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Abstract

Concepts play a central role in many applica-
tions. This includes settings where concepts
have to be modelled in the absence of sentence
context. Previous work has therefore focused
on distilling decontextualised concept embed-
dings from language models. But concepts
can be modelled from different perspectives,
whereas concept embeddings typically mostly
capture taxonomic structure. To address this is-
sue, we propose a strategy for identifying what
different concepts, from a potentially large con-
cept vocabulary, have in common with others.
We then represent concepts in terms of the prop-
erties they share with the other concepts. To
demonstrate the practical usefulness of this way
of modelling concepts, we consider the task of
ultra-fine entity typing, which is a challenging
multi-label classification problem. We show
that by augmenting the label set with shared
properties, we can improve the performance of
the state-of-the-art models for this task.1

1 Introduction

Various applications rely on knowledge about the
meaning of concepts, which is typically encoded
in the form of embeddings. For instance, pre-
trained concept embeddings are used to provide
prior knowledge about the labels in few-shot and
zero-shot learning tasks (Socher et al., 2013; Ma
et al., 2016; Xing et al., 2019; Yan et al., 2022;
Xiong et al., 2019; Hou et al., 2020; Li et al., 2020;
Yan et al., 2021). Concept embeddings also play
a central role in the area of knowledge manage-
ment, for instance for taxonomy learning (Vedula
et al., 2018; Malandri et al., 2021), knowledge
graph alignment (Trisedya et al., 2019), ontology
alignment (Kolyvakis et al., 2018) and ontology
completion (Li et al., 2019). In such applications,
Language Models (LMs) such as BERT (Devlin
et al., 2019) cannot be used directly, since we need

1Our datasets and evaluation scripts are available at https:
//github.com/amitgajbhiye/concept_commonality

concept embeddings which do not depend on sen-
tence context. For this reason, several authors have
proposed strategies for obtaining decontextualised
(or static) concept embeddings from LMs (Etha-
yarajh, 2019; Bommasani et al., 2020; Vulić et al.,
2020; Li et al., 2021; Vulić et al., 2021; Liu et al.,
2021; Gajbhiye et al., 2022).

Decontextualised concept embeddings tend to
primarily reflect basic taxonomic structure, e.g.
capturing the fact that televisions are electronic
devices and that salmon are fish. However, applica-
tions often rely on different facets of meaning. In
computer vision applications, we want concept em-
beddings to reflect visual features; e.g. they should
capture the fact that chess boards, televisions and
books have something in common (i.e. being rect-
angular). When modelling scene graphs (Qi et al.,
2019), we may rather want embeddings that capture
which objects are often found together in the same
visual scene. For instance, concept embeddings
should then reflect the fact that televisions, sofas
and rugs have something in common (i.e. that they
are typically found in the living room). When mod-
elling food ontologies, concept embeddings should
perhaps capture the fact that salmon and walnuts
share the property of being rich in Omega-3. In
principle, if sufficient training data is available,
we could learn application-specific concept embed-
dings by fine-tuning a language model. However,
the role of concept embeddings is often precisely
to address the scarcity of application-specific train-
ing data. We, therefore focus on strategies that use
pre-trained models in an unsupervised way.

Concept embeddings can be viewed as compact
representations of similarity metrics. However,
what matters in the aforementioned applications
is often less about modelling similarity than about
modelling what different concepts have in com-
mon. This is an important distinction because we
can list the properties that a concept satisfies in an
application-independent way, which is not possi-
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Property Concepts

used for staying connected telephone number, google, area code, user name, facebook, land line, email, call center,
web server, link farm, name server

used for beach activities deck chair, beach volleyball, beach ball, sun hat, sun dog ...
a round shape bubble, small ball, ball bearing, sphere, disc, round top, centre circle, wheel, tin can,

cone, cylinder, oval, tube
located in cities parking lot, high street, suburbs, supermarket, mall, food court, piazza, city hall, cinema,

general store
used for communication address book, twitter, voice message, instant message, voice mail letter bomb, listening

