@inproceedings{oshika-etal-2023-transformer,
title = "Transformer-based Live Update Generation for Soccer Matches from Microblog Posts",
author = "Oshika, Masashi and
Yamada, Kosuke and
Sasano, Ryohei and
Takeda, Koichi",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.624",
doi = "10.18653/v1/2023.emnlp-main.624",
pages = "10100--10106",
abstract = "It has been known to be difficult to generate adequate sports updates from a sequence of vast amounts of diverse live tweets, although the live sports viewing experience with tweets is gaining the popularity. In this paper, we focus on soccer matches and work on building a system to generate live updates for soccer matches from tweets so that users can instantly grasp a match{'}s progress and enjoy the excitement of the match from raw tweets. Our proposed system is based on a large pre-trained language model and incorporates a mechanism to control the number of updates and a mechanism to reduce the redundancy of duplicate and similar updates.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="oshika-etal-2023-transformer">
<titleInfo>
<title>Transformer-based Live Update Generation for Soccer Matches from Microblog Posts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masashi</namePart>
<namePart type="family">Oshika</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kosuke</namePart>
<namePart type="family">Yamada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryohei</namePart>
<namePart type="family">Sasano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichi</namePart>
<namePart type="family">Takeda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>It has been known to be difficult to generate adequate sports updates from a sequence of vast amounts of diverse live tweets, although the live sports viewing experience with tweets is gaining the popularity. In this paper, we focus on soccer matches and work on building a system to generate live updates for soccer matches from tweets so that users can instantly grasp a match’s progress and enjoy the excitement of the match from raw tweets. Our proposed system is based on a large pre-trained language model and incorporates a mechanism to control the number of updates and a mechanism to reduce the redundancy of duplicate and similar updates.</abstract>
<identifier type="citekey">oshika-etal-2023-transformer</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.624</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.624</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>10100</start>
<end>10106</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transformer-based Live Update Generation for Soccer Matches from Microblog Posts
%A Oshika, Masashi
%A Yamada, Kosuke
%A Sasano, Ryohei
%A Takeda, Koichi
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F oshika-etal-2023-transformer
%X It has been known to be difficult to generate adequate sports updates from a sequence of vast amounts of diverse live tweets, although the live sports viewing experience with tweets is gaining the popularity. In this paper, we focus on soccer matches and work on building a system to generate live updates for soccer matches from tweets so that users can instantly grasp a match’s progress and enjoy the excitement of the match from raw tweets. Our proposed system is based on a large pre-trained language model and incorporates a mechanism to control the number of updates and a mechanism to reduce the redundancy of duplicate and similar updates.
%R 10.18653/v1/2023.emnlp-main.624
%U https://aclanthology.org/2023.emnlp-main.624
%U https://doi.org/10.18653/v1/2023.emnlp-main.624
%P 10100-10106
Markdown (Informal)
[Transformer-based Live Update Generation for Soccer Matches from Microblog Posts](https://aclanthology.org/2023.emnlp-main.624) (Oshika et al., EMNLP 2023)
ACL