Defenses Inspired by
the brittleness of vision models to adversarial exam-
ples (Szegedy et al., 2013; Goodfellow et al., 2014),
researchers have found similar vulnerabilities to
also exist in language models (Alzantot et al., 2018;
Belinkov and Bisk, 2018). Unlike vision, the goal
in NLP is to develop (i) semantically viable sub-
stitutions or deletions (Ebrahimi et al., 2018b); (ii)
character-level misspellings (Zhang et al., 2015b;
Ebrahimi et al., 2018a; Pruthi et al., 2019); or (iii)
imperceptible homoglyphs (Boucher et al., 2022).

The discovery of such adversarial examples span
several tasks such as classification (Zhang et al.,
2015b; Alzantot et al., 2018), NMT (Belinkov and
Bisk, 2018), and question-answering (Jia and Liang,
2017), but they are restricted to small models such as
LSTMs and RNNs. Among others, Jin et al. (2020);
Li et al. (2020) show that despite producing massive
gains on standard NLP benchmarks, BERT style pre-
trained models are susceptible to adversarial attacks
when finetuned on downstream tasks. Subsequently,
multiple works have attempted at developing fast
and semantically meaningful attacks (Li et al.,
2018) and scalable defenses (Wang and Bansal,
2018; Jia et al., 2019; Wang et al., 2021b; Si et al.,
2021b; Zhu et al., 2020) for masked language mod-
els. Yang et al. (2022) leverage prompts to generate
adversarial examples that they train their model on
using MLP-FT . Despite these efforts, NLP models
suffer a significant drop in robust accuracy, when
compared to clean accuracy on the same task.

Prompting NLP Models Prompting gained trac-
tion from GPT-3 (Brown et al., 2020) where it was
primarily used in the zero-shot and few-shot settings
and required manual trials to increase performance.
In the zero-shot setting, no labeled examples are pro-
vided to the model and the language model is kept
frozen. The model needs to output its prediction us-
ing the prompt that is provided. Whereas, in the few-
shot setting, a few task-specific labeled examples are
also provided for the frozen model in addition to the
prompt (also known as in-context learning) (Rubin
et al., 2022; Levine et al., 2022). A lot of work has
gone into improving the prompts that are used in the
zero-shot and few-shot settings, including mining-
based methods to automatically augment prompts
(Jiang et al., 2020), gradient-based search (Shin
et al., 2020), using generative language models
(Gao et al., 2021) and others (Hu et al., 2022; Schick

and Schütze, 2021b,a). In the full data setting, pre-
vious works have explored prompting via prompt
tuning (Liu et al., 2022; Li and Liang, 2021; Qin and
Eisner, 2021; Lester et al., 2021) where the model is
injected with additional tunable parameters. None
of these works discuss the robustness advantages
of prompting (especially in the adversarial context)
when compared to standard fine-tuning approaches.

Robust Fine-tuning and Adaptation In the vi-
sion literature, prior works have also tried to use
prompting to improve out-of-distribution robust-
ness in the zero-shot and few-shot settings (Zhou
et al., 2022a,b). Kumar et al. (2022) observed that
fine-tuning worsens the out-of-distribution (OOD)
performance of models due to the bias introduced
via a randomly-initialized head on top of the CLIP
model, and instead suggest a procedure (LPFT) that
first fits the linear head and then finetunes the model.
Later works have shown that this ID/OOD perfor-
mance trade-off could be mitigated by averaging
model weights between the original zero-shot and
fine-tuned model (Wortsman et al., 2022) and/or by
finetuning using an objective similar to that used for
pretraining (Goyal et al., 2022). However, this work
has been applied only to vision–language models,
and secondly only deals with “natural” robustness
evaluations rather than the adversarial manipula-
tions we consider here.

3 Method

We consider the task of supervised text classifica-
tion, where we have a dataset S={x(i),y(i)}n, with
x(i) ∈X and y(i) ∈ {1,...,k} for a k-class classifi-
cation problem. We train a classifier f to predict
y based on input x. We follow the terminology by
Schick and Schütze (2021a). The input (x) can be
decomposed as a sequence of words {x1,x2,...,xl},
and the output (y) is a positive integer, with each
value corresponding to a particular class. The
prompt template (t) is the input string we append at
the beginning or end of the input. For example, we
may append the following template at the end of a
movie review—"This movie is [MASK]". The can-
didate answers (A) is a set of words corresponding
to each class. For example, the positive sentiment
class can have the following candidate answers—
{great, good, amazing}.

Adversarial Attacks We are concerned with per-
turbations to the input x that change the model pre-
diction. In the case of adversarial attacks confined
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to synonym substitutions, we confine the model to
searching for x̂i in the synonym set of every word
xi in the input. Whereas, in the case of character
level substitution, we consider substitutions of char-
acters that compose each xi in the input.

3.1 Model-tuning Via Prompts (MVP)

We present the overall pipeline of MVP in Fig-
ure 1(b), and describe individual components below.

Input Modification Consider a prompt template
t = t1,t2,...[MASK],...tm. For any input x, the
prompt input (xt) can be constructed by appending
the template at the beginning or end of the input.
The final output is based on the most likely substitu-
tion for the [MASK]token, as given by the language
model. Typically, we use a set of prompt templates
denoted by T .

Inference For every class label, we have a set
of candidate answers associated with it. During
inference, we do the following: (i) for every class
label, select the candidate corresponding to the
largest logit value among its candidate set; (ii) take
the mean of the logits corresponding to the selected
candidates over all the templates to compute the
final logit of the given class label; (iii) predict the
class having the highest final logit.

3.2 MVP + Single-step Adv

Based on the Fast Gradient Sign Method (FGSM)
by Goodfellow et al. (2014), we perform single-
step adversarial training. Note that the input tokens
are discrete vectors, and hence it is not possible to
perturb the inputs directly. Instead, we pass the in-
puts through the embedding layer of the model and
then perform adversarial perturbations in the em-
bedding space. We do not perturb the embeddings
corresponding to the prompt tokens. We find that
performing single-step perturbations with the ℓ2
constraint leads to more stable training than in the
ℓ∞ norm ball, and use the same for all our experi-
ments. Similar (but not equivalent) approaches have
also been studied in literature (Si et al., 2021a).

4 Experimental Setup

Datasets and Models We perform our experi-
ments on five different datasets—AG News (Zhang
et al., 2015b) (4-class topic classification), SST-
2 (Socher et al., 2013) (binary sentiment classifi-
cation), BoolQ (Clark et al., 2019) (boolean ques-
tion answering), DBPedia14 (Zhang et al., 2015a)

(14-class topic classification), and MRPC (Dolan
and Brockett, 2005) (paraphrase detection). Re-
sults on DBPedia14 and MRPC are presented in
Appendix C.1. All models are trained with the
RoBERTa-Base (Zhuang et al., 2021) backbone.
Experiments on GPT-2 and BERT-Base (Devlin
et al., 2019) are included in Appendix C. Detailed
information about training and attack hyperparam-
eters is provided in Appendix E.

Attack Strategies We perturb the inputs using
the TextAttack library (Morris et al., 2020b). In
particular, we use 1 character-level attack and 3
word-level attacks. Word-level attacks include
the TextFooler (Jin et al., 2020), TextBugger (Li
et al., 2018) that replace words with neighboring
words based on counterfitted GloVe embeddings
and BertAttack (Li et al., 2020) that uses BERT to
replace keywords with synonyms.2 For character-
level attack, we use adversarial misspellings (Pruthi
et al., 2019). More details are in Appendix B.2.

