
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 10834–10852
December 6-10, 2023 ©2023 Association for Computational Linguistics

An Iteratively Parallel Generation Method with the Pre-Filling Strategy
for Document-level Event Extraction

Guanhua Huang1∗, Runxin Xu2, Ying Zeng3, Jiaze Chen3†,
Zhouwang Yang1 and Weinan E2

1University of Science and Technology of China 2Peking University 3Bytedance
guanhuahuang@mail.ustc.edu.cn, runxinxu@gmail.com, zengying.ss@bytedance.com

teoyde@gmail.com, yangzw@ustc.edu.cn, weinan@math.pku.edu.cn

Abstract

In document-level event extraction (DEE) tasks,
a document typically contains many event
records with multiple event roles. Therefore,
accurately extracting all event records is a big
challenge since the number of event records is
not given. Previous works present the entity-
based directed acyclic graph (EDAG) genera-
tion methods to autoregressively generate event
roles, which requires a given generation order.
Meanwhile, parallel methods are proposed to
generate all event roles simultaneously, but suf-
fer from the inadequate training which mani-
fests zero accuracies on some event roles. In
this paper, we propose an Iteratively Parallel
Generation method with the Pre-Filling strat-
egy (IPGPF). Event roles in an event record
are generated in parallel to avoid order selec-
tion, and the event records are iteratively gen-
erated to utilize historical results. Experiments
on two public datasets show our IPGPF im-
proves 11.7 F1 than previous parallel models
and up to 5.1 F1 than auto-regressive models
under the control variable settings. Moreover,
our enhanced IPGPF outperforms other entity-
enhanced models and achieves new state-of-
the-art performance 1.

1 Introduction

Document-level event extraction (DEE) aims to
extract multiple event records from the entire docu-
ment (Ebner et al., 2020; Du et al., 2021b; Li et al.,
2021; Xu et al., 2022). Different from sentence-
level event extraction (SEE) (Chen et al., 2015;
Nguyen et al., 2016; Du and Cardie, 2020b), event
arguments of an event record are usually scattered
across multiple sentences, while overlapping argu-
ments contained in several event records appear
more often. Moreover, real-world event records

*Work was done when Guanhua was an intern at
ByteDance AI Lab.

†Corresponding author.
1Our code is available at https://github.com/

CarlanLark/IPGPF

[S6] …, Jinggong Group
increased its holdings of the
company's stock by 182,038
shares through the secondary
market on Dec 15, 2011,…
[S7] …, the shares held by
Jinggong Group in the company
increased from 90,880,020
shares to 91,062,058 shares, …
[S9] on Dec 16, 2011, Jinggong
Group reduced its holdings of ...
35,000 shares, with an average
price of 19.88.
[S14] As of the date of this
announcement, Jinggong Group
holds 91,027,058 shares of the
company, …

EquityOverweight
EquityHolder Jinggong Group
TradedShares 182,038 shares
StartDate Dec 15, 2011
EndDate Dec 15, 2011
LaterHolding-
Shares 91,062,058 shares

AveragePrice NULL

EquityUnderweight
EquityHolder Jinggong Group
TradedShares 35,000 shares
StartDate Dec 16, 2011
EndDate Dec 16, 2011
LaterHolding-
Shares 91,027,058 shares

AveragePrice 19.88

EquityHolder TradeShares AveragePrice

Document
Event Record

Event Type

Event Role

Event
Argument

Entity Mention

Pre-filling

Auto-regressive

Parallel

Iteratively
Parallel
(ours)

Event Record Generation

EquityHolder TradeShares AveragePrice

EquityHolder TradeShares AveragePrice

…
…

…

…

…

…
…

…

…

…

Figure 1: An example of document-level event extrac-
tion and different event record generation methods.

always use similar but different words to report
the same type of events, leading to low annota-
tions of triggers and the requirement of trigger-free
methods. The absence of triggers increases the
difficulty of DEE. Therefore, extracting multiple
event records without triggers is the main challenge
of the trigger-free DEE methods.

Most trigger-free DEE methods (Zheng et al.,
2019; Xu et al., 2021a; Liang et al., 2022) build
entity-based directed acyclic graph (EDAG) to auto-
regressively generate event arguments with their
roles under a predefined order. However, it is im-
portant to note that determining the optimal order

10834

https://github.com/CarlanLark/IPGPF
https://github.com/CarlanLark/IPGPF

from the permutation space of possible orders has
an NP-hard complexity of O(n!). Parallel mod-
els (Yang et al., 2021) are presented to generate all
event records and roles simultaneously to avoid the
error broadcasts in a given event role order. Nev-
ertheless, parallel models are particularly prone to
the inadequate training, leading to zero accuracies
on certain event roles.

In this paper, we propose an Iteratively Parallel
Generation method with the Pre-Filling strategy
(IPGPF). As shown in Figure 1, event roles in
an event record are generated in parallel, thereby
avoiding the role order selection. Meanwhile, event
records are iteratively generated to leverage the his-
torically generated records. The pre-filling strategy
is further designed for the inadequate training in
parallel event role generation. Specially, the pre-
filling strategy adaptively pre-fills several event
roles by the results in historically generated event
records before the parallel event role generation,
and then the rest roles are generated with the help
of pre-filled roles.

