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Abstract

Human speakers can generate descriptions
of perceptual concepts, abstracted from the
instance-level. Moreover, such descriptions can
be used by other speakers to learn provisional
representations of those concepts . Learning
and using abstract perceptual concepts is under-
investigated in the language-and-vision field.
The problem is also highly relevant to the field
of representation learning in multi-modal NLP.
In this paper, we introduce a framework for
testing category-level perceptual grounding in
multi-modal language models. In particular,
we train separate neural networks to generate
and interpret descriptions of visual categories.
We measure the communicative success of the
two models with the zero-shot classification
performance of the interpretation model, which
we argue is an indicator of perceptual ground-
ing. Using this framework, we compare the
performance of prototype- and exemplar-based
representations. Finally, we show that commu-
nicative success exposes performance issues
in the generation model, not captured by tra-
ditional intrinsic NLG evaluation metrics, and
argue that these issues stem from a failure to
properly ground language in vision at the cate-
gory level.

1 Introduction

Grounded language use links linguistic forms (sym-
bols) with meaning rooted in various perceptual
modalities such as vision, sound, and the sensory-
motor system (Harnad, 1990). But grounding is not
merely a solipsistic mapping, from form to mean-
ing; rather, it results from a communicative context
in which linguistic agents act on — and have goals
in — the real world (Larsson, 2018; Chandu et al.,
2021; Giulianelli, 2022). Large language models
trained on vast amounts of text have been criti-
cised for lacking grounded representations (Bisk
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Figure 1: A simple learning scenario in which one
speaker learns a visual concept from another speaker’s
description; the learner is then able to use their provi-
sional representation to classify an entity as belonging
to the concept.

et al., 2020; Bender and Koller, 2020), and the fast-
growing field of multi-modal NLP has been work-
ing to address this problem (Bernardi et al., 2016;
Beinborn et al., 2018). However, multi-modal
models have several areas for improvement. Re-
cent work suggests that these models are affected
by the distribution of items in training data, of-
ten over-representing specific scenarios and under-
representing others (Agrawal et al., 2018). This,
in turn, affects their ability to find a true balance
between the levels of granularity in descriptions
for novel concepts, as these models are expected
to generalise (Hupkes et al., 2023). As a result,
these models rely excessively on text and have to
be supplied with various mechanisms, enforcing
and controlling their attention on modalities such
as vision (Lu et al., 2017; Thomason et al., 2019;
Ilinykh et al., 2022). This raises questions about
the nature of the relationship these models learn
between linguistic and non-linguistic information.
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Exploiting statistical regularities in multi-modal
datasets can cause models to hallucinate. Accord-
ing to Rohrbach et al. (2018), neural image cap-
tioning systems can accurately describe objects in
images but struggle to understand the overall situa-
tion, often relying on common contextual patterns
associated with specific objects that co-occur. Sim-
ilar problems are common for other multi-modal
models, datasets (Alayrac et al., 2022), and tasks
such as Visual Question Answering (Antol et al.,
2015) and Embodied Question Answering (Das
et al., 2018). These examples, along with many
others, illustrate that perceptual grounding cannot
be achieved in the abstract but must be considered
in a communicative context, which includes speak-
ers’ prior common ground, joint perception, and
intentions (Clark and Wilkes-Gibbs, 1986). One
important type of common ground is shared percep-
tual world knowledge, which need not necessarily
rely on the immediate perceptual context. For in-
stance, if someone mentions that red apples are
sweeter than green ones, this communicates some-
thing, even to someone who is not concurrently
looking at or tasting apples. We can acquire and
use a (provisional) perceptual concept based on a
natural language description produced by a conver-
sation partner, a process referred to as fast map-
ping (Carey, 1981; Gelman and Brandone, 2010).
Can multi-modal language models generate a de-
scription of a perceptual category that similarly
communicates the concept to an interlocutor?

In this paper, we propose perceptual cate-
gory description, which emphasises category-
level grounding in a communicative context. This
framework models a simple interactive scenario
(Figure 1) where (1) a describer, referred to as
GEN, generates a description of one or more a
visual categories, (2) an interpreter, IPT, learns
from the generated descriptions, and (3) classifies
among both the seen classes, which it already has
knowledge of, and the unseen classes described
by GEN. During training, the GEN model has ac-
cess to images and class labels from both the seen
and “unseen” sets, but only receives supervision on
ground-truth descriptions from the seen set. This
ensures that during testing the generator is evalu-
ated based on its ability to use category-level repre-
sentations of the unseen classes, rather than mem-
orising descriptions from the training data. The
IPT model only has access to instances from seen
at train time and performs zero-shot image clas-

sification on unseen instances using descriptions
produced by GEN as auxiliary class information.
Zero-shot learning from text descriptions is not a
novel task; our focus in this work is on the gen-
eration of perceptual category descriptions, using
“communicative success”— the performance of the
IPT model — as a semi-extrinsic evaluation metric.
The proposed evaluation method differs from many
standard automatic generation evaluation metrics,
such as BLEU (Papineni et al., 2002), which are not
designed to capture the level of communicative use-
fulness of the generated texts. In contrast to many
language-and-vision tasks, we explore the ability
of multi-modal models to perform grounding on
class-level representations, distinct from instance-
level representations, e.g. images.1 Additionally,
we highlight the issue of mismatch between intrin-
sic evaluation (generation metrics) and task-based
evaluation, as indicated by the performance of the
IPT. Our results reveal challenges involved in de-
veloping better models with the ability to ground
at the class level. We believe that our fine-grained
analysis of the task, data and models sheds light
on the problems associated with both generating
and interpreting class-level image descriptions. We
also contribute insights into the extent to which
current evaluation methods for generated texts con-
sider communicative context. The framework that
we propose can be used for evaluating existing
models of language grounding and can also aid
in building new multi-modal models that perform
grounding in communication. To support research
in this direction, we have made our code and data
available here: https://github.com/GU-CLASP/
describe-me-an-auklet.