Baseline Methods We now describe the ter-
minologies used to denote training schemes
corresponding to various fine-tuning strategies.
MLP-FT is the “base” model for classification via
standard non-adversarial training, and is utilized
by all the baselines. Given a pre-trained model, we
perform downstream fine-tuning by adding an MLP
layer to the output corresponding to [CLS] token
as illustrated in Figure 1(a). This hidden represen-
tation is of size 768×1. In the case of the BERT
model, there is a single dense layer of dimension
768× 2, whereas in the case of RoBERTa model,
we have a two-layer MLP that is used to make the fi-
nal prediction. MLP-FT + Adv is is identical to the
method used for adversarial training in Section 3.2,
wherein we perform adversarial perturbations in
the embedding space of the MLP-FT model, rather
than MVP. To compare with state-of-art adversarial
training-based defenses we consider FreeLB++ (Li
et al., 2021) (free large batch adversarial training us-
ing projected gradient descent), InfoBERT (Wang
et al., 2021a) (information bottleneck regularizer to
suppress noisy information), and AMDA (Si et al.,
2021b) (adversarial and mixup data augmentation
for creating new training examples via interpola-
tion). We provide complete details pertaining to
each baseline method in Appendix B.1.

2In line with previous benchmark (Li et al., 2021) we only
use the word-substitution transformation in TextBugger.
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SST2

MLP-FT MLP-FT + Adv Free LB++ MADA InfoBert MVP MVP + Adv

Clean Acc 93.6 ±0.4 93.6 ±0.6 94.0 ±0.1 93.8 ±0.4 94.0 ±0.4 93.9 ±0.7 93.8 ±0.1

TextFooler 40.2 ±0.9 44.0 ±1.2 43.4 ±1.0 41.8 ±0.5 43.6 ±0.5 46.9 ±0.5 53.8 ±0.7
TextBugger 65.4 ±0.3 68.5 ±1.5 67.2 ±0.6 66.1 ±0.2 66.6 ±1.8 69.8 ±0.5 71.7 ±0.8
BertAttack 70.3 ±0.9 74.3 ±0.8 76.2 ±0.6 74.2 ±0.2 76.1 ±0.6 78.1 ±0.9 81.7 ±0.7
Misspellings 45.2 ±1.1 49.3 ±0.3 50.4 ±1.1 45.4 ±0.4 47.1 ±0.4 50.5 ±0.7 54.9 ±1.3

AG News

MLP-FT MLP-FT + Adv Free LB++ MADA InfoBert MVP MVP + Adv

Clean Acc 94.5 ±0.4 94.4 ±0.6 94.4 ±0.7 94.1 ±0.6 94.5 ±0.9 94.3 ±0.2 94.4 ±0.8

TextFooler 42.9 ±0.7 47.7 ±0.5 46.9 ±1.6 44.3 ±1.4 48.0 ±2.2 51.5 ±2.1 62.7 ±2.4
TextBugger 61.8 ±0.3 65.6 ±0.8 65.5 ±1.0 62.9 ±0.5 65.6 ±1.2 68.7 ±0.7 75.3 ±1.6
BertAttack 79.1 ±1.3 81.1 ±1.0 81.4 ±0.9 80.4 ±0.2 82.4 ±1.2 85.3 ±1.3 88.2 ±0.9
Misspellings 76.8 ±1.3 78.6 ±0.8 80.1 ±1.3 77.1 ±0.4 80.4 ±1.4 82.7 ±0.7 86.6 ±0.6

BoolQ

MLP-FT MLP-FT + Adv Free LB++ MADA InfoBert MVP MVP + Adv

Clean Acc 80.6 ±1.5 78.9 ±1.2 80.6 ±0.4 79.2 ±0.9 81.5 ±0.7 82.0 ±0.6 81.1 ±0.6

TextFooler 28.2 ±1.7 39.0 ±0.7 37.2 ±1.4 32.0 ±0.3 38.0 ±1.3 42.9 ±0.5 52.2 ±1.6
TextBugger 38.3 ±1.0 44.4 ±1.2 43.2 ±1.0 41.1 ±0.2 42.4 ±1.5 46.8 ±0.9 56.7 ±1.2
BertAttack 48.1 ±0.7 57.6 ±1.3 57.3 ±1.5 55.2 ±0.4 57.4 ±1.0 61.5 ±1.2 69.4 ±1.5
Misspellings 42.9 ±1.0 47.4 ±1.1 46.6 ±1.1 45.2 ±0.3 47.3 ±1.2 51.6 ±0.8 59.7 ±1.0

Table 1: Adversarial Robustness: Performance of RoBERTa-base model on 3 different datasets averaged over 3
different seeds on a fixed test set of size 1000. The highest accuracies are bolded, and the second-best is underlined. We
observe that models tuned via prompts (MVP) are the most robust while preserving (or improving) the clean accuracy.

5 Results

We first evaluate the impact of using MVP on the ad-
versarial robustness of NLP models. For the task of
Boolean question answering (BoolQ), we find that
fine-tuning a RoBERTa model with an MLP head
(MLP-FT) achieves an accuracy of 28.2% on adver-
sarial examples obtained through the TextFooler at-
tack strategy (Table 1). Whereas, the corresponding
accuracy for tuning the model via prompts (MVP)
is 42.9% which is a considerable improvement over
MLP-FT. Additionally, MVP leads to more robust
models compared to adversarial training baselines
like MLP-FT + Adv and InfoBERT that attain ac-
curacies of 39.0% and 38.1% respectively. Further,
MVP can be combined with adversarial training
(MVP + adv), and doing so leads to an accuracy of
52.2% which is about a 10% improvement over
MVP, without any loss in clean performance.

Similar to boolean question answering, the ro-
bustness advantages of MVP hold across the three
tasks we examine. The individual performance
statistics are detailed in Table 1. Overall, across
four attack strategies, and three datasets, we report
that MVP improves over MLP-FT by 8%. Remark-
ably, even in the absence of any adversarial training

MVP achieves the state-of-the-art adversarial per-
formance improving baseline adversarial training
methods by 3.5%. Moreover, it can be coupled
with single-step adversarial training, resulting in an
overall 7% improvement over state-of-art methods.
Lastly, the robustness benefits come only at a 2x
computation cost of standard training, as opposed
to past works which need 5–10x computation cost
of standard training due to additional adversarial
training. Results on BERT-Base are in Table 7.

5.1 Sample Efficiency & Effective Robustness
We investigate the sample efficiency and effective
robustness of MVP through experiments on the
BoolQ and AG-News datasets using the RoBERTa-
base model. We train models on randomly sampled
fractions of the dataset, ranging from 5·10−4 to 0.1.