Moreover, we explore the effect of event role
orders on auto-regressive EDAG models. Exper-
iments show that a change in event role orders
in these models can bring 3.7 F1 decrease over
a whole dataset and 10.4 F1 decrease in multiple
events scenarios.

We summarize our contributions as follows:
(1) We propose IPGPF, an iterative generation
method that eliminates the need for selecting the
order of event role generation. It achieves this
through a two-stage matching that refines generated
event records by leveraging historical results. (2)
We design the pre-filling strategy, which success-
fully alleviates the inadequate training and zero-
accuracy problems in parallel event role generation.
(3) Experiments on two large-scale datasets show
IPGPF gets 11.7 F1 performance gain than paral-
lel methods and outperforms 1.4 to 5.1 F1 than
auto-regressive generation methods in control vari-
able comparison. Additionally, IPGPF is flexible
enough to incorporate entity enhancement and out-
performs other enhanced models.

2 Preliminaries

We first clarify several important concepts: (1)
named entity: mentions of rigid designators from
text belonging to predefined semantic types such
as person, location, organization etc (Nadeau and
Sekine, 2007); (2) entity mention: a text span of

entity in the document which refers to a named
entity; (3) event argument: an entity playing a
specific event role in event extraction; (4) event
role: a predefined argument type corresponding to
event arguments; (5) event record: the expression
of an event that contains many event arguments
with their event roles.

A trigger-free doc-level event extraction task
usually includes several pipeline sub-tasks. Fol-
lowing (Zheng et al., 2019), IPGPF finishes the
event extraction by handling three sub-tasks: (1)
Named Entity Recognition (NER): extracting en-
tity mentions as argument candidates from the doc-
ument; (2) Event Detection (ED): judging whether
there exist predefined event types in the document.
(3) Event Record Generation (ERG): generating
event records type-by-type. Besides, the model
must be able to generate multiple records for one
specific event type since there is no trigger.

Due to the space limit, we put the details of NER
and ED sub-tasks that are the same with (Zheng
et al., 2019) to Appendix A.3 and A.4.

3 Methodology

Given a document D containing Ns sentences
{si}Ns

i=1, doc-level event extraction aims to gener-
ate multiple event records Z = {zi}Nz

i=1, where Nz

is the number of ground truth event records of the
document. An event record consists of n event ar-
guments zi = (a1i , a

2
i , ..., a

n
i) and their event roles

(r1i , r
2
i , ..., r

n
i).

As shown in Figure 2, IPGPF first extracts entity
mentions as candidate arguments through named
entity recognition (Appendix A.3). The presence
of predefined event types is then judged by event
detection (Appendix A.4). Finally, event roles in an
event record are generated in parallel, while event
records are generated iteratively (Section 3.1). To
alleviate the inadequate training in parallel gener-
ation, we propose an effective pre-filling strategy
(Section 3.2).

A symbol reminder is listed in Table 7 for a
better understanding of our method.

3.1 Iteratively Parallel Generation

After the NER task and ED task, we obtain
the candidates arguments representation Ha ∈
R(Na+1)×d and document sentence representation
Hs ∈ RNs×d, where Na is the number of candidate
arguments, Ns is the sentence number, and d is the
hidden dimension. Then we generate event records

10835

Encoder2

…
…

…
…

EquityHolder sells Tradedshares
… price of AveragePrice …

Decoder1

Jinggong Group sells 35,000
shares … price of 19.88 …

D
ecoder2

greedy role matching

Named Entity Recognition

Event Detection

Event Record Generation

filtered record matching

: Event Arguments Feature
: Sentences Feature

: Ground Truth Event Records

parallel template filling

iterative generation

: Predicted Event Records

Record-1

Document
✅

❎

✅

Record-2

Record-1

Record-2

None

EquityFreeze:
EquityUnderweight:
…

✅

❎

event record filtering

Record-1: NULL

Add

Pre-filling
𝑯𝒂

𝑯𝒔

"𝒀𝒓
𝒀𝒓

"𝒀𝒛
𝒀𝒛

…
…

…
…

Encoder1

…
…

…
…

…
…

Ma
xPo

olin
g

MaxPooling

: Sentences Embedding

: Event Arguments Embedding
: Tokens

$𝑯𝒔

$𝑯𝒂

𝑯𝒘

Figure 2: The overall architecture of IPGPF. Given a document, IPGPF first extracts entity mentions as candidate
arguments. Then the existence of event types is detected. Finally, event roles are generated from candidate
arguments by filling queries in a manual template in parallel, and event records are iteratively generated. A two-stage
many-to-one matching loss is further designed for the training of IPGPF.

iteratively and generate event roles in a record in
parallel.

3.1.1 Parallel Template Filling

Parallel event role generation is an excellent way
to avoid unstable performance due to role order
selection.

To further help event role generation, we manu-
ally build templates for each event type. As shown
in Figure 2 and Figure 8, event roles are represented
by special tokens in these templates. So we can
generate event records by filling the special event
role tokens in given templates.