2 Background

Prototypes and exemplars Cognitive theories
of categorisation are psychologically-motivated ac-
counts of how humans represent perceptual con-
cepts and use them for classification. Such theories
have challenged the assumption that categories can
be defined in terms of a set of necessary and suffi-
cient features. In contrast, they try to account for
phenomena like prototypically effects, in which cer-
tain members of a category are perceived as more
representative of the class than others. In proto-
type theory, cognitive categories are defined by a

1See, for example, Bernardi et al. (2016) which presents
a survey of image description techniques that rely heavily on
the image as part of the input.
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prototype, an abstract idealisation of the category.
Membership in the class, then, is judged in refer-
ence to the prototype (Rosch, 1975). In exemplar
theory, (e.g., Medin and Schaffer, 1978; Nosof-
sky, 1984), concepts are still defined in relation
to an ideal, but this time the ideal is an exemplar,
which is a particularly representative member of
the very category. Put another way, an exemplar
is of the same kind as the other members of the
category, whereas prototypes, in general, are not.
Experimental evidence suggests that humans em-
ploy both exemplar and prototype-based strategies
(Malt, 1989; Blank and Bayer, 2022).

Perceptual categories play a role in natural
language interpretation and generation. In fact,
classifier-based meaning has been proposed as a
way to ground language in perception (Schlangen
et al., 2016; Silberer et al., 2017). There are both
formal and computational interpretations of this
approach that support compositional semantics for
lexical items with classifier-based perceptual mean-
ings (Larsson, 2013; Kennington and Schlangen,
2015). In this paper, we explore how classifier-
based meaning facilitates the generation of class-
level descriptions by testing three different GEN

model architectures: one motivated by prototype
theory, one by exemplar theory, and one that uses a
hybrid approach.

Zero-shot language-and-vision generation and
classification In the perceptual category descrip-
tion framework, both models operate with textual
descriptions: one generates them, and the other in-
terprets them. The interpretation model performs
zero-shot classification, with (in this case) vision
as the primary modality and text as the auxiliary
modality.2 In zero-shot learning scenarios that use
text as auxiliary data, the quality and relevance of
the text has been shown to improve model perfor-
mance. For example, perceptually more relevant
texts might help better learning of novel concepts
(Paz-Argaman et al., 2020). Bujwid and Sullivan
(2021) show that Wikipedia texts can be used as
class descriptions for learning a better encoding
of class labels. In a similar vein, Desai and John-

2This means that the model has supervised training with
visual examples of seen classes, and then the model receives
text descriptions (one per class) corresponding to the unseen
classes. The model is then evaluated in the generalised zero-
shot setting. I.e., to classify new visual examples among
both seen and unseen classes. See (Xian et al., 2020) for an
introduction to different zero-shot learning setups and a recent
survey of the field.

son (2021) demonstrate that for a nominally non-
linguistic task (e.g. classification), longer descrip-
tions yield better visual representations compared
to labels. Image classification can be further im-
proved with a better mapping between visual and
linguistic features (Elhoseiny et al., 2017; Kousha
and Brubaker, 2021).

Innovative language use can be resolved by tak-
ing familiar representations and mapping their com-
ponents to a new context (Skantze and Willemsen,
2022). Suglia et al. (2020) and Xu et al. (2021) de-
velop models that recognise out-of-domain objects
by learning to compose the attributes of known ob-
jects. Also, the descriptiveness and discriminative-
ness of generated class description influences their
utility for interpretation purposes (Young et al.,
2014; Vedantam et al., 2017; Chen et al., 2018).
We partially explore this phenomenon in our exper-
iments; see Section 4.2.

Language games in a multi-agent setup Our
setup with two neural networks is somewhat analo-
gous to the idea of a multi-agent signalling game
(Lewis, 1969). While the idea of multiple agents
developing their language to solve tasks has been
extensively studies in NLP (Lazaridou et al., 2017;
Choi et al., 2018), our work differs in that we do
not have a direct learning signal between the mod-
els, e.g. the agents are not trained simultaneously.
Therefore, our models do not cooperate in a tra-
ditional sense. Instead, we focus on developing a
more natural and complex multi-network environ-
ment by incorporating insights from research on
human cognition, perceptual grounding, and com-
munication. In particular, we (i) explore the ability
of neural language models to learn high-level rep-
resentations of visual concepts, (ii) generate and
evaluate concept descriptions based on these rep-
resentations, and (iii) assess the performance of a
separate network in interpreting these descriptions
for zero-shot classification.

In related work, Zhang et al. (2018) train an inter-
preter and a speaker to perform continuous learning
through direct language interaction. In contrast, our
setup is more straightforward as the describer does
not receive feedback from the interpreter. Another
study by Elhoseiny et al. (2013) proposes learn-
ing novel concepts without visual representations.
They use encyclopedic entries as alternative infor-
mation sources when perceptual input is unavail-
able. Our approach presents a greater challenge as
humans often lack access to textual corpora when
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interacting in the world. Patel and Pavlick (2022)
investigate the ability of pre-trained language mod-
els to map meaning to grounded conceptual spaces.
We are similarly interested in grounding in a struc-
tured space of related concepts, but our setup is
different, proposing the semi-interactive task of
grounded category description, rather than probing
models for their ability to generalise.

3 Models

At a high level, GEN and IPT each have two
connected modules: an image classifier, and a
grounded language module. Both networks learn
visual representations which are shared between
the classification and language tasks. During train-
ing, IPT learns to interpret textual descriptions of
seen classes by mapping them into its visual rep-
resentation space. If it generalises well, textual de-
scriptions of unseen classes should then be mapped
to useful visual representations at test time, even
though no images of unseen classes were avail-
able during training. Contrariwise, GEN is trained
to generate descriptions of seen classes based on
its visual representation of those classes. At test
time, GEN must extrapolate to generating descrip-
tions of unseen classes, for which no ground-truth
descriptions were provided during training.