Sample Efficiency We compare the performance
of MVP and MLP-FT in low-data regimes. We
find that MVP results in models are consistently
more robust compared to models trained through
MLP-FT in the low data setups (see Figure 2a). In
fact, we observe that in extremely low resource
case (only 60 examples), it is hard to learn using
MLP-FT , but model trained throughMVP performs
exceedingly well. We note that the relative bene-
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BoolQ AGNews

Experiment # Templates Candidate Clean TFooler TBugger Clean TFooler TBugger

MLP-FT N/A N/A 80.6 ± 1.5 28.2 ± 1.7 38.3 ± 1.0 94.5 ± 0.4 42.9 ± 0.7 61.8 ± 0.3

1 Class Label 81.9 ± 0.8 35.9 ± 0.2 44.6 ± 0.5 94.6 ± 0.4 48.6 ± 1.1 67.3 ± 1.1

2 Class Label 82.3 ± 0.2 37.4 ± 0.3 46.4 ± 0.5 94.5 ± 0.6 50.8 ± 1.6 67.8 ± 0.5

3 Class Label 82.1 ± 0.3 40.8 ± 1.5 49.5 ± 1.1 94.2 ± 0.2 48.4 ± 3.4 66.2 ± 1.1

Template
Expansion

4 Class Label 82.0 ± 0.6 42.9 ± 0.5 49.8 ± 1.6 94.3 ± 0.2 51.4 ± 2.0 68.7 ± 0.7

Candidate Exp. 4 Multiple 81.6 ± 1.2 46.1 ± 1.6 53.0 ± 0.7 93.6 ± 0.4 54.0 ± 0.7 69.8 ± 0.3

Table 2: Ablation Studies: We study the impact of the number of candidate answers and prompt templates on
adversarial performance of MVP (see §5.3). ‘TFooler’ and ‘TBugger’ represent model robustness under TextFooler
and TextBugger attacks respectively. ‘Clean’ represents model accuracy on original test data. Additionally, we also
assess the effect of including semantically similar answer candidates (see §6). All values are averaged over 3 seeds.
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Figure 2: (a) Sample Efficiency: Clean and Robust
Accuracy of RoBERTa-base model when trained using
different data sizes of the AG News dataset. (b) Effective
Robustness: Robust vs Clean Accuracy of RoBERTa-
base model on the BoolQ dataset We find that (a) MVP is
more sample efficient as compared to MLP-FT , and (b)
MVP yields more robustness compared to MLP-FT for
the same clean accuracy (see §5.1 for details).

fit of MVP over MLP-FT peaks around 5–10% of
the data. Interestingly, the model trained through
MVP requires only 5% of samples to achieve
similar robustness levels as models trained with
MLP-FT on the full dataset. In addition to robust-
ness benefits, we find that MVP achieves consider-
ably higher clean accuracy in low-data regimes (i.e.,
with <200 examples). Results on BoolQ are in C.3.

Effective Robustness Effective robustness (Taori
et al., 2021) measures the robust accuracy of mod-
els that have the same clean accuracy. This can
help determine which training time design deci-
sions will be valuable when scaled up. We mea-
sure the effective robustness for models trained
through MVP and MLP-FT by training them on
different data sizes. We find that even when both
MLP-FT andMVP achieve the same clean accuracy,
models trained through MVP are more robust (Fig-
ure 2b). Results on AG News are presented in C.3.

5.2 Out of Distribution Robustness

Going beyond adversarial robustness, we now per-
form experiments to assess the out-of-distribution
robustness of MVP, MLP-FT, and LPFT. We use
5 sentiment classification datasets, namely SST2,
Amazon Polarity (Zhang et al., 2016), IMDb (Maas
et al., 2011), Movie Rationales (Zaidan et al., 2008),
and Rotten Tomatoes (Pang and Lee, 2005). We
fine-tune a Roberta model on 1000 examples of
each of these datasets and evaluate all the datasets.
Since all of these datasets are binary sentiment
analysis datasets, we use the same template and can-
didate words across all the models (for both training
and evaluation). Based on our investigation, we see
that across 5 different models (and 20 evaluations)
the average accuracy for MVP (89.65%) is 2% more
than MLP-FT and 1.3% more than that of LPFT.

These results in Table 3 show that MVP is supe-
rior to MLP-FT and LPFT for both adversarial and
OOD robustness. In summary, LPFT helps reduce
the impact of random parameter vulnerability, but
MVP additionally allows pre-training task align-
ment (the second hypothesis) hence resulting in
superior performance and no fundamental trade-off
be it OOD or adversarial robustness.

5.3 Ablation Studies

Number of Candidate Answers A larger can-
didate answer set is shown to improve clean perfor-
mance in the few-shot setting (Hu et al., 2022). Here,
we investigate the impact of the size of the candidate
answer set on the adversarial performance of models
tuned via prompts. The adversarial accuracy of the
model with a single candidate answer is 42.9%, and
it increases to 46.2% upon using an answer set com-
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Train v/s Eval SST2 Amazon Polarity IMDb Movie Rationales Rotten Tomatoes

MVP MLP-FT LPFT MVP MLP-FT LPFT MVP MLP-FT LPFT MVP MLP-FT LPFT MVP MLP-FT LPFT

SST2 91.3 91.2 91.9 92.8 89.2 90.1 89.4 87.6 87.9 86.0 85.9 86.2 86.1 83.2 84.1
Amazon Polarity 90.9 88.5 89.0 92.9 92.9 93.4 92.0 91.2 91.1 85.9 83.9 84.2 86.1 83.3 84.5
IMDb 84.4 81.4 83.5 91.9 88.8 88.7 92.2 91.9 92.4 92.0 89.9 90.2 81.9 78.1 80.1
Movie Rationales 89.9 85.9 85.4 92.5 89.1 90.7 91.7 90.6 91.6 94.4 93.5 94.3 87.4 83.0 83.4
Rotten Tomatoes 92.4 92.1 92.9 92.6 89.5 90.4 90.9 88.6 90.2 86.4 83.9 84.7 87.2 87.1 87.2

Average 89.8 87.8 88.5 92.5 89.9 90.7 91.3 90.0 90.6 89.0 87.4 87.9 85.7 83.0 83.9

Table 3: OOD Robustness: The results report the standard accuracy (in %) of a model trained on the dataset in the left-
most column, and evaluated on 5 different OOD datasets. We see that across 5 different models (and 20 evaluations),
the average accuracy for MVP (89.65%) on OOD tasks is 2% more than MLP-FT and 1.3% more than LPFT.

prising 4 candidates.3 These results correspond to
the RoBERTa-base model on BoolQ dataset against
adversarial perturbations from the TextFooler at-
tack. Overall, we observe an improvement of 1.0–
3.5% in adversarial accuracy when we use a larger
candidate set across different settings (Table 2). A
more detailed analysis of the same with a single
prompt template is provided in Appendix D.4.

Number of Prompt Templates Another design
choice that we consider is the number of prompt
templates used for prediction. We conjecture that
the adversary may find it difficult to flip the model
prediction when we average logits across multiple
templates. To evaluate this, we train MVP with dif-
ferent number of prompt templates (ranging from
1 to 4), and compare the adversarial robustness. We
notice a steady improvement in the adversarial accu-
racy as we increase the number of templates which
supports our initial conjecture (see Table 2). While
increasing the number of templates improves the
robustness of the downstream model, MVP achieves
large robustness gains even with a single template
(compared to MLP-FT). Hence, using multiple
prompt templates is not the fundamental reason for
the improved robustness of MVP. Further, in order
to assess the impact of the ‘choice’ of prompt tem-
plates used, we perform a more details analysis on
the impact of prompt tuning for adversarial robust-
ness of MVP in Appendix D.2. We find that even
empty or random templates perform nearly similar
to well-crafted prompts, and retain the robustness
advantages of MVP over MLP-FT.

6 Why Does MVP Improve Robustness?

We test three hypotheses to explain the robustness
gains achieved by MVP compared to MLP-FT in
the context of adversarial attacks.

