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Abstract

Conversational Recommender System (CRS)
aims to explicitly acquire user preferences to-
wards items and attributes through natural lan-
guage conversations. However, existing CRS
methods ask users to provide explicit answers
(yes/no) for each attribute they require, regard-
less of users’ knowledge or interest, which
may significantly reduce the user experience
and semantic consistency. Furthermore, these
methods assume that users like all attributes
of the target item and dislike those unrelated
to it, which can introduce bias in attribute-
level feedback and impede the system’s ability
to accurately identify the target item. To ad-
dress these issues, we propose a more realis-
tic, user-friendly, and explainable CRS frame-
work called Hierarchical User-Interest Track-
ing for Conversational Recommender System
(HutCRS). HutCRS portrays the conversation
as a hierarchical interest tree that consists of
two stages. In stage I, the system identifies the
aspects that the user prefers while the system
asks about attributes related to these positive
aspects or recommends items in stage II. In
addition, we develop a Hierarchical-Interest
Policy Learning (HIPL) module to integrate the
decision-making process of which aspects to
ask and when to ask about attributes or rec-
ommend items. Moreover, we classify the
attribute-level feedback results to further en-
hance the system’s ability to capture special
information, such as attribute instances that are
accepted by users but not presented in their
historical interactive data. Extensive experi-
ments on four benchmark datasets demonstrate
the superiority of our method. The imple-
mentation of HutCRS is publicly available at
https://github.com/xinle1129/HutCRS.

1 Introduction

Conversational recommender systems (CRSs) have
become one of the trending research topics in re-

*Both authors contributed equally to this research.
†Corresponding author.

cent years(Lei et al., 2020a), utilizing the user’s
online feedback to conduct dynamic and explain-
able recommendations through interactive conver-
sations with the user. One of the challenges for
CRS is how to efficiently acquire user preferences
and quickly narrow down the recommendation can-
didates. In this regard, attribute-based CRS has
been extensively studied, as whether a user likes an
attribute can significantly reduce the recommenda-
tion candidates(Gao et al., 2021).

Among the different proposed problem
settings for attribute-based CRS, the single-
round(Christakopoulou et al., 2018; Sun and
Zhang, 2018) setting is the earliest to be intro-
duced. However, this setting is impractical in
real-world deployments because the CRS only
makes recommendations once, ending the session
regardless of the results. To address this issue, the
multi-round(Lei et al., 2020a,b; Xu et al., 2021;
Ren et al., 2021; Deng et al., 2021; Tu et al., 2022;
Hu et al., 2022; Zhang et al., 2022) setting has
been proposed, wherein the CRS interacts with the
user by asking attributes and recommending items
multiple times until the task succeeds or the user
terminates the session. Multi-round Conversational
Recommendation(MCR) aims to make successful
recommendations with fewer conversation turns.

Although MCR is widely acknowledged as the
most realistic setting for CRS, the existing MCR
assumptions regarding user interest deviate from
real-world scenarios. First, MCR presupposes that
users have definitive answers(yes or no) for all
queried attributes. However, users might be un-
aware of or indifferent to certain attributes, and
compelling them to respond could reduce the user
experience and generate inconsistent conversation
utterances. Additionally, MCR assumes that users
will accept all attributes that belong to the target
item and reject those unrelated to it. In practice,
users might not necessarily like all attributes of
the target item, nor dislike attributes that are not
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Figure 1: An illustration of conversation in HutCRS. The hierarchical interest tree (right side) based on the user’s
feedback enables the system to better understand the needs and preferences of the user.

included in the target item. This discrepancy can
result in invalid attribute-level feedback and pre-
vent the system from identifying the target item
accurately. For instance, considering a target item
"an esports phone with a large battery capacity but
low-performance camera", the user doesn’t priori-
tize the performance of the camera, but it doesn’t
imply that the user prefers a low-performance cam-
era. If the system asks about the "low-performance
camera", it may receive negative feedback which
could cause it to miss out on the target item.