post, mail bomb, ring tone, street address, wireless operator
accommodation options for camping beer tent, man cave, rock shelter, holiday camp, camp, mobile home, guest room, inn,

resort, trading post, cabin, cabin boy, hunting lodge, lodge, mess hall
accounting expense account, transaction, register, business intelligence, finance, business record,

income statement, backup, census, consumer credit, estimate, evaluation, listing, main-
tenance, market research

tv series genres detective, soap opera, reality show, crime, mystery, cartoon blockbuster, hero, radio
drama, season finale, series finale

aches fever, strain, head cold, battle fatigue, sore, pain, hurt, fatigue bow shock, cold, dry eye,
hunger, obesity, sting, stretch mark

adulthood middle age, thirty, age group, womanhood, drinking age, aged, careers, elder, generation,
maturity, autumn, bachelor, birth, birthplace, childhood, decade, era

advertisements ’slogan’, ’brand image’, ’publicity’, ’advertising’, ’product placement’, ’banner ad’,
’advertiser’, ’advertisement’, ’advance’, ’propaganda’, ’ambush marketing’, ’dot prod-
uct’, ’fan mail’, ’fan service’

baby carriers basket, baby seat, basket case, car seat, carrier, baby book, baby bottle, body bag

Table 1: Examples of properties found using the bi-encoder model. In red and crossed out are properties initially
predicted, but discarded by the DeBERTa-based filtering.

ble for modelling similarity. Based on this view,
we propose the following strategy: we represent
concepts by explicitly capturing the properties they
satisfy. To identify the properties that might be rel-
evant in a given application, we look for those that
describe what different concepts from the given
vocabulary have in common.

To implement this strategy, we need an efficient
mechanism for identifying these commonalities.
The vocabulary is often too large to directly use
Large Language Models (LLMs) to solve this task.
Instead, we rely on a bi-encoder architecture to
efficiently retrieve the properties that are satisfied
by each concept (Gajbhiye et al., 2022). Once the
initial set of properties has been retrieved, we use
a fine-tuned DeBERTa model (He et al., 2021) to
filter these properties. Table 1 shows examples of
properties that were thus identified, along with the
corresponding concepts. Note how some of these
commonalities are unlikely to be captured by stan-
dard concept embeddings (e.g. linking telephone
number and facebook in the first example).

After summarising the related work in Section
2, we describe our strategy for uncovering shared
properties in Section 3. Our subsequent evaluation
in Section 4 focuses on two tasks. First, we carry
out an intrinsic evaluation to show the effective-
ness of the proposed filtering strategy. Second, we

demonstrate the practical usefulness of uncover-
ing shared properties on the downstream task of
ultra-fine entity typing.

2 Related Work

The task of predicting commonsense properties has
been studied by several authors (Rubinstein et al.,
2015; Forbes et al., 2019; Gajbhiye et al., 2022;
Apidianaki and Garí Soler, 2021; Bosselut et al.,
2019). Modelling the commonalities between con-
cepts, or conversely, identifying outliers, has also
been previously considered. For instance, outlier
detection has been used for intrinsic evaluation of
word embeddings (Camacho-Collados and Nav-
igli, 2016; Blair et al., 2017; Brink Andersen et al.,
2020). However such benchmarks are focused on
taxonomic categories. Moreover, we focus on find-
ing commonalities in large vocabularies, containing
perhaps tens of thousands of concepts. Another re-
lated task is entity set expansion (Pantel et al., 2009;
Zhang et al., 2020; Shen et al., 2020). Given an ini-
tial set of entities, e.g. {France,Germany, Italy},
this task requires selecting other entities that have
the same properties (e.g. being European countries).
However, the focus is usually on named entities,
whereas we focus on concepts.
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3 Identifying Shared Properties

Let V be the considered vocabulary of concepts.
Our aim is to associate each concept c ∈ V with
a set of properties. To find suitable properties, we
first retrieve a set of candidate properties for each
concept in V using an efficient bi-encoder model.
Subsequently, we verify the retrieved properties
with a joint encoder.