3.1 Label embedding classifier

Both models use a label embedding classifier that
represents classes as embeddings. The embedding
matrix V ∈ RN×D, stores visual concept represen-
tations, with N = 200 being the number of classes
and D = 512 indicating the size of each single
class representation vector.3 The class embedding
parameters (VG for GEN model and VI for IPT)
are shared between the classification module and
language module within each model (no parameters
are shared between GEN and IPT). Both models
use ResNet visual features, with a size of 2048 pro-
vided by Schönfeld et al. (2019) as inputs to the
classifier. These features were extracted from the
standard ResNet-101 trained on the ImageNet 1k
dataset (Russakovsky et al., 2015). In the follow-
ing, x = ResNet(x) is the encoding of the input
image x.

The classifiers are simple two-layer feed-forward
networks trained on the multi-class classification

3We also initialise GEN with N = 200 for convenience,
but the labels corresponding to the 20 unseen classes are
quickly disregarded during supervised training since they
never appear in the training data.

task. Visual features of the input, x, are concate-
nated with each class vector vi from V before be-
ing passed through the network. Consequently, the
network produces N scores that are transformed
into class probabilities ŷ using a softmax func-
tion σ applied along the label dimension:

ŷ = σ
(
(f2(f1(x)⊕ vi))i≤N

)
, (1)

where

f1(x) =ReLU(W1 x+ b1), (2)

f2(x
′) =W3(ReLU(W2 x

′ + b2)) (3)

where W1 ∈ R2048×h1 , W2 ∈ R(h1+D)×h2 , and
W3 ∈ Rh2×1 is the classification output layer.

Both GEN and IPT use h1 = 256 and h2 = 128.

3.2 Generation model
The generation model has two modules: the classi-
fier described in §3.1, and a decoder that generates
text from a class representation. Given a label yℓ,
the decoder generates text by using the class repre-
sentation, cℓ, corresponding to the label. The class
representation is computed differently depending
on whether the model uses prototype class repre-
sentations, exemplars, or both:

GEN-PROT simply takes the corresponding row
of the label embedding VG, which is also used for
classification.

cprotℓ = vℓ = VG[ℓ] (4)

GEN-EX keeps an additional cache of exemplar
image features (one per class) which change after
each training epoch. The exemplar image for class
ℓ is computed as the image that is most certainly
part of that class, according to the classifier:

cexℓ = eℓ = argmax({ŷ[ℓ] | x ∈ X}) (5)

GEN-BOTH uses the concatenation of the proto-
type and exemplar representations:

cbothℓ = vℓ ⊕ eℓ (6)

We train a standard transformer decoder to gener-
ate class descriptions (Vaswani et al., 2017). GEN

models differ only in the type of input representa-
tions provided to the decoder. At each timestep, t,
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Figure 2: Training inputs and describer (left) and interpreter (right) model architectures. In GEN, the dotted lines
indicate options for the type of class representation (cprotℓ , cexℓ , or cbothℓ ). If exemplars are used, they are updated
based on the classifier at the end of each epoch (gray dotted lines), as described in equation 5.

the model’s input is updated with previously gener-
ated tokens (w1, . . . , wt−1) and the current token
wt is predicted. We use a standard setup for the
transformer: six self-attention layers with eight
heads each. The model is trained for 20 epochs
in a teacher forcing setup. The learning rate is set
to 4 × 10−4. The best model is chosen based on
the CIDEr score (Vedantam et al., 2015) on the
validation set using beam search with a width of 2.

Both the classifier and the decoder are trained
jointly with the standard cross-entropy loss:

lossG =CrossEntropy(ŷ,1(yℓ))+∑
i<t

CrossEntropy(ûi,1(ui)), (7)

ŷ is the output of the classifier, yℓ is the ground-
truth label, ûi output of the decoder at position i,
and ui is the ground-truth token. For inference,
we explore multiple decoding algorithms which we
describe below.

3.3 Decoding algorithms
In our describer-interpreter setup, the quality of
the generated texts, particularly their content, is of
importance. Quality generation depends heavily
on the decoding algorithm used to select tokens.
“Safer” algorithms may generate more accurate
texts, but with poor discriminativity, while other
algorithms introduce some degree of randomness,
which promotes diversity (Zarrieß et al., 2021). We
examine two decoding algorithms, with introduce
different conditions for text accuracy and diversity.
While greedy search can generate accurate descrip-
tions, it is sub-optimal at the sentence level, e.g.

longer generation become repetitive and ”boring“
(Gu et al., 2017).

Beam search is often used as a standard decod-
ing algorithm because it suffers much less from
the problems occurring during long-text generation.
At each generation step i, it keeps track of several
candidate sequences C = (c1, . . . , ck) and picks
the best one based on the cumulative probability
score of generated words per sentence:

ci = argmax log
c′i ⊆Bi,
|c′i|= k

p(c′i | ci−1,vi; θ). (8)

The parameter k is used to control the depth
of the search tree, and B is the set of candidate
sequences. While beam search generally outper-
forms greedy, higher k can lead to texts with low
diversity (Li et al., 2016). To evaluate whether
”more diverse“ means ”more descriptive“ in the
context of our two-agent set-up, we generate texts
with nucleus sampling method (Holtzman et al.,
2020) which samples tokens from the part of the
vocabulary defined based on the probability mass:

p′ =
∑

wi ∈V ′
log p(wi | w<i,vi; θ) ≥ p, (9)

where p determines the probability mass value,
while V ′ is part of the vocabulary V which accu-
mulates the mass at the timestamp i. Next, a new
distribution P is produced to sample the next token:

P =

{
log p(wi | w<i,vi; θ)/p

′ if wi ∈ V ′

0 otherwise.
(10)
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With nucleus sampling, we aim to generate more
diverse texts than those generated with beam search.
By evaluating the interpreter with texts generated
by different algorithms, we consider the impact of
generation on the success of information transfer
from the describer to the interpreter.