To address the aforementioned issues, we pro-
pose a novel framework Hierarchical User-Interest
Tracking for Conversational Recommender
System (HutCRS). As shown in Figure 1, we
represent the user’s preferences in the current
session as a hierarchical tree that depicts the
user’s interests and priorities, facilitating a better
understanding of their needs and preferences.
Specifically, the system first prompts the user
to specify their aspects of interest based on
user-initialized attributes. Once this information
is obtained by the system, it will either ask about
attributes associated with the positive aspects or
recommend items. The interaction based on the
hierarchical interest tree enables the system to ask
about attributes that the user is indeed interested in,
thereby improving user experience and consistency
in the conversation. Besides, when attribute
instances belong to the target item and align with
the aspects of interest to the user, they are more
likely to be accepted. This clear preference will
lead to the generation of more authentic feedback.
Inspired by Zhang et al. (2022), we develop a
Hierarchical-Interest Policy Learning (HIPL)
module to integrate the decision-making process

of which aspects to ask and when to ask attributes
or when to recommend items. In addition, we
classify the attribute-level feedback results to
further enhance the system’s ability to capture
special information. Positive attributes that are
not present in the historical data and negative
attributes that are present in the historical data
are marked as "special". Extensive experiments
on Yelp, LastFM, Amazon-Book, and MovieLen
demonstrate the superiority of HutCRS compared
with state-of-the-art baselines.

In summary, our contributions can be concluded
as follows:

• We extend existing CRS to a more realistic, user-
friendly, and explainable setting.

• We propose the hierarchical interest tree and uti-
lize the classification results of attribute-level
feedback to further enhance the system’s abil-
ity to comprehend the needs and preferences of
users.

• Experiments on four benchmarks show the supe-
riority of HutCRS compared with state-of-the-art
baselines.

2 Related Works

CRS is a recommendation system that can elicit
the dynamic preferences of users and take actions
based on their current needs through real-time mul-
titurn interactions(Gao et al., 2021). In this work,
we focus on attribute-based CRS(Sun and Zhang,
2018; Lei et al., 2020a,b; Deng et al., 2021; Zhang
et al., 2022) which ask users attributes to efficiently
acquire user preferences and quickly narrow down
the recommendation candidates. The problem set-
tings of attribute-based CRS can be mainly divided
into two categories: single-round and multi-round.
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In single-round scenario(Christakopoulou et al.,
2018; Sun and Zhang, 2018), the CRS only makes
recommendations once, ending the session regard-
less of the results. In multi-round scenario, the CRS
can interacts with the user by asking attributes and
recommending items multiple times until the task
succeeds or the user terminates the session.

Due to the wide acknowledgement of Multi-
round Conversational Recommendation (MCR) as
the most realistic setting(Lei et al., 2020a) for
CRS, this work is conducted based on the multi-
round scenario. EAR(Lei et al., 2020a) extends
the single-round setting into a multi-round set-
ting where the system can recommend multiple
times. SCPR(Lei et al., 2020b) models the MCR as
an interactive path reasoning problem on a graph,
which is able to prune off many irrelevant candi-
date attributes. FPAN(Xu et al., 2021) utilizes a
gating mechanism to aggregate online feedback
from users. UNICORN(Deng et al., 2021) pro-
poses to formulate three decision-making problems
in CRS as a unified policy learning task based on
dynamic weighted graph. MIMCPL(Zhang et al.,
2022) extends MCR to a more realistic scenario
setting named MIMCR where the user may ac-
cept multiple attribute instances with the same type
and multiple items with partially overlapped at-
tributes. However, the existing MCR assumptions
about user interest still deviate from real-world
scenarios. Hence, we propose a novel framework
called HutCRS to tackle these issues.

3 Definition and Preliminary

To better describe and understand the HutCRS, we
set up some basic notions in this section. We define
the sets of users and items as U and V , respectively.
Additionally, we separately define the sets of as-
pect (i.e. type) and attribute instances as C and P .
Each item instance v ∈ V is associated with a set
of attribute instances Pv. Each attribute instance
p ∈ P has its corresponding aspect cp ∈ C. In each
episode, there is a set Vu of items that are accept-
able to the user u ∈ U . The set is represented as
Vu = {v1, v2, · · · vNv}, where Nv is the number
of acceptable items, Pv1 ∩ Pv2 ∩ · · · ∩ PvNv

=
Psame ̸= ∅ and Pi ̸= Pj . As shown in Figure 1,
a session starts with a preferred attribute instance
p0 ∈ Psame specified by user u. Then, the agent
asks about which aspects the user prefers from the
candidate aspect set Ccand until obtaining positive
feedback. In the remaining turns, it will repeatedly

ask about attributes associated with the positive
aspects or recommend items until at least one ac-
ceptable item is successfully recommended to the
user or the system reaches the maximum number
of turn T .