3Details about candidates and templates are in Appendix A

Random Parameter Vulnerability One plau-
sible explanation for the observed adversarial vul-
nerability of MLP-FT is the randomly-initialized
linear head used for downstream classification. The
intuition behind this effect is that fine-tuning a set
of randomly-initialized parameters may lead to fea-
ture distortion of the pretrained model as is demon-
strated in Kumar et al. (2022). This phenomenon
has also been observed in CLIP models (Radford
et al., 2021), where the authors found that fine-
tuning the model using a randomly initialized linear
prediction head reduces the out-of-distribution
robustness of the model. The phenomenon is un-
explored in the context of adversarial robustness.
We study this effect through three experiments.

1. ProjectCLS: First, we reduce the num-
ber of random parameters by removing the dense
layer of weights (768 × 768 parameters) from
the standard MLP architecture. We call this
ProjectCLS, and only use a projection layer of
dimensions 768×C parameters, with C being the
number of classes (see Figure 3(a)). We find that
ProjectCLS is on average ∼ 8% more robust
than MLP-FT which suggests that reducing the
number of randomly initialized parameters helps
to increase model robustness (see Table 4).

2. CLSPrompt: Second, we train another
model, CLSPrompt, where instead of using the
probabilities corresponding to the [MASK] token
as in MVP, we use the probabilities of the candi-
date answers corresponding to the [CLS] token
(see Figure 3(b)). The key difference between
CLSPrompt and MLP-FT is that there are no ran-
domly initialized MLP parameters in CLSPrompt,
and we use the probabilities corresponding to the
candidate answers, instead of projecting the repre-
sentations with new parameters. From Table 4, we
observe that CLSPrompt is once again on average
∼ 8% more robust than MLP-FT which provides
strong evidence in favor of our hypothesis of ran-
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(c) DenseLPFT 
Linear probe only the 

final layer. Then 
fine-tune full model

(b) CLSPrompt 
Pass [CLS] output via 
pre-trained LM head 

like [MASK]

(d) LPFT 
Remove Dense Layer. 

Linear probe, then 
fine-tune full model

(a) ProjectCLS 
Remove the Dense 
Layer. Project [CLS] 

representation

Figure 3: Various model tuning strategies for RoBERTa model trained on the BoolQ dataset. The corresponding clean
and robust accuracies (under TextFooler attack) are also shown above each model paradigm. The left-most diagram
shows the standard fine-tuning paradigm of MLP-FT , and each subsequent column modifies the architecture, helping
us confirm the hypothesis that randomly initialized parameters are a cause of vulnerability.

BoolQ AGNews

Hypothesis Setting Clean TFooler TBugger Clean TFooler TBugger

MLP-FT 80.6 ± 1.5 28.2 ± 1.6 38.3 ± 1.0 94.5 ± 0.4 42.8 ± 0.7 61.8 ± 0.3

ProjectCLS 81.3 ± 0.5 37.4 ± 1.2 45.6 ± 1.2 93.7 ± 0.4 46.7 ± 1.3 65.2 ± 3.3

CLSPrompt 82.4 ± 0.3 36.5 ± 0.4 46.0 ± 1.2 94.7 ± 0.2 47.2 ± 1.9 66.7 ± 2.0

DenseLPFT 81.3 ± 0.4 33.9 ± 1.4 42.6 ± 1.2 94.5 ± 0.6 44.2 ± 0.8 64.5 ± 1.1

Random Parameter

LPFT 81.6 ± 1.2 37.5 ± 1.1 46.4 ± 1.2 94.5 ± 0.1 46.5 ± 0.9 67.2 ± 1.0

Untrained MVP 67.5 ± 0.9 11.7 ± 2.7 14.9 ± 2.7 90.1 ± 0.8 12.2 ± 2.9 20.6 ± 2.2Task Alignment
Untrained MLP-FT 67.0 ± 0.6 14.8 ± 4.3 17.5 ± 1.1 89.5 ± 0.4 13.4 ± 1.2 19.4 ± 0.8

Candidate Semantics Random (MVP) 80.9 ± 0.3 42.1 ± 0.4 48.1 ± 2.2 93.4 ± 0.3 50.3 ± 1.2 68.3 ± 0.3

Table 4: Adversarial performance of RoBERTa for experiments corresponding to the random parameter vulnerability
and task alignment hypotheses averaged over 3 seeds (§6). ‘TFooler’ and ‘TBugger’ represent model robustness
under TextFooler and TextBugger attacks respectively. ‘Clean’ represents model accuracy on original test data.

dom parameter vulnerability.

3. LPFT (linear probe, then fine-tune): For our
third experiment, we train two new models namely
LPFT and DenseLPFT (see Figure 3(c,d)). In
both these models, we do the following: (i) fit a lo-
gistic regression to the hidden states corresponding
to the [CLS] token (linear probing); (ii) initialize
the final layer of the classification head with the
learned 768×C (where C is the number of classes)
matrix of the fitted logistic regression model; and
(iii) fine-tune the whole model as in MLP-FT. The
only difference betweenLPFT andDenseLPFT is
that DenseLPFT has an additional randomly ini-
tialized dense layer of dimensions 768×768 unlike
LPFT. In contrast to Kumar et al. (2022), we test
LPFT against adversarial manipulations. We note
from Table 4 that DenseLPFT is more robust than

MLP-FT (by over 10%) but it demonstrates lower
robustness as compared to LPFT (by over 2%).
This provides further evidence that randomly ini-
tialized parameters add to the vulnerability.

Pretraining Task Alignment The task of mask
infilling aligns more naturally with the pretrain-
ing objective of the language model and we posit
that finetuning via mask infilling as in MVP results
in robustness gains. To test this hypothesis, we
use an untrained RoBERTa model, and measure
the clean accuracy and robustness of MVP and
MLP-FT models. We observe that in the absence
of pre-training, MVP trained with a single template
does not achieve any additional robustness over
the baseline, and in fact, MLP-FT performs better
than MVP (Table 4) whereas in the presence of pre-
training, MVP outperforms MLP-FT (Table 2) in
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all the settings. Note that this does not contradict
the hypothesis about vulnerability due to randomly-
initialized parameters, as that hypothesis only ap-
plies for pretrained models. This suggests that the
alignment of MVP with the pre-training task is cru-
cial for adversarial robustness on downstream task.

Semantically Similar Candidates We question
whether the improvement in robustness can also
be attributed to the semantic relatedness between
candidate answers and the class labels. To answer
this question, we change the candidate answers to
random proper nouns (‘jack’, ‘john’, ‘ann’, ‘ruby’)
for the 4-class classification problem of AG-News
and (‘jack’, ‘john’) for the 2-class classification
task of BoolQ. All of these words are unrelated to
the class labels. We find that irrespective of whether
we use semantically related candidates or not, the
robust accuracy of the model is within 1% of each
other, thereby implying that using semantically sim-
ilar candidates is not a factor behind the robustness
gains of MVP (Table 4). While the choice of candi-
date answers is crucial in the pre-train, prompt, and
predict paradigm (Hu et al., 2022), it is irrelevant in
the pre-train, prompt, and finetune paradigm. With
sufficient fine-tuning over the downstream corpus,
a model can learn to associate any candidate word
with any class, irrespective of its semanticity.

However, one may wonder why using ‘random’
candidate words doesn’t hurt the model robustness,
since this also leads to modifying a ‘parameter’ in
the model’s embedding space, which was initially
uncorrelated to the class label. We analyze this ques-
tion in detail in Appendix D.3 and conclude that the
main reason for the preserved robustness is the ‘pre-
training task hypothesis’ and the fact that the mod-
ified word embeddings have a much smaller dimen-
sion of size 768 x C (where C is the number of candi-
date words), as opposed to modifying a dense layer.