In event record generation of a special event type,
we first embed the corresponding template as Qt =
[qt1, q

t
2, ...q

t
Nt
] ∈ RNt×d, where Nt is the number

of template tokens. Then a vanilla transformer
decoder is employed to encode the template query:

Ht = Decoder1(Qt, Ha) (1)

where Ht ∈ RNt×d, Ha ∈ R(Na+1)×d is the
hidden representation of candidate arguments in
Equation (17). Next, we leverage a pointer net-
work (Vinyals et al., 2015):

P r = Softmax(tanh(HrW r+HaW a) ·v) (2)

where Hr ∈ RNr×d is event role representation
from Ht, W r,W a ∈ Rd×d, v ∈ Rd are trainable
parameters, + is the broadcasting plus of two ma-
trices, P r ∈ RNr×(Na+1) is the score of arguments
corresponding to roles in the event type.

Finally, we extract arguments Ĥa ∈ RNr×d cor-
responding to event roles.

3.1.2 Iterative Generation
To better use the generated historical event records,
we design an iterative generation method.

As shown in Figure 2, in the iteration, a historical
event record is first represented by combining the
template queries and extracted arguments:hz =
MaxPooling([Ĥa, Qt]) ∈ Rd

At (i + 1)-th iteration, all historical records
Hz = [hz1, h

z
2, ..., h

z
i] ∈ Ri×d are concatenated

to the template queries in Equation (1) for the tem-
plate filling task of next iteration:

[Ht, Ȟz] = Decoder1([Qt, Hz], Ha) (3)

3.1.3 Event Record Filtering
As shown in Figure 2, to extract all event records
in a document through iterative generation, the it-
eration number is usually larger than the number
of ground truth event records. Therefore, a filter
is required to filter several output records as final
results.

After Ni iteration, we get event record represen-
tation Hz = [hz1, h

z
2, ..., h

z
Ni
] ∈ RNi×d. Then we

filter several best records as the final outputs by
utilizing a vanilla transformer decoder and a linear
layer classifier:

H̃z = Decoder2(Hz, Hs) (4)

P z = Sigmoid(H̃z ·W z) (5)

where W z ∈ Rd are trainable parameters, P z ∈
RNi are scores of output event scores.

3.1.4 Two stage Matching
Different from (Yang et al., 2021) which use a one-
stage one-to-one matching to train their parallel

10836

model, we design a two-stage many-to-one match-
ing algorithm to first performs multiple iterative
refinements on the generated event records, and
subsequently filters the best results.

In the model training, following (Zheng et al.,
2019), we generate event records for each event
type independently and finally sum the loss of all
event types. In this subsection, we will describe
the training loss definition for one type in detail.

Greedy Role Matching : Given extracted argu-
ments score Ŷ r = [P r

1 , P
r
2 , ..., P

r
Ni
] from Equa-

tion (2), and the ground truth arguments Y r =
[Y r

1 , Y
r
2 , ..., Y

r
Ngt

], where Y r
i = (yr1, y

r
2, ..., y

r
Nr

)
and yrj is the golden label refer to the j-th role
in i-th event record. We define a cost function and
pairwise compute the cost between output record
roles Ŷ r

i = P r
i ∈ RNr×(Na+1) and ground truth

record Y r
j ∈ RNr :

Crole(Ŷi
r
, Y r

j) = −
Nr∑

k=1

Y r
j,k logP

r
i,k (6)

We build a greedy many-to-one matching to iter-
atively refine the event records multiple times, by
assigning the most similar ground truth record for
each Ŷ r

i as its label:

j∗ = argmin
j

Crole(Ŷi
r
, Y r

j) (7)

Then we compute a cross-entropy loss for event
role generation:

Lrole = −
Ni∑

i=1

Nr∑

k=1

Y r
τ(i),k logP

r
i,k (8)

where τ is a surjective function, which computed
as mentioned in Appendix A.5

Filtered Record Matching : Given the filter
scores Ŷ z = P z = (pz1, p

z
2, ..., p

z
Ni
) ∈ RNi

of output event records, and note that the corre-
sponding label from ground truth record Y z =
(yz1 , y

z
2 , ..., y

z
Ngt

) = INgt . we pairwise compute the

cost value between i-th output record Ŷ z
i = pzi and

j-th ground truth record Y z
j = yzj :

Cevent(Ŷ
z
i , Y

z
j) = −yzj log p

z
i = − log pzi (9)

To filter several best output records as the final
results and abandon the rest, we combine the event
filter cost and role cost:

Call(Ŷi, Yj) = Cevent(ŷi
z, yzj) + Crole(Ŷi

r
, Y r

j)
(10)

record-1

record-2

record-t

Jinggong
Group

0.98

record-1

record-2

record-n

record-
(t+1)

Sells 35,000
shares

… of NULL …

0.95 0.22

Sells … of AveragePrice

Decoder1

Jinggong
Group

0.98

…

Sells 35,000
shares

… of 19.88 …

0.97 0.89

Jinggong
Group

not compute role loss compute role loss

1.Choose a
record

2.Pre-filling

3.Template filling

✅ > 0.75 ?

S

✅ > 0.75 ?

S

❎ > 0.75 ?

TradedShares

S : Bernoulli Sampler

0.98 : Softmax Score

Jinggong Group

Sells

TradedShares

: Event Argument

: Event Role Query

: Template Context

✅

❎

: Correct Argument

: Incorrect Argument

Figure 3: An example of the pre-filling strategy. At
(t+ 1)-th iteration step, a historically generated record
is first chosen. Then some of its event arguments are pre-
filled to corresponding event role queries in a template.
Finally, the pre-filled template is fed to a Decoder to fill
the rest event role queries.