4 HutCRS

To improve user experience and semantic consis-
tency, we propose a novel framework Hierarchical
User-Interest Tracking for Conversation Recom-
mender System (HutCRS) for MCR. Similarly to
Zhang et al. (2022); Lei et al. (2020b); Deng et al.
(2021), our framework also aims to learn the policy
network π(at|st) to maximize the expected cumu-
lative rewards as: π∗ = argmaxπ∈Π E[

∑T
t=0 rt],

where st denotes the current state, at denotes the ac-
tion taken by the agent and the rt is the intermediate
reward. As shown in Figure 2, our framework por-
trays the conversation as a hierarchical interest tree
that consists of two stages where each stage com-
prises two components: Hierarchical User Interest
Tracking and Hierarchical-Interest Policy Learning.
In stage I, the system aims to identify the aspects
that the user prefers, while in stage II, the system
will either ask about attributes related to these posi-
tive aspects or recommend items.

4.1 Hierarchical User Interest Tracking
In order to learn the policy network π(at|st), it is
necessary to characterize states and actions. To this
end, we use the Hierarchical User State Tracking
module to track the current state and the Interest-
based Candidate Selection module to rank the can-
didates.

4.1.1 Hierarchical User State Tracking
We utilize a hierarchical interest tree to represent
the user’s preferences in the current session. Un-
like the approach presented in Zhu et al. (2018),
our hierarchical interest tree does not necessitate
extra time and resources for its construction. As
shown in Figure 2, the full tree consists of the user-
initialized attribute p0 as the root node, all aspect
instances as the first layer nodes, all attribute in-
stances as the second layer nodes, and all items as
the last layer nodes. As the interaction proceeds,
we prune the full tree to obtain a dynamic tree
based on user feedback. This dynamic tree only
retains nodes that have been interacted with by the
user in the current session, as well as those nodes
that belong to the candidates. In addition, to en-
hance the system’s ability to capture special infor-
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Figure 2: Overview of the proposed framework, HutCRS. HutCRS consists of two stages, each comprising two
components: Hierarchical User Interest Tracking and Hierarchical-Interest Policy Learning.

mation, we also classify the attribute-level feedback
results, where positive attributes Pacc not present
in the historical data and negative attributes Prej

present in the historical data will be marked as "spe-
cial". Hence, the current state includes four types
of components: st = {u, C(t)

∗ ,P(t)
∗ ,V(t)

∗ }, where
C(t)
∗ = {C(t)

acc, C(t)
rej , C

(t)
cand} denotes the state of as-

pects, and P(t)
∗ =

{
P(t)
acc,P(t)

rej ,P
(t)
special_acc,

P(t)
special_rej ,P

(t)
cand

}
denotes the state of attributes,

V(t)
∗ = {V(t)

rej ,V
(t)
cand} denotes the state of items.

In stage I, aspects that a user accepts or re-
jects in turn t can be defined as C(t)

cur_acc and
C(t)
cur_rej respectively. Before the system gets the

accepted aspects Cacc, some components are up-
dated by C(t+1)

cand = C(t)
cand −C(t)

cur_rej , P(t+1)
sepcial_rej =

P(t)
sepcial_rej∪P

(t)
cur_sepcial_rej . It’s worth noting that

we don’t add P
cp∈C(t)

cur_rej
to P(t)

cur_rej directly, but

we get P(t)
cur_sepcial_rej from P

cp∈C(t)
cur_rej

. In this

stage, we employ the aspect instance-based union
set strategy to update V(t+1)

cand :V(t+1)
cand = {v|v ∈

Vp0 and Cv ∩ C(t)
acc ̸= ∅}, where Vp0 is the item

set in which all items are associated to p0, and Cv is
the aspect set in which all aspects are associated to
v. Once the system gets the accepted aspects Cacc,
the system will transition to stage II.

