@inproceedings{yu-etal-2023-simple,
title = "Simple and Effective Input Reformulations for Translation",
author = "Yu, Brian and
Lillemark, Hansen and
Keutzer, Kurt",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.638",
doi = "10.18653/v1/2023.emnlp-main.638",
pages = "10322--10334",
abstract = "Foundation language models learn from their finetuning input context in different ways. In this paper, we reformulate inputs during finetuning for challenging translation tasks, leveraging model strengths from pretraining in novel ways to improve downstream performance. These reformulations are simple data level modifications, require no additional collection of training data or modification of data at inference time. They can be applied either on single language pair translation tasks or massively multilingual translation tasks. Experiments with these techniques demonstrate significant performance improvements up to \textbf{3.5 chrF++ on the Flores200 translation benchmark}. We hope our research accessibly improves finetuning data efficiency, enabling more effective training to scalably improve state-of-the-art performance. Our code is released here.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2023-simple">
<titleInfo>
<title>Simple and Effective Input Reformulations for Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansen</namePart>
<namePart type="family">Lillemark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kurt</namePart>
<namePart type="family">Keutzer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Foundation language models learn from their finetuning input context in different ways. In this paper, we reformulate inputs during finetuning for challenging translation tasks, leveraging model strengths from pretraining in novel ways to improve downstream performance. These reformulations are simple data level modifications, require no additional collection of training data or modification of data at inference time. They can be applied either on single language pair translation tasks or massively multilingual translation tasks. Experiments with these techniques demonstrate significant performance improvements up to 3.5 chrF++ on the Flores200 translation benchmark. We hope our research accessibly improves finetuning data efficiency, enabling more effective training to scalably improve state-of-the-art performance. Our code is released here.</abstract>
<identifier type="citekey">yu-etal-2023-simple</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.638</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.638</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>10322</start>
<end>10334</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Simple and Effective Input Reformulations for Translation
%A Yu, Brian
%A Lillemark, Hansen
%A Keutzer, Kurt
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F yu-etal-2023-simple
%X Foundation language models learn from their finetuning input context in different ways. In this paper, we reformulate inputs during finetuning for challenging translation tasks, leveraging model strengths from pretraining in novel ways to improve downstream performance. These reformulations are simple data level modifications, require no additional collection of training data or modification of data at inference time. They can be applied either on single language pair translation tasks or massively multilingual translation tasks. Experiments with these techniques demonstrate significant performance improvements up to 3.5 chrF++ on the Flores200 translation benchmark. We hope our research accessibly improves finetuning data efficiency, enabling more effective training to scalably improve state-of-the-art performance. Our code is released here.
%R 10.18653/v1/2023.emnlp-main.638
%U https://aclanthology.org/2023.emnlp-main.638
%U https://doi.org/10.18653/v1/2023.emnlp-main.638
%P 10322-10334
Markdown (Informal)
[Simple and Effective Input Reformulations for Translation](https://aclanthology.org/2023.emnlp-main.638) (Yu et al., EMNLP 2023)
ACL