We find the minimal cost matching π∗ by the
hungarian algorithm (Kuhn, 1955) (Appendix A.5).
Then we assign label 1 for records M that matched
the ground truth record and label 0 for unmatched
records, and get the binary cross-entropy loss:

Levent = −(
∑

i∈M
log pzi +

∑

i/∈M
log (1− pzi)) (11)

Finally, we combine the role loss and event loss:

LERG = γ1Lrole + γ2Levent (12)

where γ1, γ2 ∈ (0, 1) are hyperparameters.

3.2 Pre-filling Strategy

Given a document D, the goal of DEE model is
fitting the joint distribution P (y1, y2, ..., yn|D) of
all event roles {yi}ni=1. However, previous parallel
methods attempt to learn this joint distribution di-
rectly, resulting in a complex and high-dimensional
loss landscape, which can susceptiblely lead to in-
adequate training with a failure optimization.

To address this issue, we propose a pre-
filling strategy to convert the joint distribution
P (y1, y2, ..., yn|D) to a conditional distribution
P (yi, i ∈ Ipf |D) × P (yi, i /∈ Ipf |D, yi, i ∈ Ipf),
where Ipf represents the index of pre-filled event
roles. By doing so, the loss landscape of the condi-
tional distribution is lower-dimensional, bringing a

10837

better parameter optimization. We provide an ex-
perimental optimization analysis in Section 4.6.3.

As shown in Figure 3, at (t+ 1)-th iteration, we
first check the filtered output event records P z =
(pz1, p

z
2, ..., p

z
t) ∈ Rt computed by Decoder2 in

Equation (4), and categorically sample one histori-
cal record Ŷi by probability:

ppfi =
I(pzi > α)(1− pzi)∑t
i=1 I(pzi > α)(1− pzi)

(13)

where α is the binary classification threshold.
After choosing an output event record, at (t+1)-

th iteration, we use a Bernoulli sampler to se-
lect each correct predicted argument whose score
pr > β with probability κ, where β, κ ∈ (0, 1) are
hyperparameters. Then we pre-fill these arguments
to corresponding event role queries in the template.
Finally, the pre-filled template is fed to Decoder1
to fill the rest event role queries, and only the loss
of not pre-filled queries are computed.

It is notable that our pre-filling strategy is uti-
lized to make a better optimization for model train-
ing, inference does not need pre-filling since the
model is already trained. Thus, we use ground
truth records to select the correct arguments for
pre-filling in the model training and do not need
them for inference.

3.3 Learning
For training our IPGPF model, we make a weighted
summing over losses of three sub-tasks:

LALL = λ1LNER + λ2LED + λ3LERG (14)

where LNER,LED,LERG are losses of NER, ED
and ERG, respectively, and λ1, λ2, λ3 are hyperpa-
rameters of corresponding losses.

3.4 Entity Enhancement
The first sub-task of the trigger-free DEE task is
NER, which enables ERG to generate events by se-
lecting arguments from extracted entities. However,
in the training data, entity labels are the same as the
event argument labels, which brings some entity la-
bel conflict issues. For example, the NER module
can easily recognize "Dec 15, 2011" as a date but
confuses about whether it belongs to "StartDate"
or "EndDate", leading to the error propagation.

Thus, we merge several entity labels with the
same meaning to a simplified type for the NER
task. The details of our merge rules can be found
in Appendix A.11. Then these simplified entities

are extracted by a pre-trained encoder and used for
the next ERG. Finally, we get our simple entity-
enhanced IPGPF model (IPGPF+) which has better
model performance.

4 Experiments

4.1 Dataset and metrics

The ChFinAnn dataset (Zheng et al., 2019) is
a large dataset focuses on five event types from
the financial text, which has 25, 632/3, 204/3, 204
for the train/dev/test set. According to statistics, a
document in ChFinAnn consists of 20 sentences
and has 912 tokens on average, and 29% of 32, 040
documents in ChFinAnn contain multiple event
records.

DuEE-fin (Han et al., 2022) contains 13 event
types, which has 7, 015/1, 171/59, 394 documents
for the train/dev/test set. Especially, the inference
results of the test set need to be submitted online
for its evaluation. Only 3, 513 documents in the
test set are actually evaluated, while the rest 55, 881
documents are given to prevent manual prediction.

Following (Zheng et al., 2019), we use the micro
precision, recall, and F1-score over all arguments.

4.2 Models for Comparison

Doc2EDAG (Zheng et al., 2019) designs an
auto-regressive entity-based directed acyclic graph
(EDAG) to generate event records. Before the gen-
eration, Doc2EDAG uses two transformer encoders
to get features of arguments and sentences. DE-
PPN (Yang et al., 2021) uses the same encoders
with Doc2EDAG to obtain the features of argu-
ments and sentences, but generates all event roles in
parallel. SCDEE (Huang and Jia, 2021) builds an
enhanced entity-sentence community graph, then
detect event records from the graph and extract
entities as arguments corresponding to the event
roles.PTPCG (Zhu et al., 2022) builds an entity-
based pruned complete argument graph with addi-
tional entities. It first selects pseudo triggers and
then make a beam extraction based on the graph.
GIT (Xu et al., 2021a) and RAAT (Liang et al.,
2022) follow the same auto-regressive generation
with Doc2EDAG, but add a heterogeneous graph
network and entity relation extraction network to
enhance the entity representation, respectively.

