@inproceedings{shen-etal-2023-multiturncleanup,
title = "{M}ulti{T}urn{C}leanup: A Benchmark for Multi-Turn Spoken Conversational Transcript Cleanup",
author = "Shen, Hua and
Zayats, Vicky and
Rocholl, Johann and
Walker, Daniel and
Padfield, Dirk",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.613",
doi = "10.18653/v1/2023.emnlp-main.613",
pages = "9895--9903",
abstract = "Current disfluency detection models focus on individual utterances each from a single speaker. However, numerous discontinuity phenomena in spoken conversational transcripts occur across multiple turns, which can not be identified by disfluency detection models. This study addresses these phenomena by proposing an innovative Multi-Turn Cleanup task for spoken conversational transcripts and collecting a new dataset, MultiTurnCleanup. We design a data labeling schema to collect the high-quality dataset and provide extensive data analysis. Furthermore, we leverage two modeling approaches for experimental evaluation as benchmarks for future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shen-etal-2023-multiturncleanup">
<titleInfo>
<title>MultiTurnCleanup: A Benchmark for Multi-Turn Spoken Conversational Transcript Cleanup</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vicky</namePart>
<namePart type="family">Zayats</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johann</namePart>
<namePart type="family">Rocholl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Padfield</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Current disfluency detection models focus on individual utterances each from a single speaker. However, numerous discontinuity phenomena in spoken conversational transcripts occur across multiple turns, which can not be identified by disfluency detection models. This study addresses these phenomena by proposing an innovative Multi-Turn Cleanup task for spoken conversational transcripts and collecting a new dataset, MultiTurnCleanup. We design a data labeling schema to collect the high-quality dataset and provide extensive data analysis. Furthermore, we leverage two modeling approaches for experimental evaluation as benchmarks for future research.</abstract>
<identifier type="citekey">shen-etal-2023-multiturncleanup</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.613</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.613</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>9895</start>
<end>9903</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MultiTurnCleanup: A Benchmark for Multi-Turn Spoken Conversational Transcript Cleanup
%A Shen, Hua
%A Zayats, Vicky
%A Rocholl, Johann
%A Walker, Daniel
%A Padfield, Dirk
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F shen-etal-2023-multiturncleanup
%X Current disfluency detection models focus on individual utterances each from a single speaker. However, numerous discontinuity phenomena in spoken conversational transcripts occur across multiple turns, which can not be identified by disfluency detection models. This study addresses these phenomena by proposing an innovative Multi-Turn Cleanup task for spoken conversational transcripts and collecting a new dataset, MultiTurnCleanup. We design a data labeling schema to collect the high-quality dataset and provide extensive data analysis. Furthermore, we leverage two modeling approaches for experimental evaluation as benchmarks for future research.
%R 10.18653/v1/2023.emnlp-main.613
%U https://aclanthology.org/2023.emnlp-main.613
%U https://doi.org/10.18653/v1/2023.emnlp-main.613
%P 9895-9903
Markdown (Informal)
[MultiTurnCleanup: A Benchmark for Multi-Turn Spoken Conversational Transcript Cleanup](https://aclanthology.org/2023.emnlp-main.613) (Shen et al., EMNLP 2023)
ACL