Retrieving Candidate Properties For each con-
cept c ∈ V , we want to find a set of properties
that are likely to be satisfied by that concept. The
vocabulary V may contain tens of thousands of con-
cepts, which makes it expensive to use an LLM for
this purpose. We instead rely on the bi-encoder
model from Gajbhiye et al. (2022). The idea is
to fine-tune two BERT models: one for learn-
ing concept embeddings (ϕcon) and one for learn-
ing property embeddings (ϕprop). The probability
that concept c has property p is then estimated as
σ
(
ϕcon(c) ·ϕprop(p)

)
, with σ the sigmoid function.

To train this model, we need examples of concepts
and the properties they satisfy. The only large-
scale knowledge base that contains such training
examples is ConceptNet, which is unfortunately
rather noisy and imbalanced. Gajbhiye et al. (2022)
therefore trained their model on a large set of (hy-
ponym,hypernym) pairs from Microsoft Concept
Graph (Ji et al., 2019), together with examples from
GenericsKB (Bhakthavatsalam et al., 2020).

Since the performance of the bi-encoder heavily
depends on the training data, and existing train-
ing sets are sub-optimal, we created a training set
of 109K (concept,property) pairs using ChatGPT2.
Simply asking ChatGPT to enumerate the prop-
erties of some concept tends to result in verbose
explanations describing overly specific properties,
which are less helpful for identifying commonal-
ities. Therefore, we used a prompt which specifi-
cally asked ChatGPT to identify properties that are
shared by several concepts. We also experimented
with a training set we derived from ConceptNet 5.5.
Specifically, we converted instances of the relations
IsA, PartOf, LocatedAt, UsedFor and HasProperty
into a set of 63,872 (concept,property) pairs. The
full details can be found in the appendix.

Selecting Properties To associate properties
with concepts, we first need to determine a set P of
properties of interest. For our experiments, we let

2https://chat.openai.com

Model Pre-training F1

BERT-large bi-enc - 36.6
BERT-large bi-enc (Gajbhiye et al., 2022) 49.3
BERT-large bi-enc ConceptNet 54.0
BERT-large bi-enc ChatGPT 50.1
BERT-large bi-enc ConceptNet+ChatGPT 55.4

BERT-large joint - 51.8
RoBERTa-large joint - 58.8
DeBERTa-large joint - 65.9
BERT-large joint ConceptNet 55.4
RoBERTa-large joint ConceptNet 60.3
DeBERTa-large joint ConceptNet 65.7

RoBERTa-large NLI - 57.7
RoBERTa-large NLI WANLI 57.2
RoBERTa-large NLI WANLI + ConceptNet 57.6

Table 2: Results on the McRae property split dataset.

P contain every property that appears at least twice
in the training data for the bi-encoder. Then for a
given concept c, we use maximum inner-product
search (MIPS) to efficiently find the 50 properties p
from P for which the dot product ϕcon(c) ·ϕprop(p)
is maximal. To make a hard selection of which
properties are satisfied and which ones are not, we
rely on a joint encoder. Such models are typically
more accurate than a bi-encoder but cannot be used
for retrieval. Specifically, we use a masked lan-
guage model with the following prompt:

Can c be described as p? [MASK]. (1)

We train a linear classifier to predict whether c has
the property p from the final layer embedding of
the [MASK] token. As the masked language model,
we use a DeBERTa-v3-large model. To train the
classifier and fine-tune the language model, we
used the extended McRae dataset from Forbes et al.
(2019) and the augmented version of CSLB3 intro-
duced by Misra et al. (2022). Both datasets have
true negatives and are focused on commonsense
properties, which we found important in initial ex-
periments. Finally, after obtaining the properties
for every concept in C, we remove those properties
that were only found for a single concept.