3.4 Interpretation model
The IPT model has two modules: a label embedding
classifier with a weight matrix VI ∈ RN×D, and
an interpretation module that maps texts to vectors
of size D. IPT uses [CLS] token vectors extracted
from BERT as text features. In preliminary experi-
ments on the ground-truth test data, we observed
significant improvements in the performance of IPT

by using features from a BERT model (Devlin et al.,
2019) which was fine-tuned on descriptions from
the seen portion of the training set. We fine-tuned
the final layer with a learning rate of 2× 10−5 and
weight decay of 0.01 for 25 epochs using the Adam
optimiser (Kingma et al., 2015). The model was
fine-tuned using a text classification task involv-
ing the seen classes. Since BERT is not visually
grounded, we speculate that the pre-training task
may assist the model in attending to visually rele-
vant information within the descriptions, leading
to a more informative [CLS] representation. Given
a text description u, we use u to denote the [CLS]
features (with size 768) extracted from the fine-
tuned BERT model.

The interpretation module is defined as follows:

v̂ =Tanh(Wu+ b) (11)

where W ∈ R768×D and b ∈ RD.
Given a training example (x, yℓ,u), the classi-

fier makes a class prediction ŷ from x and the
interpreter predicts the class representation v̂ from
u. Our objective is to improve both on the class
predictions and class representations produced by
the IPT model. To evaluate the class prediction, we
compare it to the ground-truth class label yℓ. As
for the class representation, the training objective
encourages the model to to predict a position in the
vector space with is close to the target class, ℓ, and
far from randomly selected negative classes. We
employ the following sampling strategy. We draw
a vector vk from VI so that with a frequency of
0.5, it is a negative sample (i.e., k ̸= ℓ) and the
other half the time k = ℓ.

The two modules are trained jointly. The loss
term for the classifier is computed with the standard

cross-entropy loss and the term for the interpreter
is computed with the cosine embedding loss, a
variation of hinge loss defined below. The overall
loss is computed as follows:

lossI =CrossEntropy(ŷ, yℓ)+

CosineEmbLoss(v̂,vk), (12)

where

CosineEmbLoss(v̂,vk) ={
1− Cos(v̂,vk) if k = ℓ

max
(
0,Cos(v̂,vk)− δ

)
if k ̸= ℓ

(13)

Like hinge loss, the cosine embedding loss in-
cludes a margin δ, which we set to 0.1. Intuitively,
δ prevents the loss function from penalising the
model for placing its class representation predic-
tion close to the representation of a nearby negative
class, as long as it isn’t too close. After all, some
classes are similar. The best IPT model is chosen
based on the zero-shot mean rank of true unseen
classes in the validation set.

4 Experiments

4.1 Data
We use the Caltech-UCSD Birds-200-2011 dataset
(Wah et al., 2011, hereafter CUB), a collection of
11 788 images of birds from 200 different species.
The images were sourced from Flickr and filtered
by crowd workers. In addition to class labels, the
dataset includes bounding boxes and attributes, but
we do not use those features in the current study,
since our focus is on using natural language de-
scriptions for zero-shot classification, rather than
from structured attribute-value features.

We also use a corpus of English-language de-
scriptions of the images in the CUB dataset, col-
lected by Reed et al. (2016). The corpus contains
10 descriptions per image. The descriptions were
written to be both precise (annotators were given a
diagram labelling different parts of a bird’s body to
aid in writing descriptions) and very general (anno-
tators were asked not to describe the background
of the image or actions of the particular bird). This
allows us to treat the captions as class descriptions,
suitable for zero-shot classification. We split the
dataset into 180 seen and 20 unseen classes and
train, test, and validation sets of each (Table 1).
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seen unseen Total

Train 8482 948 9430
Test 1060 119 1179
Val 1060 119 1179

Total 10 602 1186 11 788

Table 1: Number of CUB corpus images by data split.

A single training example is a triple (x, y,d),
consisting of an image, class label, and descrip-
tion. Since there are 10 descriptions per image,
this gives us 84 820 seen training examples for the
interpreter. The generator is additionally trained
on the 9480 unseen training examples, but with
the descriptions omitted. To mitigate the possibil-
ity that the unseen split represents a particularly
hard or easy subset of classes, we test 5 folds, each
with disjoint sets of unseen classes. The results
reported are the mean values across the five folds.

4.2 Evaluation metrics
Generation and classification We evaluate the
performance of GEN with BLEU (Papineni et al.,
2002) and CIDER (Vedantam et al., 2015) — the
latter has been shown to correlate best with hu-
man judgements in multi-modal setup. As is stan-
dard in classification tasks with many classes, the
interpreter is evaluated with different notions of
accuracy: accuracy @1, @5 and @10, where a
prediction is considered successful if the true la-
bel is the top, in the top 5, or in the top 10 labels,
respectively. We also consider the mean rank of
the true class to examine how close the model is in
cases where its prediction is incorrect.

Discriminativity Our generation model is
trained to minimise the cross-entropy of the
next token, given the class label. This learning
objective may encourage the model to generate
“safe” descriptions, as opposed to descriptions
that mention features that would help to identify
birds of the given class. To measure this tendency,
we define a notion of the discriminativity of a
class description, which evaluates how helpful
the description is in picking out instances of the
class it describes. To compute the metric, we
first extract textual features from the descriptions,
where each feature consists of the noun and the
set of adjectives used in a noun phrase.We define
the discriminativity of a feature with respect to a
particular class as the exponential of the mutual

information of the feature and the bird class, as
measured on the test set; that is,

disc(xi) = exp
(
H(Y )−H(Y |xi)

)
,

where x is a feature and Y is the bird class.
The maximum discriminativity of a feature (i.e.,

a feature that uniquely picks out a particular class)
is equal to the number of classes, 200. For example,
disc((‘bill’, {‘long’, ‘curved’})) = 22.9, whereas
disc((‘bill’, {‘short’, ‘pointy’})) = 2.9, reflecting
the fact that more kinds of birds have short pointy
bills than long curved bills. We define two met-
rics for the discriminativity, discmax, and discavg,
which are the maximum and mean discriminativity
of the features included in a given description.

5 Results

Our primary objective is to examine if we can learn
models capable of grounding on the category level
in the zero-shot image description generation setup.
First, we address part of this question by exploring
the performance of the IPT model when classify-
ing new classes given GEN-generated descriptions
(Table 2). We evaluate the performance of the in-
terpreter on the unseen set using both ground-truth
descriptions and descriptions generated by the best
GEN model. See Table 3 for a full comparison
of the generation models, including resulting IPT

performance. Since multiple descriptions exist per
class in the ground-truth texts, we randomly select
one for each unseen class in each zero-shot fold.

