@inproceedings{gauthier-levy-2023-neural,
title = "The neural dynamics of word recognition and integration",
author = "Gauthier, Jon and
Levy, Roger",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.62",
doi = "10.18653/v1/2023.emnlp-main.62",
pages = "980--995",
abstract = "Listeners recognize and integrate words in rapid and noisy everyday speech by combining expectations about upcoming content with incremental sensory evidence. We present a computational model of word recognition which formalizes this perceptual process in Bayesian decision theory. We fit this model to explain scalp EEG signals recorded as subjects passively listened to a fictional story, revealing both the dynamics of the online auditory word recognition process and the neural correlates of the recognition and integration of words. The model reveals distinct neural processing of words depending on whether or not they can be quickly recognized. While all words trigger a neural response characteristic of probabilistic integration {---} voltage modulations predicted by a word{'}s surprisal in context {---} these modulations are amplified for words which require more than roughly 150 ms of input to be recognized. We observe no difference in the latency of these neural responses according to words{'} recognition times. Our results support a two-part model of speech comprehension, combining an eager and rapid process of word recognition with a temporally independent process of word integration. However, we also developed alternative models of the scalp EEG signal not incorporating word recognition dynamics which showed similar performance improvements. We discuss potential future modeling steps which may help to separate these hypotheses.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gauthier-levy-2023-neural">
<titleInfo>
<title>The neural dynamics of word recognition and integration</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jon</namePart>
<namePart type="family">Gauthier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Listeners recognize and integrate words in rapid and noisy everyday speech by combining expectations about upcoming content with incremental sensory evidence. We present a computational model of word recognition which formalizes this perceptual process in Bayesian decision theory. We fit this model to explain scalp EEG signals recorded as subjects passively listened to a fictional story, revealing both the dynamics of the online auditory word recognition process and the neural correlates of the recognition and integration of words. The model reveals distinct neural processing of words depending on whether or not they can be quickly recognized. While all words trigger a neural response characteristic of probabilistic integration — voltage modulations predicted by a word’s surprisal in context — these modulations are amplified for words which require more than roughly 150 ms of input to be recognized. We observe no difference in the latency of these neural responses according to words’ recognition times. Our results support a two-part model of speech comprehension, combining an eager and rapid process of word recognition with a temporally independent process of word integration. However, we also developed alternative models of the scalp EEG signal not incorporating word recognition dynamics which showed similar performance improvements. We discuss potential future modeling steps which may help to separate these hypotheses.</abstract>
<identifier type="citekey">gauthier-levy-2023-neural</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.62</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.62</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>980</start>
<end>995</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The neural dynamics of word recognition and integration
%A Gauthier, Jon
%A Levy, Roger
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F gauthier-levy-2023-neural
%X Listeners recognize and integrate words in rapid and noisy everyday speech by combining expectations about upcoming content with incremental sensory evidence. We present a computational model of word recognition which formalizes this perceptual process in Bayesian decision theory. We fit this model to explain scalp EEG signals recorded as subjects passively listened to a fictional story, revealing both the dynamics of the online auditory word recognition process and the neural correlates of the recognition and integration of words. The model reveals distinct neural processing of words depending on whether or not they can be quickly recognized. While all words trigger a neural response characteristic of probabilistic integration — voltage modulations predicted by a word’s surprisal in context — these modulations are amplified for words which require more than roughly 150 ms of input to be recognized. We observe no difference in the latency of these neural responses according to words’ recognition times. Our results support a two-part model of speech comprehension, combining an eager and rapid process of word recognition with a temporally independent process of word integration. However, we also developed alternative models of the scalp EEG signal not incorporating word recognition dynamics which showed similar performance improvements. We discuss potential future modeling steps which may help to separate these hypotheses.
%R 10.18653/v1/2023.emnlp-main.62
%U https://aclanthology.org/2023.emnlp-main.62
%U https://doi.org/10.18653/v1/2023.emnlp-main.62
%P 980-995
Markdown (Informal)
[The neural dynamics of word recognition and integration](https://aclanthology.org/2023.emnlp-main.62) (Gauthier & Levy, EMNLP 2023)
ACL