4 Experiments

Predicting Commonsense Properties As an in-
trinsic evaluation of our model for predicting prop-
erties, we use the property split of the McRae
dataset that was introduced by Gajbhiye et al.
(2022). This benchmark involves classifying (con-
cept,property) pairs as valid or not. It is particularly

3https://cslb.psychol.cam.ac.uk/propnorms
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Representation F1

Base model (Li et al., 2023a) 49.2
ConCN clusters (Li et al., 2023a) 50.4

Properties (ChatGPT) 50.4
Properties (ConceptNet) 50.9
Properties (ChatGPT + CN) 50.9

Bi-enc clusters (ChatGPT + CN) 50.6
ConCN clusters + properties (ChatGPT + CN) 50.9
Bi-enc clusters + properties (ChatGPT + CN) 51.1

Table 3: Results for ultra-fine entity typing, using a
BERT-base entity encoder with augmented label sets.

challenging because there is no overlap between
the properties in the training and test splits.

The results for the bi-encoder are shown in the
top part of Table 2. As can be seen, the training sets
obtained from ChatGPT and from ConceptNet both
outperform the dataset that was used by Gajbhiye
et al. (2022). The best results were obtained by
combining the ChatGPT and ConceptNet training
sets. In the middle part of Table 2, we evaluate
different variants of the joint encoder. We com-
pare three masked language models: BERT-large,
RoBERTa-large (Liu et al., 2019) and DeBERTa-
v3-large (He et al., 2021). In each case, we con-
sider one variant where the models are directly fine-
tuned on the McRae training set and one where the
models are first pre-trained on ConceptNet (i.e. the
dataset we used for training the bi-encoder). As
can be seen, the best results are obtained using De-
BERTa without pre-training on ConceptNet. One
disadvantage of the ConceptNet dataset is that it
does not contain true negatives, i.e. the negative
training examples are obtained by randomly cor-
rupting positive examples. We also experimented
with an NLI formulation. To this end, we used a
premise of the form “the concept is c” and a hy-
pothesis of the form “the concept can be described
as p”. The results are shown in the bottom part
of Table 2 for three variants with RoBERTa-large:
one without pre-training, one where we pre-train
on WANLI (Liu et al., 2022), and one where we
first pre-train on WANLI and then continue training
on ConceptNet. As can be seen, this NLI based
formulation was less successful.

Ultra-Fine Entity Typing To evaluate the use-
fulness of identifying shared properties in a down-
stream task, we consider the task of ultra-fine en-
tity typing (Choi et al., 2018). Given a sentence in
which an entity is highlighted, this task consists in
assigning semantic types to that entity. It is formu-

Representation F1

Base model (Li et al., 2023a) 49.8
ConCN clusters (Li et al., 2023a) 51.9

Bi-enc clusters + properties (ChatGPT + CN) 52.2

Table 4: Results for ultra-fine entity typing, using a
BERT-large entity encoder and after applying the post-
processing strategies from Li et al. (2023a).

lated as a multi-label classification problem, where
there are typically several labels that apply to a
given entity. The task is challenging due to the fact
that a large set of more than 10,000 candidate labels
is used. Moreover, most of the training data comes
from distant supervision signals, and many labels
are not covered by the training data at all. This
makes it important to incorporate prior knowledge
about the meaning of the labels. Li et al. (2023a)
recently achieved state-of-the-art results with a sim-
ple clustering based strategy. They first cluster all
the labels based on a pre-trained embedding at dif-
ferent levels of granularity. Each cluster is then
treated as an additional label. For instance, if the
label l appears in clusters c1, ..., ck then whenever
the label l appears in a training example, the labels
c1, ..., ck are added as well. This simple label aug-
mentation strategy was found to lead to substantial
performance gains, as long as high-quality concept
embeddings were used. Their best results were
achieved using the ConCN concept embeddings
from Li et al. (2023b).

In this experiment, we use the shared properties
that we uncovered as additional labels, in the same
way that Li et al. (2023b) used clusters. For in-
stance, if the property found in the wild was found
for elephant, then whenever a training example is
labelled with elephant we add the label found in
the wild. To identify the shared properties, we use
the same bi-encoders that we used for the exper-
iment in Table 2. We filter the properties using
the DeBERTa-large model that was fine-tuned on
McRae and CSLB.