7 Human Study

We conduct a human study to assess the viability of
the adversarial attacks. More specifically, we pro-
vide machine learning graduate students 250 input
examples and ask the following questions: (a) What
is the perceived label of the sentence; (b) What is
their confidence about this label; and (c) Was this
sentence adversarially manipulated? We use the
BoolQ dataset and strictly instruct our annotators
to not use any external knowledge but the context of
the given passage only. We use samples that were
successfully attacked by TextFooler for MVP + Adv

model with a RoBERTa backbone. As a control for
the study, we provide the original sentence rather
than the adversarially perturbed one 33% times.
The underlying model achieves a clean accuracy
of 81.7% and a robust accuracy of 54.0%.

We find that human annotators identify 29% of
adversarial examples to be perturbed as opposed
to only 6% of clean examples. Moreover, we also
discover that humans achieved 11% lower accuracy
on adversarial examples as compared to clean ex-
amples (85%→74%) with average confidence on
the label of perturbed examples being 15% lower
(90%→75%). This study highlights that a fraction
of adversarial attacks either manipulate the input
so significantly that it is easily detectable, or change
the label, signifying that MVP is more robust than
what crude statistics suggest in §5. Details related
to the human study are available in Appendix F.1.

8 Conclusion

In this work, we benchmark the robustness of lan-
guage models when adapted to downstream classifi-
cation tasks through prompting. Remarkably, model
tuning via prompts—which does not utilize any
sort of adversarial training or prompt engineering—
already outperforms the state-of-the-art methods
in adversarially robust text classification by over
3.5% on average. Moreover, we find that MVP is
sample efficient and also exhibits high effective ro-
bustness as compared to the conventional approach
of fine-tuning with an MLP head (MLP-FT). We
find that the lack of robustness in baseline methods
can largely be attributed to the lack of alignment
between pre-training and finetuning task, and the in-
troduction of new randomly-initialized parameters.

9 Limitations

This work considers models that are under 1B pa-
rameters in size. While larger models are becoming
popular in the NLP community, developing prac-
tical attacks that scale to such large models is an ex-
tremely challenging task. For instance, for the eval-
uation considered in this paper, each attack takes
approximately a day on a single A6000 GPU to run
(across multiple seeds of the model). Furthermore,
the scope of our work is limited to tasks where fine-
tuning with an MLP head is commonplace. This in-
cludes boolean question answering, sentence classi-
fication, and paraphrase detection tasks. Finally, us-
ing multiple templates for MVP comes with a trade-
off with latency which is discussed in Appendix D.1.
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Broader Impact Our work does not pose any
immediate negative impacts to society, except for
the carbon emissions owing to the training and eval-
uation of big models. We emphasize that the adver-
sarial robustness conferred via MVP is a desirable
property for deployed systems, and our work con-
tributes towards making NLP models more reliable
and safe when deployed in real-world settings.
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Supplementary Material
Model-tuning Via

Prompts Makes NLP Models More Robust

A Candidate
Answers & Prompt Templates

We enumerate all the prompt templates and can-
didate answers used for our experiments on MVP.
Templates beginning with the [SEP] token are
appended at the end of the input otherwise they
precede the input. Note that we remove the [SEP]
token and then append the template to the input.
The [SEP] token is just used as an indicator for
appending the template to the input. Note that since
Causal Language models are not bidirectional, for
GPT-2 experiments, all the prompt templates will
be appended at the end of the input.

AG News The prompt templates used for MLMs:

1. A [MASK] news

2. [SEP] This topic is about [MASK]

3. Category : [MASK]

4. [SEP] The category of this news is [MASK]

The prompt templates used for GPT-2 are:

1. [SEP] This topic is about [MASK]

2. [SEP] The category of this text is [MASK]

3. [SEP]Category : [MASK]

4. [SEP] This is a news from [MASK]

The candidate answers used are the same as the
class labels, namely—politics, business, sports,
and technology—for all the experiments except the
larger candidate set ablation study. For that ablation,
we use the following candidate answer set:

1. {politics, world, government, governance}

2. {sports, competition, games, tournament}

3. {business, corporation, enterprise, commerce}

4. {technology, science, electronics, computer}

BoolQ The prompt templates used for MLMs are:

1. Answer to the question is [MASK]

2. [SEP] [MASK]

3. I think [MASK]

4. [SEP] The answer is [MASK]

The prompt templates used for GPT-2 are the same
as above except every template is appended to the
end of the input. As in AG News, the candidate an-
swers used are the same as the class labels, namely
false and true, except when performing the larger
candidate set experiment, in which case we use the
following candidate answer set:

1. {false, wrong, incorrect, invalid}

2. {true, correct, valid, accurate}

SST-2 The prompt templates used for MLMs are:

1. Sentiment of the statement is [MASK] .

2. [SEP] [MASK]

3. This is a [MASK] statement

4. [SEP] The statement is [MASK]

Similar to AG News and BoolQ, we use the class
labels (i.e., negative and positive) as the candidate
answers.

DBPedia14 The prompt templates used for
MLMs are:

1. Content on [MASK]

2. [SEP] This topic is about [MASK]

3. Category : [MASK]

4. [SEP] The content is about [MASK]

The candidate answers used are:
{0: ‘company’, 1: ‘education’, 2: ‘artist’, 3: ‘ath-
lete’, 4: ‘office’, 5: ‘transportation’, 6: ‘building’,
7: ‘nature’, 8: ‘village’, 9: ‘animal’, 10: ‘plant’, 11:
‘album’, 12: ‘film’, 13: ‘writing’}
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MRPC The prompt templates used for MLMs:

1. The two sentences are [MASK]

2. [SEP] First sentence is [MASK] to second
sentence

3. Two [MASK] sentences

4. [SEP] The two sentences have [MASK]
meanings

The candidate answers used are:
{0: ‘different’, 1: ‘equivalent’}

B Baseline Methods and Attacks

B.1 Baselines

We describe training schemes corresponding to
various fine-tuning strategies below.
MLP-FT : This is the “base” model for classifi-

cation via standard non-adversarial training and is
utilized by all the baselines discussed in this section.
Given a pre-trained model, we perform downstream
fine-tuning by adding an MLP layer to the output
corresponding to [CLS] token as illustrated in
Figure 1(a). This hidden representation is of size
768×1. In the case of the BERT model, there is a
single dense layer of dimension 768×2, whereas
in the case of RoBERTa model, we have a two-layer
MLP that is used to make the final prediction.
MLP-FT + Adv: This is identical to the method

used for adversarial training in Section 3.2, wherein
we perform adversarial perturbations in the embed-
ding space of the MLP-FT model, rather than MVP.

FreeLB++ (Li et al., 2021): Free Large-Batch
(FreeLB) adversarial training (Zhu et al., 2020) per-
forms multiple Projected Gradient Descent (PGD)
steps to create adversarial examples, and simulta-
neously accumulates parameter gradients which
are then used to update the model parameters (all
at once). FreeLB++ improves upon FreeLB by in-
creasing the number of adversarial training steps
to 10 and the max adversarial norm to 1.