In stage II, the candidate attribute set Pcand

is initialized as Pcp∈Cacc . Some components

are updated by P(t+1)
cand = P(t)

cand − P(t)
cur_acc −

P(t)
cur_rej , P(t+1)

acc = P(t)
acc ∪ P(t)

cur_acc, P(t+1)
rej =

P(t)
rej ∪ P(t)

cur_rej , P(t+1)
sepcial_acc = P(t)

sepcial_acc ∪
P(t)
cur_sepcial_acc, P(t+1)

sepcial_rej = P(t)
sepcial_rej ∪

P(t)
cur_sepcial_rej . In this stage, we employ the at-

tribute instance-based union set strategy to update
V(t+1)
cand . Unlike Zhang et al. (2022), we don’t re-

move all items that contain the negative attributes,
as in Lei et al. (2020b); Deng et al. (2021); Lei et al.
(2020a): V(t+1)

cand = {v|v ∈ Vp0 − V(t)
rej and Pv ∩

P(t)
acc ̸= ∅}.

4.1.2 Interest-based Candidate Selection
To reduce the action space in subsequent steps, we
need to sort the candidate nodes in the dynamic
tree. Following Deng et al. (2021), we construct a
dynamic weighted graph to rank candidate items.
Given a user u, we denote the dynamic graph at
t-th turn as G(t)

u = (N (t), E(t)):

N (t) = {u} ∪ P(t)
acc ∪ P(t)

cand ∪ V(t)
cand (1)

E(t)
i,j =





w(t)
v , if ni = u, nj ∈ V

1, if ni ∈ V, nj ∈ P
0, otherwise

(2)

where Ei,j denotes the weighted edges between
modes ni and nj . w

(t)
v is a scalar indicating the

recommendation score of the item v in the cur-
rent state. To incorporate the special negative
information, such w

(t)
v is calculated as: w

(t)
v =
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σ
(
e⊤u ev +

∑
p∈P(t)

acc
e⊤v ep −

∑
p∈P(t)

rej∩P
(t)
v

e⊤v ep −
∑

p∈P(t)
special_rej∩P

(t)
v

e⊤v ep
)

, where σ(·) is the sig-

moid function, eu, ev and ep are the embeddings
of the user, item, and attribute, respectively.

Different from item ranking, those attributes
with high scores should be able to not only cap-
ture the user’s preferences but also better reduce
the uncertainty of candidate items. Since HutCRS
only asks about attributes related to the positive
aspects which have already captured user’s pref-
erences, we utilize the entropy method(Wu et al.,
2015) to rank the candidates.

4.2 Hierarchical-Interest Policy Learning
The purpose of this module is to decide which as-
pects to ask and when to ask attributes or when
to recommend items to achieve successful recom-
mendations in the fewest turns. We construct a
current graph and a global graph to balance the
user’s short-term and long-term preferences. More-
over, we utilize the Hierarchical-Interest Extractor
and Dueling Q-network to better understand users’
hierarchical interests and decide the next action.
Graph Representation. For the current graph G(t)

u ,
which is introduced in 4.1.2, we employ a Lc-layer
GCN(Kipf and Welling, 2016) to refine the node
embeddings as in Zhang et al. (2022):

e(l+1)
n = ReLU

( ∑

j∈N (t)
n

W
(l+1)
c e

(l)
j√∑

i E
(t)
n,i

∑
i E

(t)
j,i

+e(l)n

)

(3)
where e

(l)
n denotes the output node embedding of

l-th layer, e(Lc)
n denotes the final embedding ecn of

the node, N (t)
n denotes the node n’s neighbor nodes

set in turn t and W
(l+1)
c ∈ Rd×d are trainable

parameters.
For the global graph Gg = (N , E), where

N = U ∪ V ∪ P and E = Eu,v ∪ Ep,v, we
employ a Lg-layer Global Graph Neural Network
(GGNN)(Schlichtkrull et al., 2018; Chen et al.,
2020, 2019) to extract long-term preferences of
users, and global correlations of items and attribute
instances as in Zhang et al. (2022): s