The results are summarised in Table 3, for the
case where a BERT-base entity encoder is used.
The base model, without any additional labels,
is the DenoiseFET model from Pan et al. (2022).
When adding the clusters of ConCN embeddings,
Li et al. (2023a) were able to increase the F1 score
from 49.2 to 50.4. The configurations where we
instead use the shared properties are reported as
Properties (X), with X the training set that was
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used for the bi-encoder. As can be seen, with the
bi-encoder trained on ConceptNet, we achieve an
F1 score of 50.9, which clearly shows the useful-
ness of the shared properties. The model that was
trained on both ConceptNet and the ChatGPT ex-
amples achieves the same result. Next, we tested
whether the shared properties and the clusters used
by Li et al. (2023b) might have complementary
strengths (ConCN + properties). We also con-
sidered a variant where we instead obtained clus-
ters from the concept encoder of the bi-encoder
model (Bi-enc + properties). For both variants,
we used the bi-encoder that was trained on Chat-
GPT and ConceptNet. Adding the clusters from
the bi-encoder leads to a further improvement to
51.1. With the ConCN clusters, the result remains
unchanged. When only the clusters from the bi-
encoder are used, we achieve an F1 score of 50.6.
Finally, Table 4 shows the result of our best con-
figuration when using a BERT-large entity encoder,
and when applying the post-processing techniques
proposed by Li et al. (2023a). As can be seen, our
model surpasses their state-of-the-art result.

5 Conclusions

Concept embeddings are often used to provide prior
knowledge in applications such as (multi-label)
few-shot learning. We have proposed an alterna-
tive to the use of embeddings for such applications,
where each concept is instead represented in terms
of the properties it satisfies. Our motivation comes
from the observation that concept embeddings tend
to primarily capture taxonomic relatedness, which
is not always sufficient. We first use a bi-encoder
to efficiently retrieve candidate properties for each
concept, and then use a joint encoder to decide
which properties are satisfied. The resulting prop-
erty assignments have allowed us to improve the
state-of-the-art in ultra-fine entity typing.

Limitations

A key advantage of concept embeddings is that they
can straightforwardly be used as input features to
neural network models. Our representations based
on shared properties may be less convenient to
work with in cases where concept representations
have to be manipulated by a neural network. In our
experiments on ultra-fine entity typing, this was
not necessary as the shared properties were merely
used to augment the training labels. To adapt our
approach to different kinds of tasks, further work

may be needed. For instance, it may be possible to
compactly encode the shared properties as dense
vectors, e.g. by using partially disentangled repre-
sentations to separate different aspects of meaning.
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A Collecting Concept-Property Pairs
using ChatGPT

To obtain training data for the bi-encoder model
using ChatGPT, we used the following prompt:

I am interested in knowing which prop-
erties are satisfied by different concepts.
I am specifically interested in properties,
such as being green, being round, be-
ing located in the kitchen or being used
for preparing food, rather than in hyper-
nyms. For instance, some examples of
what I’m looking for are: 1. Sunflower,
daffodil, banana are yellow 2. Guitar,
banjo, mandolin are played by strum-
ming or plucking strings 3. Pillow, blan-
ket, comforter are soft and provide com-
fort 4. Car, scooter, train have wheels
5. Tree, log, paper are made of wood 6.
Study, bathroom, kitchen are located in
house. Please provide me with a list of
50 such examples.

Providing a number of examples as part of the
prompt helped to ensure that all answers followed
the same format, specifying one property and three
concepts that satisfy it. One difficulty we faced is
that by repeating the same prompt, after a while
the model started mostly generating duplicates of
concept-property pairs that we already collected.
To address this, regularly changed the examples in
the prompt. Specifically, each question asked for 50
answers, and we repeated a question with the same
prompt around 10 times, after which we changed
the examples, to prevent the model from generating

too many duplicates. This process allowed us to ob-
tain a dataset with 109K unique (concept,property)
pairs.