InfoBERT (Wang et al., 2021a): InfoBERT uses
an Information Bottleneck regularizer to suppress
noisy information that may occur in adversarial
attacks. Alongside, an ‘anchored feature regular-
izer’ tries to align local stable features to the global
sentence vector. Together, this leads to improved
generalization and robustness. InfoBERT can addi-
tionally be combined with adversarial training (we
use Free LB++ for this purpose).

AMDA (Si et al., 2021b): Adversarial and Mixup
Data Augmentation (AMDA) improves robustness
to adversarial attacks by increasing the number of ad-
versarial samples seen during training. This method
interpolates training examples in their embedding
space to create new training examples. The label as-
signed to the new example is the linear interpolation
of the one hot encodings of the original labels.

B.2 Attack Details

In the main paper, we evaluated our method
on three popular word substitution attacks and
one character-level attack. These included the
TextFooler, TextBugger and BertAttack attack
strategies. TextFooler and TextBugger are word
substitution attacks that replace words with “sim-
ilar” neighboring words (where similarity is based
on counterfitted GloVe embeddings). TextFooler
greedily searches in a large set of neighbors (in the
embedding space) for each word, so long as they
satisfy some constraints on embedding similarity
and sentence quality. An additional constraint re-
quires the substituted word to match the POS of
the original word. TextBugger, on the other hand,
restricts the search space to a small subset of neigh-
boring words and only uses sentence quality as a
constraint. To control the amount of change made
by an attack, we limit the adversary to perturbing
a maximum of 30% words in the AG News dataset
and 10% in all other datasets. We do not modify any
other constraints (such as the query budget) and run
the attacks on 1000 examples from the test set. We
also evaluate on one character-level, and another
word substitution attack. For character-level attack,
we use the adversarial misspellings attack intro-
duced by Pruthi et al. (2019), and we additionally
evaluate the popular BertAttack (Li et al., 2020).

C Extended Experiments
on Adversarial Robustness

C.1 Results on Additional Datasets and Models

Results on BERT-Base Results on BERT-Base
model are presented in Table 7. Similar to the re-
sults corresponding to RoBERTa-Base model in
the main paper, we find that our proposed method
MVP improves over the state-of-art defenses across
3 different datasets and 4 different attacks by 2%
even without any adversarial training. Using adver-
sarial training further improves the average robust
accuracy by 4%.
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GPT2

BoolQ AG News

Clean Acc TextFooler TextBugger Clean Acc TextFooler TextBugger

MLP-FT 61.0 ± 2.1 20.2 ± 0.6 24.9 ± 1.4 93.7 ± 0.2 27.6 ± 1.2 58.2 ± 0.9

MLP-FT +Adv 60.5 ± 0.4 22.0 ± 1.1 31.8 ± 1.8 92.4 ± 0.3 39.6 ± 0.5 61.3 ± 0.7

MVP 72.5 ± 1.0 28.7 ± 1.6 38.3 ± 1.6 93.8 ± 0.3 31.4 ± 0.5 61.0 ± 0.8

MVP +Adv 71.8 ± 0.8 30.1 ± 0.6 41.2 ± 0.8 93.7 ± 0.3 44.0 ± 0.2 64.4 ± 1.2

Table 5: Adversarial Robustness results on BoolQ and AG News dataset using GPT-2 model. All experiments are run
on 3 different seeds and the performance is reported over a fixed test set of size 1000. The best-performing robust
accuracies are bolded and the second best robust accuracies are underlined.

DBPedia

Clean Acc TextFooler TextBugger BertAttack Misspellings

MLP-FT 97.3±0.7 43.8±1.5 68.7±0.9 72.4±1.2 65.7±1.3

MLP-FT + Adv 97.2±0.4 56.1±0.2 76.4±0.3 78.3±0.6 72.2±0.7

MVP 97.0±0.5 57.2 ±1.0 77.2±0.5 80.6±0.7 74.3±0.7

MVP + Adv 97.3±0.9 82.7±0.4 90.3±0.2 88.5 ±1.8 86.4±0.3

MRPC

Clean Acc TextFooler TextBugger BertAttack Misspellings

MLP-FT 87.9±0.6 41.5±1.2 50.2±1.0 61.1±1.1 51.7±1.0

MLP-FT + Adv 87.2±0.4 42.1±0.3 53.4±0.7 64.1±0.1 54.2±0.4

MVP 88.4±0.4 44.8 ±0.1 56.6±0.1 68.8±0.5 57.3±0.9

MVP + Adv 87.1±1.2 46.6±1.2 60.7±0.4 72.1 ±0.9 65.8 ±0.3

Table 6: Adversarial performance of RoBERTa-base model on 2 additional datasets. All accuracy values are reported
for a fixed test set of size 1000 and are averaged over 3 different seeds. The highest accuracies are bolded, and the
second-best is underlined. MVP is the most robust, and preserves (or improves) the clean accuracy.

Additional Datasets We further extend our re-
sults on two diverse datasets—DBPedia14 (Zhang
et al., 2015a), a 14-class news classification dataset,
and MRPC (Dolan and Brockett, 2005), a para-
phrase detection dataset. Results on these are pre-
sented for the MLP-FT and MVP training schemes
for RoBERTa-base model in Table 6.

The experiments provide additional evidence
to support our findings about the adversar-
ial robustness conferred by model-tuning via
prompts (MVP) as opposed to the conventional ap-
proach of MLP-FT. Without adversarial training,
MVP improves over MLP-FT by an average of 6%
on the MRPC dataset across 4 different attacks. Re-
sults on the DBPedia dataset also show consistent
improvements of MVP over MLP-FT . In particular,
we find that MVP improves on average (across 4
different attacks) by 10% over MLP-FT, and MVP +
adv improves by 16% over the adversarial training
counterpart of MLP-FT. In a setting where the num-
ber of labels is many, we in fact see a larger relative
gain by using MVP over the conventional approach
of MLP-FT.

C.2 Results on Causal Language Models

Causal Language Models have not been tradition-
ally fine-tuned for downstream classification tasks.
This is evident also from the exclusion of fine-
tuning results in the original GPT-2 paper (Radford
et al., 2019). In this work, we try to evaluate the
clean and adversarial robustness of GPT-2 models,
when adapted to downstream tasks. To implement
MVP, we use the Causal Language Modeling (CLM)
head to get the next word prediction logits. Since
we are using the CLM head, it is imperative that
the prompt templates are appended at the back and
have the [MASK] as the last token.

We find that on the BoolQ dataset
MLP-FT achieves a robust accuracy of 20.2%
and MVP achieves a robust accuracy of 28.7% (Ta-
ble 5), which is a large improvement. Similar to
our findings in the main paper, 1-step adversarial
training on MVP (MVP + Adv) yields a robust ac-
curacy of 30.1% which is a massive improvement
over MLP-FT and MLP-FT + Adv which obtains
a robust accuracy of 22.0%. Interestingly, we also
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SST2

MLP-FT MLP-FT + Adv Free LB++ MADA InfoBert MVP MVP + Adv

Clean Acc 91.9 ±0.2 90.9 ±0.3 92.1 ±0.8 92.1 ±0.9 91.7 ±0.6 91.7 ±0.4 91.8 ±0.7

TextFooler 38.3 ±1.0 42.8 ±1.2 42.2 ±1.0 41.7 ±0.5 43.1 ±0.8 44.6 ±0.7 47.7 ±0.6
TextBugger 60.4 ±0.4 62.3 ±0.5 63.0 ±0.7 60.9 ±0.4 64.6 ±0.6 65.1 ±0.1 67.8 ±0.4
Bertattack 68.7 ±0.5 70.1 ±0.8 72.0 ±0.9 70.3 ±0.7 72.8 ±0.6 75.9 ±0.7 78.9 ±0.9
Misspellings 39.2 ±0.4 42.4 ±0.4 43.4 ±0.4 40.2 ±0.7 43.1 ±0.7 45.6 ±1.1 49.2 ±0.9