Our first observation is that the model is mod-
erately successful on the zero-shot classification
task. When learning from the ground truth descrip-
tions, the model performs well above the random
baseline. While 0.19 is not very high for classi-
fication accuracy in general, it is not out of line
for unseen results in zero-shot learning. It must
be noted that classifying a bird as belonging to
one of 200 species based only on a textual descrip-
tion would be a difficult task for some humans as
well. That the model can use the ground truth text
descriptions to learn class representations that are
somewhat useful for image classification is encour-
aging for the prospect of using it to evaluate the
GEN models. However, we note that the perfor-
mance of the model using descriptions generated
from the best GEN model is quite a lot worse than
the ground truth. This suggests that while the de-
scriptions generated by the best GEN models are
not totally useless, they are nevertheless not as
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teacher GEN train data CE loss mean rank acc@1 acc@5

random baseline 5.30 100.5 0.5 2.5

ground truth
seen 2.50(.18) 5(0) 36.4(4.1) 75.1(2.8)
unseen 4.17(.46) 30(6) 19.1(4.1) 44.1(5.6)

best GEN
seen 2.36(.12) 6(1) 43.7(2.5) 74.1(3.1)
unseen 5.28(.54) 46(9) 8.6(5.8) 25.1(3.9)

Table 2: Zero-shot classification results for the IPT model. The results are computed as macro-averages, averaged
first over class, then over the fold. Only results of the unseen classes will be of interest as an evaluation metric for
the GEN model, but here we report both, since it is important to see that the IPT model still performs well on seen
after learining provisional unseen class representations. The ground truth results report zero-shot performance after
learning from one randomly sampled ground truth description for each unseen class. The best GEN results report
zero-shot performance after learning from the best GEN model (GEN-EX with beam-2 decoding).

discriminativity mean accuracy
Bleu1 Bleu4 CIDEr mean max rank @1 @5

class repr. decoding

both beam .68(.12) .55(.09) 1.83(0.30) 1.58(0.40) 2.32(1.35) 94(28) 0.0(0.0) 2.1(1.1)
nucleus .69(.03) .32(.05) 1.40(0.07) 5.22(1.62) 12.48(5.47) 111(14) 0.8(1.5) 4.1(4.8)

exem beam .64(.03) .58(.02) 1.92(0.08) 1.95(0.41) 3.29(1.24) 46(9) 8.6(5.8) 25.1(3.9)
nucleus .65(.04) .36(.08) 1.42(0.14) 5.10(1.44) 12.07(4.70) 70(7) 6.8(2.6) 18.3(3.1)

prot beam .61(.09) .55(.10) 1.80(0.32) 1.65(0.22) 2.46(0.79) 73(17) 2.7(2.7) 13.6(6.3)
nucleus .70(.04) .38(.05) 1.48(0.08) 5.51(1.83) 13.14(4.14) 75(12) 4.1(3.1) 15.1(5.0)

Table 3: Generation results on the unseen set. The models differ only in terms of the input and decoding methods.
BLEU and CIDEr scores are reported as micro averages over n-grams produced in all 200 class descriptions. Mean
rank and accuracy refer to the unseen test set performance of the IPT model trained on the corresponding zero-shot
split, having learned provisional representations from the descriptions provided by the GEN model.

communicatively successful as they could be. We
observed intriguing results regarding seen classes:
generated texts can be more useful than ground-
truth descriptions for the IPT. This suggests either
(i) lower quality of generated texts and the inter-
preter relying on common bird features and spuri-
ous correlations, or (ii) the possibility that human-
generated texts are not as informative as initially
assumed. Ultimately, human descriptions were pri-
marily intended for interpretation by other humans,
which could explain why they may have omitted
significant information that listeners already pos-
sessed prior knowledge useful for interpretation.

Next, we compare different GEN models, as
shown in Table 3. We can see that GEN-EX out-
performed the others on most intrinsic metrics (ex-
cept for BLEU-1) and also in terms of communica-
tive success. Beam search performed better than
the nucleus on the intrinsic metrics, and particu-
larly excelled in the case of GEN-EX. Interestingly,
nucleus-generated texts nevertheless scored much
higher in terms of discriminativity. GEN-PROT

and GEN-BOTH performed similarly on the intrin-
sic metrics, but GEN-BOTH performed extremely

poorly (worse than random baseline in some cases)
in terms of communicative success.

6 Discussion and conclusion

One of the motivations behind adopting this task
was its reliance on class-level representations,
which distinguishes it from other image-specific
language-and-vision tasks. We wanted to see how
well the models can ground language in the absence
of image pixels. Our results revealed several inter-
esting directions for further exploration in mod-
elling, feature representation, and the evaluation
of generation and interpretation. Strikingly, the
top-performing models were the GEN-EX models,
which effectively reintroduce specific images by
picking out exemplars to generate from. Of course,
the models we used in this study were relatively
simple, and more sophisticated neural models may
yield different results. But this raises an interest-
ing question for future work — what does it take
to learn grounded representations that are useful in
this particular communicative context?

More generally, why do the GEN model descrip-
tions fall short in comparison to ground-truth for
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the zero-shot performance on the IPT model? There
are two possible explanations. One is that the gen-
erated descriptions may lack the necessary visual
information required for successful classification
of unseen classes. Secondly, the texts produced
by the GEN model may not be interpretable by the
IPT model. Recall that the IPT model was trained
on ground truth descriptions from seen. These
descriptions have a structure to them — certain reg-
ularities in conveying visual information. If the
GEN descriptions deviate from this structure, IPT

may struggle to effectively utilise them, even if
they do in some sense “contain” visual information.
Indeed, there is some evidence that this is what is
happening. We see that nucleus sampling resulted
in higher discriminativity scores, including for the
GEN-PROT and GEN-BOTH models. Although the
generator produces sequences with adjective-noun
phrases that identify the correct class, IPT cannot
properly use them, perhaps because they appear in
texts that are “ungrammatical” for the distribution
IPT was trained on. As both the GEN and IPT mod-
els are simple approximation functions of the data
on which they are trained, they may rely too heavily
on patterns and regularities, which can hinder their
ability to learn to recognise and generate better
category-level descriptions. This points to an im-
portant research direction, as it might highlight the
limitations of many current existing multi-modal
models which are built on top of the transformer
architecture. Such models might still be useful in
various domains but often face challenges in learn-
ing higher-level concepts about the world.