To investigate the impact of different role orders
in auto-regressive models on performance, we con-
duct a comparison between models with human-
selected orders (Doc2EDAG-HS/GIT-HS/RAAT-

10838

HS, using orders in their papers) and models
with random-selected orders (Doc2EDAG-RS/GIT-
RS/RAAT-RS, reporting the average results of 5
random orders). The detailed orders can be found
in Appendix A.13.

Given that ERG is the most important and chal-
lenging subtask in doc-EE task, we conduct a
control variable comparison of Doc2EDAG, DE-
PPN and our proposed IPGPF. These models use
the same NER and ED modules but different
ERG module. We aim to fairly compare our pro-
posed iteratively parallel method with previous
auto-regressive and parallel methods.

It is worth noting that although our iterative par-
allel generation method is mainly proposed for
ERG, it is flexible to combine with other NER
and ED modules. We also compare our enhanced
IPGPF+ with other entity-enhanced models, includ-
ing SCDEE, PTPCG, GIT, and RAAT, by incorpo-
rating a simple entity enhancement mentioned in
Section 3.4.

4.3 Experiment Settings

We replicated the compared models by their official
released code, except for SCDEE which is not open
source. Instead, we used the results reported in the
SCDEE paper. We provide the details of settings
and replications in Appendix A.10.

4.4 Main Results

Models
ChFinAnn DuEE-fin

P R F P R F
Control Variable Setting
Doc2EDAG-HS 79.0 73.8 76.3 - - -
Doc2EDAG-RS 81.4 67.8 73.9 67.9 46.8 55.5
DE-PPN 76.8 72.3 74.5 56.6 38.4 45.8
IPGPF (ours) 82.0 73.8 77.7 64.8 51.7 57.5
Entity Enhanced Setting
SCDEE 87.2 72.0 78.9 - - -
PTPCG 83.4 74.1 78.5 65.7 54.1 59.3
GIT-HS 82.8 76.5 79.6 - - -
GIT-RS 83.8 72.7 77.9 65.4 53.0 58.7
RAAT-HS 82.9 79.3 81.1 69.2 57.4 62.8
RAAT-RS 84.5 75.3 79.7 67.4 58.6 62.6
IPGPF+ (ours) 85.7 77.3 81.3 68.2 61.8 64.8

Table 1: F1 scores on the ChFinAnn test set and
the DuEE-fin online test set. Doc2EDAG-HS/GIT-
HS/RAAT-HS means the results of human selected or-
ders in their paper. Doc2EDAG-RS/GIT-RS/RAAT-RS
means the average scores of 5 randomly selected orders
for auto-regressive models. Our IPGPF get better per-
formance both on the control variable comparison and
the enhanced comparison.

Overall results Table 1 presents an overview of
the performance of our method on two large-scale
public datasets, namely ChFinAnn and DuEE-fin.

In the control variable comparison, our IPGPF
significantly outperforms the parallel model DE-
PPN by 3.2 F1 on ChFinAnn and 11.7 F1 on DuEE-
fin, which is analyzed in detail in Section 4.6.
This indicates that our iteratively parallel gener-
ation with the pre-filling strategy is better than the
pure parallel method. Compared with the auto-
regressive model Doc2EDAG, our parallel model
IPGPF achieves a 1.4 F1 improvement over the
human-selected order and a 3.8 F1 improvement
over the average results of randomly selected or-
ders on ChFinAnn. This illustrates that our iterative
parallel generation method is more robust than pre-
vious auto-regressive methods.

After adding a simple entity enhancement, our
IPGPF+ outperforms other entity-enhanced models
on both ChFinAnn and DuEE-fin test sets. When
compared to the previous state-of-the-art model
RAAT, our IPGPF+ outperforms RAAT-HS, which
uses human-selected orders, by 0.2 slight better F1
on ChFinAnn and 2.0 F1 on DuEE-fin. Moreover,
our IPGPF achieves significant 1.6 improvement on
ChFinAnn and 2.2 improvement on DuEE-fin over
RAAT-RS, which reports the average performance
of randomly selected orders. This reveals that our
iteratively parallel generation method is flexible
in combining additional features to achieve better
performance than stronger SOTA models.

It is worth noting that although RAAT-HS im-
proves by 1.4 on ChFinAnn compared to RAAT-
RS, it only improves by 0.2 on DuEE-fin, demon-
strating that artificially finding a significantly better
order than randomly selected orders is not trivial.

Single v.s. Multi records To analyze the model’s
performance on single and multiple event scenarios,
we divided the ChFinAnn test set into two subsets.
A document in the single-record set contains only
one event record, while a document in the multi-
record set contains multiple records.