AG News

MLP-FT MLP-FT + Adv Free LB++ MADA InfoBert MVP MVP + Adv

Clean Acc 93.7 ±0.4 93.2 ±0.2 93.4 ±0.2 92.8 ±0.5 93.8 ±0.3 93.7 ±0.5 94.0 ±0.6

TextFooler 37.5 ±0.7 44.3 ±1.0 43.5 ±0.2 41.8 ±0.9 44.0 ±1.6 46.3 ±1.2 53.7 ±0.1
TextBugger 58.9 ±0.6 64.1 ±0.2 63.4 ±0.8 62.6 ±1.0 64.1 ±0.8 66.0 ±0.4 69.2 ±1.3
Bertattack 78.1 ±1.2 80.1 ±0.2 80.9 ±0.1 79.6 ±0.6 80.7 ±0.6 82.1 ±0.7 83.4 ±0.4
Misspellings 76.8 ±0.8 78.5 ±0.2 79.5 ±0.7 76.9 ±1.3 79.6 ±0.7 81.5 ±0.4 84.3 ±0.3

BoolQ

MLP-FT MLP-FT + Adv Free LB++ MADA InfoBert MVP MVP + Adv

Clean Acc 71.1 ±1.3 71.0 ±0.9 70.7 ±0.2 71.1 ±0.9 71.8 ±0.6 71.4 ±1.0 71.3 ±0.3

TextFooler 21.8 ±4.4 29.8 ±0.8 29.5 ±0.6 25.4 ±0.8 29.9 ±0.2 31.1 ±1.3 43.1 ±0.7
TextBugger 36.8 ±3.0 42.8 ±1.3 42.8 ±0.6 41.6 ±0.6 42.6 ±0.6 44.4 ±2.8 49.9 ±0.9
Bertattack 55.7 ±1.2 57.8 ±0.7 58.2 ±0.9 57.8 ±0.6 58.9 ±0.8 60.1 ±0.6 63.2 ±0.7
Misspellings 55.1 ±1.0 58.1 ±0.3 59.4 ±0.7 56.2 ±0.7 59.1 ±0.6 60.1 ±1.0 63.2 ±0.8

Table 7: Adversarial performance of BERT-base model on 3 different datasets. All accuracy values are reported for a
fixed test set of size 1000 and are averaged over 3 different seeds. The highest accuracies are bolded, and the second-
best are underlined. MVP is the most robust, and preserves (or improves) the clean accuracy.

notice that for MLP-FT and MLP-FT + Adv, it
is difficult to achieve a good clean generalization
performance whereas MVP and MVP + Adv per-
form much better on the clean test set. These ob-
servations are in line with the results in our main
paper. On the AG News dataset, MVP performs
significantly better than MLP-FT and MVP + Adv
performs better than MLP-FT + Adv. These results
show that MVP is not only a good way of finetun-
ing BERT-like MLMs but can also improve Causal
Language Models both in terms of clean accuracy
and robustness to adversarial perturbations.

C.3 Sample
Efficiency and Effective Robustness

We demonstrate the sample efficiency ofMVP on the
BoolQ dataset (Figure 4a) in addition to the discus-
sion about AG News in §5.1. Interestingly we find
that MLP-FT is unable to achieve better accuracy
compared to even random classifiers with 200 exam-
ples but MVP performs much better in the low data
regime (< 200 examples). We also provide more
evidence on the effective robustness of MVP by pre-
senting the effective robustness results on AG News
(Figure 4b). Even for AG News, we notice that the
curve is much steeper for MVP than MLP-FT.

Configuration Time taken (in sec)

MLP-FT 23.25±0.37 (0.95×T )
1 Template 24.45±0.25 (T)
2 Templates 27.51±0.45 (1.15×T )
3 Templates 32.81±0.30 (1.34×T )
4 Templates 35.65±0.44 (1.45×T )

Table 8: Inference latency comparison across different
configurations.

D Extended Analysis

D.1 Latency of Using Multiple Templates

We present the latency numbers and compare them
with the latency of the standard MLP-FT approach.
Specifically, the time required for 2000 forward
passes of data from the IMDb dataset with a batch
size of 1 is represented as T =24.45±0.25 seconds.
The results are presented in Table 8.

In summary, using multiple templates makes pre-
dictions about 1.45x slower, however, this leads to
improved robustness.
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(b) Clean vs adversarial performance of RoBERTa
base model for the AG News dataset. We find that
models tuned via prompts (MVP) yield more robust
models compared to fine-tuning MLP heads for the
same clean accuracy.

Figure 4: (a) Models trained with MVP are signifi-
cantly more sample efficient as compared to those with
MLP-FT . (b) We find that models tuned via prompts
(MVP) yield more robust models compared to fine-tuning
MLP heads for the same clean accuracy (details in §5.1).

D.2 Benefits from Prompt Tuning

To assess the benefit of Prompt tuning, we con-
ducted a series of experiments. Interestingly, even
an empty template with just a [MASK] token,
which would be considered a weak prompt, showed
significant performance improvements over the
standard technique of MLP-FT. We present these
results for 4 different prompt choices in Table 9.
The choice of prompts used has very little effect
on model robustness in the fine-tuning regime. We
tabulate the robustness results corresponding to dif-
ferent prompts below (for the BoolQ dataset). Here
the first four prompts are the prompts we used and
“Ruby emerald [MASK]” is a random prompt from

vocabulary words.
We did not perform any dedicated prompt tun-

ing for selecting the prompts. Instead, prompts
were either chosen directly or inspired by the Open-
Prompt repository. The selected prompts led to a
marginal (2%) increase in model robustness during
fine-tuning. Unlike typical few-shot or in-context
learning methods, our approach aligns more closely
with the idea of prompt tuning. For more advanced
techniques and further potential improvements
in prompt tuning, readers are referred to Hu et al.
(2022).

D.3 Why does using "dummy candidate
words" not hurt model robustness?

In our paper, we note that using dummy candidate
words like Jack and Ann, instead of class labels,
does not hurt model robustness. However, this is
very similar to random projection layers, so why
does this not impact model robustness similarly?
We note that using dummy candidate words leads to
modifying an embedding of size 768 x C (where C
is the number of candidate words) so that they now
have a new “meaning”. The effective number of
“new parameters” is much lower than the parameters
in the “dense 768x768 layer” in the Roberta model.
However, in terms of new parameter complexity,
this is similar to our ablation “ProjectCLS”. As
one may note, using ProjectCLS also improves
robustness over MLP-FT. This is because we avoid
the dense 768x768 layer.

Additionally, we conducted a new experiment
of using empty slots in the vocabulary of Roberta
and compared it with using “dummy candidate
words” and “class labels”. For the BoolQ dataset,
using a Roberta model, we summarize the results
in Table 10.

Based on these accuracies above we find that:

1. Using class labels is better than using “dum-
my/untrained words” for both clean and robust
accuracy, which supports the random param-
eter vulnerability hypothesis.