B Collecting Concept-Property Pairs
from ConceptNet

We compiled a training set of concept-property
pairs for training the bi-encoder model from Con-
ceptNet 5.5. ConceptNet contains a broad range of
relations, many of which are not relevant for our
purposes (e.g. relations about events). Following
Bhakthavatsalam et al. (2020), we considered the
ConceptNet relations IsA, PartOf, LocatedAt and
UsedFor. In addition, we also use the HasProp-
erty relation, which is clearly relevant. To con-
vert ConceptNet triples into concept-property pairs,
we need to choose a verbalisation of the relation-
ships. We explain this process by providing an
example for each relation type: the ConceptNet
triple (apartments, PartOf, apartment buildings) is
mapped to the concept-property pair (apartments,
part of apartment buildings); the triple (seaplane,
IsA, airplane) is mapped to (seaplane, airplane);
the triple (airplane, UsedFor, travelling) is mapped
to (airplane, used for travelling); the triple (air-
plane, AtLocation, the sky) is mapped to (airplane,
located in the sky).

C Additional Details

Bi-encoder Model The bi-encoders are trained
using binary cross-entropy. We train the model for
100 epochs, using early stopping with a patience
of 10 (using a 10% held-out portion of the training
data for validation). We optimise the model param-
eters using the AdamW optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 2e − 6. We
employ a batch size of 8 and L2 weight decay of
0.1.

Joint encoder The joint encoders are trained us-
ing binary cross-entropy. We train the model to
a maximum of 100 epochs with an early stopping
patience of 5. A learning rate of 1e− 5 and batch
size of 32 is used to train the model. Further, we
use the L2 weight decay of 0.01.

At the time of verifying the properties using the
joint encoder, to avoid introducing too much noise,
a property p is only assigned to a concept c if the
confidence of our DeBERTa classifier is at least
λ, for a hyperparameter λ. We consider values of
λ ∈ {0.5, 0.75, 0.9}. Based on the validation split,
we found that λ = 0.75 gave the best results.
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Ultra-fine entity typing To train the entity en-
coders for the experiments on ultra-fine entity typ-
ing, we follow the methodology of Li et al. (2023a).
In particular, to obtain clusters of concept embed-
dings, we use affinity propagation, where we select
the preference value from {0.5, 0.6, 0.7, 0.8, 0.9}
based on the validation split. The entity encoder is
trained using the soft prompt based approach from
Pan et al. (2022).

D Qualitative Analysis

Table 5 shows some of the properties found for the
vocabulary from the McRae dataset. For this exper-
iment, we used a version of the DeBERTa model
that was only fine-tuned on CSLB. On each row,
we compare a predicted property with the most
similar property from the ground truth (where simi-
larity was measured in terms of the Jaccard overlap
of the corresponding concept sets). One observa-
tion is that the properties we uncover are often
more specific than those in the ground truth. For
instance, commonly played in orchestra is clearly
more specific than used for music. What is also
evident from these examples is that our strategy is
precision-oriented. For a given property, the set of
concepts that are predicted to have that property
are mostly correct, but sometimes some clearly
relevant concepts are missing. For instance, for
used for cooking food, concepts such as blender,
strainer and grater, among others, are clearly also
relevant. Finally, while many of the properties that
are identified are taxonomic, there are also several
non-taxonomic properties, such as used for cooking
food and part of firearms.

Our motivation was based on the idea that con-
cept embeddings primarily capture taxonomic prop-
erties. To test this idea, Table 6 shows the nearest
neighbours of the concept embeddings produced by
our bi-encoder. The table in particular shows the
neighbours of concepts that also appear in Table
6. Compared to the properties that are found in
that table, we can see that the neighbours in Table
6 indeed mostly reflect taxonomic similarity. For
instance, the top neighbours of dining table are
different types of tables.
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Predicted property McRae property

weapons of war: missile, crossbow, pistol, bullet,
sword, shotgun, bazooka, spear, revolver, grenade,
rifle, cannon, bayonet, bomb, gun, dagger