A different question is whether generation met-
rics reflect the communicative power of texts as
measured by the interpreter’s performance. In the
case of GEN-EX, IPT performs best with texts
generated using beam search (Table 3). However,
these texts overall score very low on discrimina-
tivity. Indeed, we discovered that beam search
generates sentences with features common to mul-
tiple classes, e.g. “a bird with wings”. At the same
time, IPT benefits more from nucleus-generated
texts produced by the GEN-PROT model. These
texts are more diverse, possibly describing a larger
set of class features and our interpreter is able to
learn better from that diversity. Intrinsic genera-
tion metrics rate nucleus-generated texts generally
lower, suggesting a mismatch between task-based
evaluation (e.g., interpreter’s performance) and in-
trinsic evaluation (e.g., generation metrics). These

findings suggest that the “groundedness” of class
descriptions and their use for the task might not be
adequately captured by the set of NLG metrics and
one might want to use the generated texts “in con-
text” (aka interpretation) to get a clearer picture on
how much important information such texts carry.

In future work, we will focus on improving inter-
pretation performance by emphasising fine-grained
differences between class features. Inspecting how
the generation of more descriptive and more dis-
criminative class descriptions can be achieved is
also important. Additionally, we will examine the
impact of a more interactive context on the task,
which could be studied in a reinforcement learning
setup (Oroojlooy and Hajinezhad, 2021).

7 Limitations

This paper focused on proposing the task of vi-
sual category description, and testing different
cognitively-inspired representations for standard
neural network architectures. We did not expand
our experiments to more complex models. Our
analysis can also be performed in the context of
different encoder-decoder combinations. Secondly,
the dataset has fine-grained descriptions of cate-
gories. However, these descriptions can be so spe-
cific that they lack in generality, which depends
on the domain and even personal preferences and
background of those who interact. While this does
correspond to the situation in certain real-life situ-
ations (bird classification being one of them), the
results may look different in a more open-domain
setup, such as in the dataset from Bujwid and Sulli-
van (2021).

Moreover, the way that the descriptions were col-
lected may mean that they differ somewhat from
how a human would produce visual category de-
scriptions. Experimentation with more datasets
of different levels of specificity and with different
kinds of ground truth classes descriptions would be
necessary to draw more general conclusions. Given
that we employ a pre-trained transformer model to
encode texts, we note that there might be an im-
pact of BERT’s prior knowledge about birds on the
interpreter’s performance. We recognise this as a
promising starting point for exploring the model’s
performance across other domains, allowing us to
assess the general effectiveness of the setup we
have introduced.
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A Example Appendix

This appendix shows examples of generated descriptions from different model architectures for a sample
of 10 unseen and 10 seen classes. All examples were drawn from the first fold of the zero-shot splits. A
sample ground-truth description is also shown for each class. The example images are drawn from the test
set.

The metrics to the right show the performance of the zero-shot classification model given the description
on the left. Rank is the mean rank of the correct label, averaged over the images in the test set (the
test set consist of 5-6 images per class). As before, acc@1 and acc@5 give the percentage recall of
the correct label in the top 1 and top 5 guesses respectively. Note that for the seen examples, the
performance of the zero-shot classifier is not directly related to the description on the left, since the model
had supervised training for the seen classes and was not provided with text descriptions of them. We
show these descriptions anyway, for comparison with the unseen descriptions, since the generation model
was not trained on any text descriptions of unseen classes (in contrast to the seen classes, for which it
had supervised training).

Downy Woodpecker
unseen

Model Decoding Description mean rank acc@1 acc@5

ground truth the large bird has white eyebrows, white belly, and a small
bill.

107.8 0.0 0.0

exem beam this bird has wings that are black and has a white belly 63.7 0.0 0.0
nucleus this bird has a brown breast and a long black bill head. 8.3 0.0 33.3

prot beam this bird has wings that are black and has a white belly. 52.5 0.0 16.7
nucleus a medium-sized bird that has a pointed bill. 15.0 0.0 16.7

both beam this bird has wings that are black and a white belly. 82.5 0.0 0.0
nucleus this bird has a white bill and a black eyering. 13.5 0.0 33.3

Tennessee Warbler
unseen

Model Decoding Description mean rank acc@1 acc@5

ground truth this green bird has a white belly and green wings with dark
green primary feathers .

110.5 0.0 0.0

exem beam this bird has wings that are brown and has a white belly 136.2 0.0 0.0
nucleus this bird has wings that are grey with a black head downwards

point .
68.2 0.0 0.0

prot beam this bird has wings that are grey and has a white belly . 152.8 0.0 0.0
nucleus a small bird with a short triangular bill that curves downwards

.
114.5 0.0 0.0

both beam this bird has wings that are black and white belly . 99.7 0.0 0.0
nucleus a small bird with black bill . 151.3 0.0 0.0

Blue Grosbeak
unseen

Model Decoding Description mean rank acc@1 acc@5

ground truth the bird has a small black bill and small thighs . 15.3 33.3 50.0

exem beam this bird has wings that are blue and has a white belly 145.3 0.0 0.0
nucleus the bird has a small bill and blue body . 14.0 50.0 66.7

prot beam this bird has wings that are black and has a white belly . 2.3 66.7 83.3
nucleus this bird is black and yellow in color , with a brown beak . 100.8 0.0 0.0

both beam this bird has wings that are black and white belly . 162.5 0.0 0.0
nucleus a medium sized bird that is mostly brown color . 60.0 0.0 0.0

Olive sided Flycatcher
unseen

Model Decoding Description mean rank acc@1 acc@5

ground truth grey and white specked small bird , pale yellow abdomen ,
black eyes and feet , orange beak .