2. The robustness achieved upon using com-
pletely untrained slots is similar to that when
using dummy candidate words. This suggests
that when compared to class labels, modifying
dummy words has a similar loss in robustness
as with modifying untrained words.

3. The MVP models (with random/empty
candidate words) are more robust than
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Template Clean Accuracy Robust Accuracy

Answer to the question is [MASK] 81.5±0.5 38.5±0.7
[SEP] [MASK] 81.7±0.6 36.1±0.4
I think [MASK] 81.9±0.8 35.9±0.2
[SEP] The answer is [MASK] 82.0±0.3 38.1±0.1
[SEP]Ruby emerald [MASK] 81.4 ± 0.5 36.8 ± 0.4
None (MLP-FT) 80.6±1.5 28.2±1.7

Table 9: Model robustness per template chosen for the BoolQ dataset.

Method Candidate Choice Clean Accuracy Robust Accuracy

MLP-FT N/A 80.6 ± 1.5 28.2 ± 1.6
ProjectCLS N/A 81.3 ± 0.5 37.4 ± 1.2
MVP Class Labels 82.0 ± 0.6 42.9 ± 0.5
MVP Dummy Candidate Words (Jack/Ann) 80.9 ± 0.3 42.1 ± 0.4
MVP Empty Slots 81.3 ± 0.3 41.2 ± 0.7

Table 10: Comparison of different choices of candidate words and their accuracies when training a Roberta model on
the BoolQ dataset.

ProjectCLS (which already bridges the
robustness gap from MLP-FT). These gains
are explained by the pre-training task align-
ment hypothesis, where pre-training (and fine-
tuning) the model with the task of [MASK]
infilling helps make the downstream model
robust.

D.4 Impact of Ensembling the Candidates

Recall that in the main paper, we ensemble multi-
ple templates and aggregate their predictions. In
this subsection, we also investigate the impact of
ensembling candidate words rather than templates.
Based on the results in Table 11, we find that this
is not as helpful as ensembling multiple templates.

E Hyperparameter Details

Attack Hyperparameters TextFooler and
TextBugger use a word substitution attack that
searches for viable substitutions of a word from a set
of synonyms. We restrict the size of the synonym
set to 50 for TextFooler which is the default value
used by Jin et al. (2020) and to 5 which is the de-
fault value used by Li et al. (2018). Both TextFooler
and TextBugger use a Universal Sentence Encoder
(USE), that poses a semantic similarity constraint
on the perturbed sentence. We use the default value
of 0.84 as the minimum semantic similarity. An-
other important attack parameter is the maximum
percentage of modified words (ρmax). As discussed

in (Li et al., 2021), we use ρmax=0.3 for AG News
and use ρmax =0.1 for BoolQ and SST2 in all our
experiments. We use a query budget of 100 for
BERT-Attack and a query budget of 300 for adver-
sarial misspellings as these attacks are very slow.

Training Hyperparameters & Model Selection
We train all models including the baselines with
patience of 10 epochs, for a maximum of 20 epochs,
and choose the best model based on validation accu-
racy. For the datasets that do not contain a publicly
available validation set, we set aside 10% of the
training set for validation. In the case of baseline
defenses that use adversarial training, we perform
model selection based on adversarial accuracy rather
than clean accuracy. We use a candidate answer set
containing only the class label names and we aver-
age over 4 prompt templates in all the MVP models.
We use a batch size of 32 for MLP-FT and a batch
size of 8 for MVP models. The learning rate is set as
1e−5 for all the models. We use the AdamW opti-
mizer along with the default linear scheduler (Wolf
et al., 2020). In all the MVP + Adv and MLP-FT +
Adv models, we use a use 1-step adversarial train-
ing with max ℓ2 norm of 1.0. For the state-of-the-art
baselines, we use the same hyperparameters as
prescribed by the original papers.
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Configuration Clean Accuracy Robust Accuracy

1 prompt + 4 candidates 81.9±0.3 37.4±0.5
1 prompt + 1 candidate 81.9±0.8 35.9±0.2
4 prompt + 1 candidate 82.0±0.6 42.9±0.5

Table 11: Impact of different ensembling configurations on clean and robust accuracy of Roberta model on the BoolQ
dataset.

Perturbed
Examples

Unperturbed
Examples

Q1. Annotator Accuracy 74% 85%
Q2. Annotator Confidence 75% 90%

Q3. Perturbed?
No 54% 82%
Unsure 17% 12%
Yes 29% 06%

Table 12: Summary of the responses from the user study.
The total number of presented examples is 250, out of
which 83 are unperturbed and 167 are adversarially per-
turbed.

F Human Study

Despite the improvements brought to adversarial
robustness by our proposed modification (MVP +
Adv), we note that there is still a significant drop
in robust accuracy as opposed to the clean accuracy
of the model. We conduct a human study in order
to (i) assess the viability of adversarial attacks, and
(ii) estimate human performance against adversar-
ial attacks. More specifically, we provide machine
learning graduate students 250 input examples and
ask the following questions:

1. What is the perceived label of the sentence?
(Answer options: True or False)

2. On a scale of 1 to 3, what is their confidence
about this label?

3. Was this sentence adversarially manipulated?
(Answer options: Yes, Unsure, or No)

We use the BoolQ dataset and strictly instruct our
annotators to not use any external knowledge but
the only context of the given passage. We use sam-
ples that were successfully attacked by TextFooler
for MVP + Adv model with a RoBERTa backbone.
As a control for the study, 33% of all sentences are
unperturbed sentences from the original dataset.
The underlying model achieves a clean accuracy
of 81.7% and a robust accuracy of 54.0%.

Figure 5: A snapshot of the instructions for completing
our study.

First, we find that humans achieved 11% lower
accuracy on adversarial examples as compared to
clean examples (85% → 74%) with average con-
fidence on the label of perturbed examples being
15% lower (90%→75%) (Table 12). Next, we also
discover that human annotators suspect 29% of
adversarial examples to be perturbed as opposed
to only 6% of clean examples. Through this study,
we also find that in 47% of the cases, the input is
either manipulated so significantly that it is easily
detectable or the original label is not preserved,
signifying that MVP may be more robust than what
statistics suggest in §5. Further details are available
in Appendix F.1.

F.1 Details of Interface
We present a snapshot of our interface that provides
detailed instructions for our users (Figure 5). We
provide a detailed overview of the questions asked
in the user study. Annotators were provided with
a boolean question and an accompanying context
to answer the question and asked were asked to
annotate the following:

1. What should be the answer to the question?
(only use the context) Given the boolean ques-
tion and the context, we ask the annotators whether
the answer to the question is True or False. We also
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request the annotators only use the given context
and refrain from using any external knowledge.

2. How confident are you about the label above?
Once the annotator has answered question 1, we ask
them to rate how confident they feel about the label
they assigned to the input. The options provided are
"Uncertain", "Somewhat Certain" and "Certain".
Based on their response we assign a confidence of
1, if the annotator was certain, assign 0.5 if the an-
notator was somewhat certain, and assign 0 if the
annotator was uncertain to calculate the average
confidence.

3. Do you think that the sentence is adversari-
ally perturbed? (using word substitutions) Do
not use your own knowledge of the world to an-
swer this question. We also ask the annotators, if
the input was adversarially perturbed. The options
provided to the user are "No", "Unsure" and "Yes".

The annotators helped us annotate 250 such
examples out of which 167 were adversarially
perturbed and 83 were clean. An overview of the
responses from this study is presented in Table 12,
and the key takeaways are discussed in Section F.
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