used for killing: bayonet, revolver, harpoon, crossbow, pistol, bullet,
grenade, shotgun, sword, bazooka, rattlesnake, rifle, machete, bomb,
catapult, missile, spear, cannon, gun, dagger

used for cooking food: oven, pan, spatula, skillet,
stove, toaster, pot, microwave

used for cooking: lemon, cherry, fork, stove, toaster, blender, strainer,
mixer, oven, spatula, ladle, clock, pot, microwave, bowl, grater, pan,
colander, knife, spoon, tongs, kettle, olive, spinach, skillet, apron

commonly played in orchestras: trombone, cello,
violin, saxophone, trumpet, clarinet, tuba, flute

used for music: piano, banjo, trombone, cello, cell phone, harmonica,
bagpipe, radio, clarinet, keyboard, tuba, whistle, accordion, rattle,
laptop, stereo, trumpet, guitar, harp, drum, violin, saxophone, harpsi-
chord, flute

part of firearms: muzzle, shotgun, bullet, pistol,
bazooka, rifle, revolver

used for killing: bayonet, revolver, harpoon, crossbow, pistol, bullet,
grenade, shotgun, sword, bazooka, rattlesnake, rifle, machete, bomb,
catapult, missile, spear, cannon, gun, dagger

has wheels: cart, wagon, limousine, taxi, tricycle,
bicycle, car, truck, buggy, scooter, trolley, van, mo-
torcycle

used for transportation: sailboat, wagon, ambulance, buggy, heli-
copter, helmet, scooter, motorcycle, yacht, horse, bicycle, train, ship,
trailer, canoe, trolley, bus, jet, sled, rocket, pony, limousine, sleigh,
truck, surfboard, submarine, saddle, shoes, unicycle, airplane, slip-
pers, bridge, boat, jeep, cart, tricycle, escalator, taxi, car, camel,
subway, van, skateboard, elevator, bike, wheel, tractor, raft

mammals commonly found in forests: rabbit, hare,
caribou, coyote, squirrel, chipmunk, bear, bison,
groundhog, skunk, moose, deer, fox, raccoon,
cougar, beaver, elk

an animal: flea, flamingo, python, toad, penguin, rattlesnake, cock-
roach, iguana, fawn, zebra, ox, crow, pig, grasshopper, gorilla, dove,
shrimp, dolphin, woodpecker, buffalo, rat, bison, deer, cat, swan,
ostrich, chipmunk, platypus, tortoise, beaver, lion, caribou, butterfly,
salmon, moose, clam, seagull, moth, snail, squirrel, housefly, cheetah,
walrus, octopus, dog, hornet, mouse, coyote, spider, eagle, turtle,
porcupine, giraffe, alligator, donkey, horse, pony, seal, groundhog,
caterpillar, raccoon, cougar, elk, hare, tuna, otter, wasp, panther, bear,
camel, owl, falcon, fox, frog, whale, hyena, calf, goat, duck, lobster,
rabbit, elephant, hamster, goose, pigeon, squid, leopard, chicken,
salamander, tiger, crab, hawk, peacock, turkey, sheep, chimp, gopher,
bird, eel, crocodile, trout, rooster, cow, skunk, bull, lamb

Table 5: Comparison of shared properties which are uncovered by our method, for the vocabulary of the McRae
dataset, with the properties included in the ground truth of that dataset.

Concept Nearest Neighbors

telephone number telephone number, phone number, address, web address, house number, street address
deck chair deck chair, beach chair, swing, lounge, tree house, camp bed, pleasure boat
dining table dining table, dinner table, table, coffee table, dining room, counter, desk
bubble bubble, air bubble, bubble sort, balloon, tube, speech balloon, small ball
parking lot parking lot, car park, parking garage, parking space, bus lane, alley, bicycle lane

Table 6: Examples of nearest neighbours, in terms of cosine similarity between the embeddings obtained by the
concept encoder of the model trained using ConceptNet and ChatGPT. The considered vocabulary is that of the
ultra-fine entity typing dataset.
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