18.0 0.0 33.3

exem beam this bird has wings that are brown and has a white belly 35.2 0.0 0.0
nucleus the bird has a small bill that is gray . 69.3 0.0 0.0

prot beam this bird has wings that are brown and has a white belly . 31.2 0.0 33.3
nucleus this bird is brown in color , with a small sharp pointed beak . 85.7 0.0 0.0

both beam this bird has wings that are black and white belly . 84.5 0.0 0.0
nucleus this bird is white on the black with a small beak . 42.5 0.0 0.0

9343



Gray Catbird
unseen

Model Decoding Description mean rank acc@1 acc@5

ground truth a bird has a small black bill and all of its feathers a a solid
grey color .

3.2 16.7 83.3

exem beam this bird has wings that are black and has a white belly 140.7 0.0 0.0
nucleus this is a small bird , smooth , mostly black with a nice white

and a small white beak .
11.0 33.3 50.0

prot beam this bird has wings that are black and has a white belly . 56.7 0.0 0.0
nucleus this bird has wings that are brown and has a white beak going

of white , the head .
42.2 0.0 0.0

both beam this bird has wings that are black and white belly . 117.7 0.0 0.0
nucleus this bird has wings that are black and has a white and black

beak .
23.2 0.0 0.0

Sage Thrasher
unseen

Model Decoding Description mean rank acc@1 acc@5

ground truth this little bird is mostly white feathers with brown speckles . 9.0 16.7 50.0

exem beam this bird has wings that are brown and has a white belly 192.5 0.0 0.0
nucleus a dark brown bird with white breast and short beak . 11.2 16.7 33.3

prot beam this bird has wings that are brown and has a white belly . 4.2 50.0 66.7
nucleus this bird has a white belly and rump . 13.0 0.0 16.7

both beam this bird has wings that are black and white belly . 32.2 0.0 0.0
nucleus this bird has a pointed bill , and long neck of red feathers . 28.8 0.0 0.0

Ruby throated Hummingbird
unseen

Model Decoding Description mean rank acc@1 acc@5

ground truth a small bird with a significant head , needle bill , green crown
, back , coverts and secondaries , and white underside .

23.5 16.7 50.0

exem beam this bird has wings that are brown and has a white belly 168.0 0.0 0.0
nucleus a small green bird with black pointed beak belly . 92.3 0.0 0.0

prot beam this bird has wings that are brown and has a white belly . 116.2 0.0 0.0
nucleus this bird has a brown crown , a black eyerings , and brown and

a white throat .
86.5 0.0 0.0

both beam this bird has wings that are black and white belly . 58.3 0.0 0.0
nucleus this bird has a white belly and orange crown and yellow bill

on the secondary feathers on the distance .
122.5 0.0 0.0

Fish Crow
unseen

Model Decoding Description mean rank acc@1 acc@5

ground truth this medium sized bird has all black feathers , a short , thick
beak and a long , flat tail .

1.0 100.0 100.0

exem beam this bird is completely black beak . 18.8 0.0 0.0
nucleus a medium size bird with black bill , black eyering , and crown

.
1.0 100.0 100.0

prot beam this bird has wings that are black and has a white belly . 2.8 0.0 100.0
nucleus this bird is solid black , with a hint of the bill is black tarsus

and long , the body .
7.3 0.0 50.0

both beam this bird has wings that are black and white belly . 2.0 0.0 100.0
nucleus this bird has a small head and a short beak . 10.3 0.0 0.0

Prairie Warbler
unseen

Model Decoding Description mean rank acc@1 acc@5

ground truth small dark yellow colored bird , with black stripes on his body
, with the exeception of the wings that are brown .

2.5 33.3 83.3

exem beam this bird has wings that are black and has a yellow belly 180.3 0.0 0.0
nucleus a small bird with a grey beak . 2.5 66.7 83.3

prot beam this bird has wings that are brown and has a white belly . 85.3 0.0 0.0
nucleus this is a bird with a white belly and grey wings . 138.5 0.0 0.0

both beam this bird has wings that are black and white belly . 183.7 0.0 0.0
nucleus this bird has wings that are grey and has a white striped tail . 179.7 0.0 0.0
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Philadelphia Vireo
unseen

Model Decoding Description mean rank acc@1 acc@5

ground truth this slender bird has a yellow belly , breast , and throat and the
rest of it is a tan color .

53.7 0.0 33.3

exem beam this bird has wings that are brown and has a yellow belly 193.3 0.0 0.0
nucleus the bird is a mixture of brown on the bird . 61.7 0.0 16.7

prot beam this bird has wings that are grey and has a yellow bill . 121.0 0.0 0.0
nucleus this bird has wings that are grey with yellow and has a more

white stripe of black at its tip .
67.3 16.7 16.7

both beam this bird has wings that are black and white belly . 14.5 66.7 66.7
nucleus this bird is mostly black except for it ’ s beak which is slightly

curved at the tip .
131.8 0.0 0.0

Worm eating Warbler
seen

Model Decoding Description mean rank acc@1 acc@5

ground truth this bird is mostly yellow with slightly darker wings and a
black crown and eyebrow .

2.5 50.0 83.3

exem beam this bird has wings that are brown and has a yellow belly 2.3 50.0 83.3
nucleus a small bird with a pointed bill , and black eyering . 2.2 50.0 83.3

prot beam this bird has wings that are brown stripes on its head . 2.2 50.0 83.3
nucleus this bird has a black bill , and a grey crown . 2.0 50.0 100.0

both beam this bird has wings that are black and white belly . 2.3 50.0 83.3
nucleus a small bird with a black bill on the breast . 2.0 50.0 100.0

Marsh Wren
seen

Model Decoding Description mean rank acc@1 acc@5

ground truth a bird with a black crown , short pointed bill , white throat ,
and fuzzy brown body .