As shown in the Table 2, IPGPF/IPGPF+ outper-
forms other models in most single-record scenar-
ios. Although IPGPF/IPGPF+ scored lower than
Doc2EDAG-HS/GIT-HS/RAAT-HS on multiple-
record scenarios, these auto-regressive models are
highly sensitive to the generation order. For in-
stance, Doc2EDAG-RS reported a decrease of
6.8 in multi-record F1 on average compared to
Doc2EDAG-HS after randomly changing the role

10839

Models EF ER EU EO EP Overall
S. M. S. M. S. M. S. M. S. M. S. M.

Control Variable Setting
Doc2EDAG-HS 74.8 60.7 90.5 68.5 70.1 55.9 74.4 63.2 83.1 69.1 84.2 67.4
Doc2EDAG-RS 75.4 58.2 88.0 65.0 74.5 58.8 75.5 64.7 85.6 60.1 84.7 60.6
DE-PPN 70.5 58.5 90.8 66.4 70.8 53.7 68.4 53.4 82.4 66.0 83.3 64.0
IPGPF (ours) 82.0 57.5 93.9 68.5 76.1 60.5 79.9 58.2 85.2 67.6 87.6 66.0
Entity Enhanced Setting
SCDEE - - - - - - - - - - 88.7 65.8
PTPCG 81.4 69.0 93.1 63.6 79.5 72.7 83.1 64.5 87.5 69.2 89.2 68.1
GIT-HS 82.8 65.9 91.1 70.2 79.8 66.4 79.4 69.0 85.8 72.4 87.0 71.3
GIT-RS 83.7 63.1 91.7 66.9 80.6 63.4 80.1 65.9 86.7 60.3 88.1 68.3
RAAT-HS 75.4 66.6 93.4 73.0 80.0 68.5 78.2 74.9 86.6 74.4 87.7 73.5
RAAT-RS 79.6 65.0 93.4 72.5 79.6 69.3 79.9 71.4 87.9 68.9 88.6 69.1
IPGPF+ (ours) 85.2 64.7 96.8 67.7 82.4 68.6 83.5 66.0 88.3 71.1 91.0 70.1

Table 2: Comparison of performance on single-record set (S.) and multi-record set (M.) on ChFinAnn. *-HS means
the results of autoregressive models with human selected orders in their paper, while *-RS means the average scores
of 5 randomly selected orders. Auto-regressive models (*-RS) gets a crash decrease on the multi-record set after
changing the generation order of (*-HS). IPGPF significantly outperforms other parallel models, and get more
robust performance than auto-regressive models (*-RS). S.: single-record set; M.: multi-record set.

order. Compared with Doc2EDAG-RS / GIT-RS /
RAAT-RS which report the average results of the
generation orders, our IPGPF/IPGPF+ get signifi-
cant improvement on both single record scenarios
and multiple record scenarios. These comparison
results demonstrate the effectiveness and robust-
ness of IPGPF in both single-record and multiple-
record scenarios.

4.5 Ablation Study

Model P R F S. M.
IPGPF 82.0 73.8 77.7 87.6 66.0
- matching -1.2 -3.2 -2.3 -1.1 -3.3
- pre-filling -2.3 -14.3 -9.6 -11.4 -6.9
IPGPF+ 85.7 77.3 81.3 91.0 70.1
-matching -1.7 -4.2 -3.1 -1.9 -5.1
-pre-filling +5.8 -47.0 -35.8 -28.8 -45.9

Table 3: Ablation study of the two stage many-to-one
matching and the pre-filling strategy. S.: single-record
set; M.: multi-record set.

To reveal the effectiveness of our proposed two
stage many-to-one matching, we replace it with
the one-to-one matching. Then both IPGPF and
IPGPF+ exhibit a significant decrease in perfor-
mance. This is because the one-to-one matching
approach does not allow for iterative refinement of
historical generated event records.

In addition, we evaluate the impact of our pre-
filling strategy by dropping it. After removing this
strategy, both IPGPF and IPGPF+ receive the per-
formance decrease. As discussed in Section 3.2,

the removal of the pre-filling strategy results in a
higher-dimensional loss landscape, which can lead
to optimization failure and zero accuracies on many
event roles. This ultimately leads to lower overall
performance. We provide a detailed analysis of this
experiment in Section 4.6.

We also conduct the ablation study of the Effect
of Templates (Appendix A.6) and the Effect of
Iteration Number (Appendix A.7).

4.6 Analysis

In this section, we want to answer the most im-
pormant questions in the comparison of auto-
regressive, parallel and iteratively parallel meth-
ods: (1) What is the effect of different orders for
auto-regressive models? (Sec 4.6.1) (2) What is the
inadequate training problem of paralle methods?
(Sec 4.6.2) (3) How does our proposed method ad-
dress the inadequate training problem? (Sec 4.6.3)

To better compare the difference between these
generation methods, we focus on the control vari-
able comparison between Doc2EDAG, DE-PPN
and our IPGPF which use the same NER and ED
modules but different generation methods.

Moreover, we further analyze the speed compar-
ison in Appendix A.8.