(l+1)
u∼v (n) =

b
(l+1)
g +

∑
i∈Nru∼v (n)

W
(l+1)
g s

(l)
i√

|Nru∼v (i)||Nru∼v (n)|
,

where Nru∼v(n) denotes the neighbor nodes of
node n with the edge type ru∼v, which denotes
the user u has interacted the item v. W(l+1)

g and
b
(l+1)
g are both trainable parameters. We can get

s
(l+1)
p∼v (n) similarly, where the rp∼v denotes that

the item v is associated with the attribute instance
p. Then we can get node embeddings s

(l+1)
n of

users, attributes and items respectively: s(l+1)
u =

ReLU(s
(l+1)
u∼v (n)), s

(l+1)
p = ReLU(s

(l+1)
p∼v (n)),

s
(l+1)
v = ReLU(mean(s(l+1)

u∼v (n), s
(l+1)
p∼v (n))). We

denote the output of the last layer s(Lg)
n as the final

embedding sgn of the node.
Hierarchical-Interest Extractor. Following
Zhang et al. (2022), we use a multi-attention mech-
anism to capture user’s diverse interests. First, we
fuse the embeddings of the rejected items and at-
tribute instances to represent the negative interest
of the user:

vN+1 = Wrej

( 1

|Nrej |
∑

n∈Nrej

sgn

)
(4)

where Nrej = Vrej ∪ Prej , and Wrej ∈ Rd×d

are trainable parameters. Then based on the dy-
namic tree, we get the special labels l for accepted
attribute instance embeddings [v1, v2, ..., vN ] and
vN+1:

li =

{
[1, 0], if pi ∈ Pspecial_acc

[0, 1], otherwise
(5)

where i = 1, 2, ..., N,N + 1. It is worth noting
that we use the embedding ecn of the current graph
G(t)
u for v1 to vN to balance the user’s short-term

and long-term preferences.
Finally, we utilize KI attention networks with

M iterations to adjust the weights between
[v1, v2, ..., vN , vN+1]. The method for calculating
the initial iteration of each attention network to
obtain the interest embedding q

(1)
k is as follows:

q
(1)
k =

N+1∑

n=1

α
(1)
k,nvn, k ∈ {1, . . .KI} (6)

α
(1)
k,n =

exp
(
h⊤
k σ (Wk (vn∥ln))

)
∑N+1

n′=1 exp
(
h⊤
k σ (Wk (vn′∥ln′))

) (7)

where hk and Wk are trainable parameters. Based
on the m−1-th iteration results, we can get the
q
(m)
k as follows:

q
(m)
k =

N+1∑

n=1

α
(m)
k,n vn (8)
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α
(m)
k,n =

exp(h⊤
k σ(Wk(vn∥ln∥q(m−1)

k ))
∑N+1

n′=1 exp(h
⊤
k σ(Wk(vn′∥

+α
(m−1)
k,n )

ln′∥q(m−1)
k )) + α

(m−1)
k,n′ )

(9)

We define the output of the M -th iteration
as the final embeddings. These embeddings
are represented by {qM

1 ,qM
2 , ...,qM

KI
}, where

qM
1 ,qM

2 , ...,qM
KI

are the embedded vectors that
capture the hierarchical interests.
Action Decision Policy Learning. A good strategy
not only makes the recommendation at the appro-
priate time but also exhibits flexible adaptation to
users’ feedback. Additionally, it maintains conver-
sational topics and adapts to various scenarios to
ensure user comfort throughout the interaction(Gao
et al., 2021). Previous works focus on the strategy
for determining when to ask attributes or when to
recommend items, while our strategy also requires
determining which aspects to ask. Therefore, we
divide the decision-making process into two stages.
In stage I, the system aims to identify the aspects
that the user prefers, while in stage II, the system
will ask about attributes related to these positive
aspects or recommend items.