2.5 33.3 100.0

exem beam this bird has wings that are brown and has a white belly 1.7 33.3 100.0
nucleus this small bird has brown beak . 4.3 66.7 66.7

prot beam this bird has wings that are brown and has a white belly . 1.8 50.0 100.0
nucleus this bird is grey with brown and white on it ’ s wings . 3.5 66.7 66.7

both beam this bird has wings that are black and white belly . 1.8 66.7 100.0
nucleus the bird has a yellow bill is short and orange . 1.0 100.0 100.0

Crested Auklet
seen

Model Decoding Description mean rank acc@1 acc@5

ground truth black feathers on the top of the bird with gray feathers on the
breast and underside of bird orange color on the face of bird
and long gray claws

2.4 40.0 80.0

exem beam this bird has wings that are black and has an orange bill 3.6 20.0 80.0
nucleus a medium sized black bird , with a short orange bill and tarsus

.
3.0 20.0 80.0

prot beam this bird has wings that are black and has an orange beak . 3.2 20.0 80.0
nucleus the bird is small with a color . 2.6 40.0 80.0

both beam this bird has wings that are black and white belly . 3.2 20.0 80.0
nucleus this bird has wings that are brown and has a yellow cheek

patch .
2.4 40.0 80.0

Brown Creeper
seen

Model Decoding Description mean rank acc@1 acc@5

ground truth small brown and white spotted bird with white breast and long
claws

1.5 83.3 100.0

exem beam this bird has wings that are brown and has a white belly 1.3 83.3 100.0
nucleus this small bird has a white eye with pointed bill and mottled

wings .
1.3 83.3 100.0

prot beam this bird has wings that are brown and has a white belly . 1.7 66.7 100.0
nucleus this bird has a white belly and a long legs . 1.7 83.3 100.0

both beam this bird has wings that are black and white belly . 1.5 83.3 100.0
nucleus the small bird has a black bill and white eyering of its body . 1.3 83.3 100.0
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Myrtle Warbler
seen

Model Decoding Description mean rank acc@1 acc@5

ground truth the bird has skinny black thighs and a black bill . 10.0 16.7 50.0

exem beam this bird has wings that are black and has a yellow belly 8.5 16.7 50.0
nucleus the bird has a black bill and black eyering breast and brown

outer retrices .
9.8 16.7 50.0

prot beam this bird has wings that are black and has a white belly . 9.8 16.7 50.0
nucleus this bird has wings that are grey and yellow eyebrows and

white .
8.5 16.7 50.0

both beam this bird has wings that are black and white belly . 10.2 16.7 16.7
nucleus a small bird with black bill and white crown at the wing . 7.2 16.7 50.0

House Sparrow
seen

Model Decoding Description mean rank acc@1 acc@5

ground truth the small bird has a white belly , brown head and is sitt . ing
on a window seal

14.0 33.3 50.0

exem beam this bird has wings that are brown and has a white belly 12.2 50.0 50.0
nucleus this bird is grey with black and has a very short beak . 12.7 50.0 66.7

prot beam this bird has wings that are brown and has a white belly . 13.2 33.3 50.0
nucleus this bird has wings that are brown and white and a long ,

orange beak .
12.5 50.0 66.7

both beam this bird has wings that are black and white belly . 13.0 33.3 50.0
nucleus this bird has a yellow and grey head and brown spotted body . 9.3 50.0 66.7

Baltimore Oriole
seen

Model Decoding Description mean rank acc@1 acc@5

ground truth the bird has a black head a yellow body and light grey bill . 1.0 100.0 100.0

exem beam this bird has wings that are black and has a yellow belly 1.0 100.0 100.0
nucleus the bird has a spotted belly and a small bill crown . 1.3 66.7 100.0

prot beam this bird has wings that are black and has a yellow belly . 1.3 66.7 100.0
nucleus a bird with a small black pointed beak , red underbelly and

white head .
1.0 100.0 100.0

both beam this bird has wings that are black and white belly . 1.3 66.7 100.0
nucleus this bird has a white belly and breast and neck above it ’ s eye

patch .
1.0 100.0 100.0

Horned Grebe
seen

Model Decoding Description mean rank acc@1 acc@5

ground truth a bird with a thin pointed bill , swept back brown crown , and
red and white throat .

1.3 66.7 100.0

exem beam this bird has wings that are brown and has a long bill 1.7 50.0 100.0
nucleus a bird with a long pointed bill . 1.3 66.7 100.0

prot beam this bird has wings that are black and has a white throat . 1.3 66.7 100.0
nucleus this bird is brown with whtie and red eyes and there . 1.3 66.7 100.0

both beam this bird has wings that are black and white belly . 1.3 66.7 100.0
nucleus this bird has wings that are grey and has a yellow mark in

them .
1.3 66.7 100.0

Vermilion Flycatcher
seen

Model Decoding Description mean rank acc@1 acc@5

ground truth this is a small red bird with brown wings and a small brown
beak .

1.8 66.7 100.0

exem beam this bird has wings that are black and has a red belly 1.8 66.7 100.0
nucleus this bird has wings that are black and white . 1.8 66.7 100.0

prot beam this bird has wings that are black and has a red head . 1.8 66.7 100.0
nucleus this particular bird has a belly that is brown back 1.8 66.7 100.0

both beam this bird has wings that are black and white belly . 1.8 66.7 100.0
nucleus the bird has white in it ’ s wings and a large head with brown

beak .
1.8 66.7 100.0
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Common Tern
seen

Model Decoding Description mean rank acc@1 acc@5

ground truth it is a gray bird with white throat and breast , orange legs and
inside beak , and black crown .

4.2 0.0 66.7

exem beam this bird has wings that are white and has a black crown 6.0 0.0 50.0
nucleus this is a white bird with grey wing and a medium beak . 3.7 0.0 83.3

prot beam this bird has wings that are white and a black crown 4.2 0.0 66.7
nucleus this bird is white and black in color , with a small beak . 4.7 0.0 66.7

both beam this bird has wings that are black and white belly . 5.7 0.0 50.0
nucleus this small bird has a large black bill and brown crown white

belly .
3.7 0.0 83.3
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