4.6.1 Effect of Orders
To reveal the effect of different event role orders
to EDAG models, we list the comparison between
Doc2EDAG models with different event role gen-
eration orders in Tabel 4. After the change of event

10840

Model P R F1 S. M.
Doc2EDAG-HS 79.0 73.8 76.3 84.2 67.4
Doc2EDAG-RS-1 82.5 65.2 73.0 85.5 57.0
Doc2EDAG-RS-2 81.5 67.2 73.6 84.3 60.7
Doc2EDAG-RS-3 83.4 66.8 74.2 85.7 59.4
Doc2EDAG-RS-4 78.0 74.1 76.0 84.3 66.8
Doc2EDAG-RS-5 81.5 65.5 72.6 83.5 58.9
*-RS Range 5.4 8.9 3.7 2.2 10.4
*-RS Average 81.4 67.8 73.9 84.7 60.6

Table 4: Performance of Doc2EDAG models with differ-
ent event role generation orders. The highest scores are
colored in bold, while the lowest scores are underlined.
The performance of Doc2EDAG fluctuates widely under
different orders.

role order, Doc2EDAG-RS-5 reduces 3.7 F1 than
Doc2EDAG-HS on the entire ChFinAnn test set,
while Doc2EDAG-RS-1 gets a 10.4 F1 crash than
Doc2EDAG-HS on multi-record set. On average,
Doc2EDAG models with five random event role or-
ders (Doc2EDAG-RS-1 to Doc2EDAG-RS-5) get
1.9 overall F1 lower than Doc2EDAG-HS and 5.7
F1 decrease on multi-record set. These compar-
isons reveal the EDAG models’ heavy reliance on
event role orders and significant unstable perfor-
mance between different event role orders.

4.6.2 Inadequate Training
Although parallel generation methods avoid the
fluctuation caused by event role orders, these meth-
ods encounter a serious inadequate training which
manifests zero accuracies on many event roles.

Table 5 shows the F1 scores of each event role in
the EquityPledge (EP) event type on DuEE-fin. For
parallel methods, the 0 F1 scores on several event
roles of DE-PPN and IPGPF-w/o pre-filling clearly
reveal the zero accuracy problems of parallel meth-
ods due to the inadequate training which caused
by the failure parameter optimization. Fortunately,
the pre-filling strategy successfully alleviates the
inadequate training and resolves the zero accuracy
problems. IPGPF gets good performance on all
these zero-accuracy event roles since adding the
pre-filling strategy.

As shown in Figure 4, even after training, both
DE-PPN and IPGPF-w/o pre-filling models have
many event roles with zero accuracies. On the Ch-
FinAnn dataset, DE-PPN has 4 event roles with
zero accuracy out of 35 total roles. On the DuEE-
fin dataset, 35 out of 92 total roles have zero accura-
cies. Since DuEE-fin has more event roles than Ch-
FinAnn, its joint distribution is higher dimensional,
making optimization failure more likely and result-

Event Role DE-PPN IPGPF IPGPF-w/o pre-filling
TotalPledgedRatio 0.0 77.7 0.0 (−77.0)

Pledgee 0.0 14.8 0.0 (−14.8)

Pledger 44.1 51.8 0.0 (−51.8)

EventDate 0.0 67.8 0.0 (−67.8)

TotalPledgedShares 56.5 70.1 60.4 (−9.7)

CompanyName 70.0 78.8 71.8 (−7.0)

Pledge 67.7 73.4 65.7 (−7.7)

SelfPledgedRatio 67.0 74.5 0.0 (−74.5)

DisclosureDate 66.9 74.9 0.0 (−74.9)

Overall 54.4 70.0 37.5 (−32.5)

Table 5: Event role F1 scores in the event type Equi-
tyPledge (EP) of DuEE-fin. IPGPF leverages the pre-
filling strategy to eliminate all zero accuracy problems
compared with DE-PPN and IPGPF-w/o pre-filling. F1
improvement of IPGPF over IPGPF-w/o pre-filling is
listed in brackets.

Figure 4: The number of event roles with zero F1 scores
on ChFinAnn and DuEE-fin after the model training.

ing in more zero-accuracy event roles. However,
the pre-filling strategy implemented in our IPGPF
model solves most of the zero-accuracy problems.
The remaining 4 zero-accuracy roles have few data
in DuEE-fin, such as the "Underweight/Holding Ra-
tio" role with only 20 and 1 non-NULL arguments
in the training set and dev set, respectively.

4.6.3 Optimization Analysis
To illustrate how our pre-filling strategy alleviate
the inadequate training of parallel models in pa-
rameter optimization, we define the gradient norm
ratio Rgrad

i = ||gi||2
max(||gj ||2,j=1,2,...,n)

to analyze the
gradient for model parameters. In detail, gi is the
gradient of the event role yi’s query in these parallel
models, such as a q in Qt in Equation 1.

As shown in the Figure 5 (a)-(c), the event
role "TotalPledgedRatio" gets zero accuracy for
DE-PPN and IPGPF-w/o pre-filling. Its gradient
norm ratio decreases around zero at the beginning
of model training and fails to escape, while the
gradient norm ratio corresponding to "Pledged-
Shares" remained consistently larger than zero. Af-
ter adding our pre-filling strategy, "TotalPledge-
dRatio"’s gradient norm ratio avoids the failure op-
timization and keeps larger than zero significantly,
leading to a high F1 score. More details can be

10841

found in Appendix A.14.
We further compare the training loss between

our IPGPF and IPGPF-w/o pre-filling on DuEE-fin
training set. As shown in the Figure 5 (d), after
utilizing the pre-filling strategy, the training loss of
IPGPF becomes significantly lower than the loss
of IPGPF -w/o pre-filling, which demonstrates that
our pre-filling strategy brings better optimization
to parallel models.