Following Deng et al. (2021); Zhang et al.
(2022), we select top-Kv items based on the rec-
ommendation score w

(t)
v and top-Kp attribute in-

stances based on the entropy score as the action
space At. Inspired by Zhang et al. (2022), we
adopt a dueling Q-network to determine the next
action. The Q-value Q(st, at) of the state st
and the action at is calculated by: Q (st, at) =
maxk (fθV (qk) + fθA (qk, at)) , k ∈ {1, . . .KI},
where fθV (·) and fθA(·) are two separate multi-
layer perceptions (MLP). Following the Bellman
equation (Bellman and Kalaba, 1957), the optimal
Q-value Q∗(st, at) is calculated by: Q∗ (st, at) =
Est+1 [rt + γmaxat+1∈At+1 Q

∗(st+1, at+1|st, at)],
where rt is the reward based on the user’s feedback
and γ is the discounted factor.

In stage I, we adopt the sum-based strategy. For
each candidate aspect node of the dynamic tree,
we sum the Q-values of its child nodes in At

to obtain the aspect-level score by which we se-
lect top-Kasp aspect instances to ask. Once the
user accepts some aspects, the dynamic tree no
longer updates the first layer nodes and the sys-
tem will transition from stage I to stage II. In

stage II, we adopt the top-based strategy. The
system first selects the action with the max Q-
value. If the selected action points to an item, the
system will recommend top-K items. Otherwise,
the system will ask top-Katt attribute instances.
Moreover, we define a replay buffer D to store
the experience (st, at, rt, st+1,At+1) and define
a loss function:L = E(sa,at,rt,st+1,At+1)∼D[(yt −
Q(st, at; θQ, θM ))2], where θM is the set of pa-
rameters to capture hierarchical-interest embed-
dings, θQ = {θV , θA}, and yt is the target value,
which is based on the optimal Q-function: yt =
rt + γmaxat+1∈At+1 Q (st+1, at+1; θQ, θM ).

We utilize the double DQN (Van Hasselt et al.,
2016) method to combat the overestimation bias
present in the original DQN. Specifically, we em-
ploy a periodic copy of a target network Q′ from
the online network to train the model, in accor-
dance with Deng et al. (2021); Zhou et al. (2020);
Zhang et al. (2022).

5 Experiment

5.1 Datasets

Following Zhang et al. (2022), we conduct experi-
ments on four benchmark datasets: Yelp, LastFM,
Amazon-Book, and MovieLens. For each conver-
sation episode, we sample Nv items with partially
overlapped attribute instances as acceptable items
for the user.

5.2 Experiments Setup

User Simulator. We conduct a simulation of a
conversation session for each observed user-item
interaction pair (u,Vu). In this simulation, we con-
sider each item vi ∈ Vu as the target item that
serves as the ground truth. To initiate the session,
the simulated user specifies an attribute instance
p0 ∈ Psame. Given a conversation, the simulated
user’s feedback of each turn follows the rules: (1)
when the system asks a question, they will accept
the aspects instances or attribute instances which
are associated with any item in Vu and reject others;
(2) when the system recommends a list of items, it
will be accepted by the user if at least one item in
Vu is included; (3) the user’s patience will expire
when the maximum number of turn T is reached.
Baselines. To evaluate model performance, we
compare our model with the following baselines:
(1) Max Entropy(Lei et al., 2020a), which asks the
user for an attribute based on the maximum en-
tropy or recommends items with a certain probabil-
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Models Yelp LastFM Amazon Book MovieLens
SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG

Abs Greedy 0.222 13.48 0.073 0.635 8.66 0.267 0.189 13.43 0.089 0.273 12.19 0.138
Max Entropy 0.375 12.57 0.139 0.640 9.62 0.288 0.343 12.21 0.125 0.704 6.93 0.448

CRM 0.223 13.83 0.073 0.597 10.60 0.269 0.309 12.47 0.117 0.654 7.86 0.413
EAR 0.263 13.79 0.098 0.612 9.66 0.276 0.354 12.07 0.132 0.714 6.53 0.457
SCPR 0.413 12.45 0.149 0.751 8.52 0.339 0.428 11.50 0.159 0.812 4.03 0.547

UNICORN 0.438 12.28 0.151 0.843 7.25 0.363 0.466 11.24 0.170 0.836 3.82 0.576
MCMIPL 0.482 11.87 0.160 0.874 6.35 0.396 0.545 10.83 0.223 0.882 3.61 0.599

HutCRS 0.528∗ 11.33∗ 0.175∗ 0.900∗ 6.52 0.348 0.638∗ 9.84∗ 0.227∗ 0.902∗ 4.16 0.475

Table 1: Performance comparison of different models on the four datasets. * indicates statistically significant
improvement (p < 0.01) over all baselines. hDCG stands for hDCG@(15, 10).

ity. (2) Abs Greedy(Christakopoulou et al., 2016),
which only recommends items and updates itself.
(3) CRM(Sun and Zhang, 2018), which is a single-
round CRS that learns the policy deciding the next
action. Following Lei et al. (2020a), we adapt
CRM to MCR scenario. (4) EAR(Lei et al., 2020a),
which proposes a three-stage model to better con-
verse and recommend item to users. (5) SCPR(Lei
et al., 2020b), which conducts interactive path rea-
soning on the graph to prune candidate attribute
nodes in the graph, and employs the DQN to select
an action. (6) UNICORN(Deng et al., 2021), which
proposes a unified policy learning framework and
adopts a dynamic weighted graph-based RL to
select action. (7) MCMIPL(Zhang et al., 2022),
which generates multiple choice questions, utilizes
a union set strategy to select candidate items and
the exact multi-interest of the user to select the next
action. It is the state-of-the-art(SOTA) method.

Parameters Setting We randomly split each
dataset into training, validation, and test sets in
a 7:1.5:1.5 ratio. The embedding dimension is set
to 64, and the batch size to 128. In stage I, We
ask at most Kasp = 4 aspect instances in each turn.
In stage II, we recommend top K = 10 items or
ask Katt = 2 attribute instances in each turn. The
maximum number of turn T for a conversation is
set to 15. We utilize the Adam optimizer with a
learning rate of 1e-4. Discount factor γ is set to be
0.999. Following Deng et al. (2021), we pretrain
the node embeddings in the constructed KG with
the training set using TransE (Bordes et al., 2013)
via OpenKE (Han et al., 2018). We construct the
global graph based on the training set. The num-
bers of current GNN layers Lc and global GNN
layers Lg are set to 2 and 1, respectively. We ex-

Figure 3: Comparisons at Different Conversation Turns.

tract the user’s hierarchical interests with KI = 4
attention networks, M = 2 iterations and the ac-
tion space consists of Kp = 10 attribute instances
and Kv = 10 items. The reward settings are as
follows: rrec_suc = 1, rrec_fail = -0.1, rask_att_suc
= 0.01, rask_att_fail = -0.1, rask_asp_suc = 0.02,
rask_asp_fail = -0.2, rquit = -0.3. Inspired by
Zhang et al. (2022), we set the reward of ask-
ing a question as follows: In stage I, rt =∑

C(t)
cur_acc

rask_asp_suc +
∑

C(t)
cur_rej

rask_asp_fail,

while in stage II, rt =
∑

P(t)
cur_acc

rask_att_suc +∑
P(t)
cur_rej

rask_att_fail. We set the maximum num-

ber Nv of acceptable items as 2 and explore other
settings in the hyper-parameter analysis.

Evaluation Metrics. Following Lei et al. (2020a);
Deng et al. (2021); Zhang et al. (2022), we utilize
the success rate at turn t (SR@t) (Sun and Zhang,
2018) to measure the cumulative ratio of successful
recommendation with the maximum turn T , and
average turn (AT) to evaluate the average number
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Figure 4: Sample conversations generated by HutCRS and MCMIPL.

of turns. Besides, we adopt hDCG@(T ,K) (Deng
et al., 2021) to additionally evaluate the ranking
performance of recommendations. Higher values
of SR@t and hDCG@(T ,K) indicate better perfor-
mance, while a lower value of AT indicates overall
higher efficiency.

5.3 Performance Comparison
The comparison experimental results of the base-
line models and our models are shown in Table 1.
In terms of SR@15, our model outperforms all the
comparison methods with improvements of 10%,
3%, 17%, and 2% on four datasets. But in terms
of AT and hDCG, our model only shows improve-
ment on the Yelp and Amazon Book datasets. How-
ever, this result does not imply that our model is
inefficient. We intuitively present the performance
comparison of success rate at each turn in Figure
3. Relative success rate denotes the difference be-
tween HutCRS and the most competitive baseline
MCMIPL, where the blue line of MCMIPL is set
to y = 0 in the figure. We observe that the absence
of recommendations in stage I for HutCRS leads to
a lower success rate compared to MCMIPL in the
initial turns. As a result, this negatively affects the
model’s performance on the AT and hDCG metrics,
especially for relatively straightforward datasets
such as lastfm and movielens. But for the more
challenging Yelp and Amazon Book datasets, our
model achieves improvement across all metrics.
This shows that our method attains better perfor-
mance than previous baselines.

5.4 Ablation Studies
In order to verify the effectiveness of some key de-
signs, we conduct a series of ablation experiments
on the Amazon-Book and MovieLens datasets. The
results are shown in Table 2. We design four ab-

Models Amazon Book MovieLens
SR@15 AT hDCG SR@15 AT hDCG

HutCRS 0.638 9.84 0.227 0.902 4.16 0.475

(a) 0.630 9.85 0.225 0.890 4.25 0.467
(b) 0.619 10.00 0.221 0.898 4.26 0.468
(c) 0.615 10.05 0.218 0.871 4.77 0.432
(d) 0.541 10.79 0.189 0.882 4.69 0.438
(e) 0.629 9.86 0.227 0.875 4.42 0.444
(f) 0.592 10.06 0.217 0.878 4.34 0.468

Table 2: Results of the Ablation Study.

Figure 5: Performance comparisons w.r.t. Kasp

lation models: (a) removing the classification; (b)
removing the global graph; (c)removing the cur-
rent graph; (d) adopting binary questions in stage I;
(e) replacing the sum-based strategy for selecting
aspect instances with a random strategy; (f) replac-
ing the top-based strategy for selecting attribute
instances with a random strategy. All ablation mod-
els perform worse than HutCRS in terms of all
metrics, which demonstrates the preeminence of
HutCRS.

5.5 Hyper-parameter Analysis
Inquiring users with questions that incorporate a
varying number of aspect instances (Kasp) influ-
ences the performance of the model. As illustrated
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in Figure 5, the AT metric exhibits improvement
when the value of Kasp rises, whereas the SR@15
metric does not consistently display enhancement.
This observation suggests that increasing Kasp be-
yond a certain threshold may yield limited perfor-
mance gains. The ongoing decline of the AT metric
can be attributed to a reduction in the number of
turns taken during stage I as Kasp escalates.

5.6 Case Study

We further conduct qualitative analysis to demon-
strate the role played by the hierarchical interest
structure in successful recommendations. We ran-
domly sample a real-world interaction from our
model and the state-of-the-art method on LastFM
based on the same test instance. The generated con-
versations by HutCRS and MCMIPL with the user
simulator are presented in Figure 4. It can be ob-
served that HutCRS first identifies the aspects that
the user prefers, then asks about attributes related
to the accepted aspects, and finally recommends
the item. Compare to HutCRS, MCMIPL repeat-
edly asks about attributes of the aspect that the user
is not interested in, resulting in lower efficiency.
Therefore, the hierarchical interest structure makes
conversations more user-friendly and explainable.

Conclusion

In this paper, we propose a more realistic, user-
friendly, and explainable framework HutCRS,
which portrays the conversation as a hierarchical
interest tree consisting of two stages. In addition,
we design a HIPL module to integrate the decision-
making process and classify attribute-level feed-
back to capture special information. Extensive ex-
periments on four benchmark datasets demonstrate
the superiority of our method.

Limitations

While our model achieves a new state-of-the-art
performance, it still has several limitations. Firstly,
our framework employs a hierarchical interest tree
structure, necessitating the inclusion of both at-
tribute and aspect data in the dataset. Secondly, the
conversation is divided into two stages. During the
stage I, the system asks about aspects until the user
accepts specific aspects and then proceeds to the
stage II. Once in the stage II, the system is unable
to revert to the stage I. Ideally, the agent should
be able to recommend directly based on negative
feedback regarding aspects in the stage I and return

to the stage I after entering the stage II, as this may
enhance performance. Lastly, our method solely
classifies feedback at the attribute level, lacking
item-level classification, which also presents an
opportunity for improvement.
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