Figure 5: Gradient norm comparison and Training loss
ablation comparison.

4.7 Case Study

Please refer to Appendix A.9 for the case study.

5 Related Work

Most previous works concentrate on extracting
events out of a single sentence. Different neural
architectures are utilized to extract events, e.g., con-
volution network (Chen et al., 2015), recurrent net-
work (Nguyen et al., 2016), and Transformer-based
network (Yang et al., 2019). Recently, some works
also tried to cast the event extraction task as ques-
tion answering task (Du and Cardie, 2020b; Zhou
et al., 2021), or sequence-to-sequence task (Xi-
angyu et al., 2021). However, these methods can
only extract events at the sentence level, which
greatly limits their application scenarios.

Therefore, document-level event extraction has
been proposed to fully extract events from the en-
tire document. Most document-level EE meth-
ods are built upon the event triggers, with which
they conduct sequence labelling (Du and Cardie,
2020a; Veyseh et al., 2021) or span-based predic-
tion (Ebner et al., 2020; Zhang et al., 2020; Xu
et al., 2022) to identify event arguments in the doc-
ument. Sequence-to-sequence (Du et al., 2021a,b;
Li et al., 2021; Huang et al., 2021; Huang and
Peng, 2021; Hsu et al., 2022), and question answer-
ing (Wei et al., 2021; Ma et al., 2022) paradigms

are also applied. But the requirement of the anno-
tations of event triggers are quite hard to meet in
practice, due to the labeling cost and difficulty.

Consequently, trigger-free methods are required
for document-level event extraction. For extract-
ing multiple events without triggers, a trigger-free
method is first designed to detect an event in a cen-
ter sentence and extract the rest of event arguments
from surrounding sentences (Yang et al., 2018).
Then a widely used entity-based directed acyclic
graph (EDAG) generation method is proposed to
better deal with multiple events extraction (Zheng
et al., 2019). Several variant methods based on
EDAG generation are presented by utilizing more
meticulous feature engineering, such as hetero-
geneous graph feature (Xu et al., 2021a; Huang
et al., 2021) and entity relation feature (Liang
et al., 2022). Additionally, a parallel method is
proposed to avoid the error broadcast in EDAG gen-
eration (Yang et al., 2021), and an efficient model
is designed to lighten the model and accelerates the
decoding speed (Zhu et al., 2022).

6 Conclusion

Towards the event records extraction in the DEE
task, we propose a novel Iteratively Parallel
Generation method with the Pre-Filling strategy
(IPGPF). IPGPF generates event roles in parallel
and iteratively generates event records with the help
of the pre-filling strategy. Experiments demonstrate
that IPGPF successfully alleviates the inadequate
training of parallel generation and avoids the event
role order selection in auto-regressive generation
methods. In the future, we will work on one-stage
generation models to avoid the error propagation
and time cost of pipeline frameworks.

Acknowledgements

The work is supported by Anhui Center for Ap-
plied Mathematics, NSFC Major Research Plan -
Interpretable and General Purpose Next-generation
Artificial Intelligence (No. 92270205), and Ma-
jor Project of Science & Technology of Anhui
Province (Nos. 202103a07020011,
202203a05020050).

Limitations

Based on thousands of words in a document, hidden
features obtained from named entity recognition,
event detection, and event record generation con-
sumes a large amount of memories. Meanwhile,

10842

the pipeline framework brings more time complex-
ity. Consequently, it costs about 30 to 150 hours
on 8× 32GB GPUs to train Doc2EDAG, DE-PPN,
GIT, RAAT, or our IPGPF. Thus, the training cost
is the main limitation of our work.

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam

Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 28. Curran Associates, Inc.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics (ACL).

Yiming Cui, Wanxiang Che, Shijin Wang, and Ting Liu.
2022. Lert: A linguistically-motivated pre-trained
language model.

Xinya Du and Claire Cardie. 2020a. Document-level
event role filler extraction using multi-granularity
contextualized encoding. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics (ACL).

Xinya Du and Claire Cardie. 2020b. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Xinya Du, Alexander Rush, and Claire Cardie.
2021a. GRIT: Generative role-filler transformers
for document-level event entity extraction. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL).

Xinya Du, Alexander Rush, and Claire Cardie. 2021b.
Template filling with generative transformers. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL).

Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins,
and Benjamin Van Durme. 2020. Multi-sentence
argument linking. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Cuiyun Han, Jinchuan Zhang, Xinyu Li, Guojin Xu,
Weihua Peng, and Zengfeng Zeng. 2022. Duee-fin:
A large-scale dataset for document-level event extrac-
tion. In CCF International Conference on Natural
Language Processing and Chinese Computing, pages
172–183. Springer.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang, and

Nanyun Peng. 2022. DEGREE: A data-efficient
generation-based event extraction model. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL).

Kung-Hsiang Huang and Nanyun Peng. 2021.
Document-level event extraction with efficient
end-to-end learning of cross-event dependencies. In
Proceedings of the Third Workshop on Narrative
Understanding.

Kung-Hsiang Huang, Sam Tang, and Nanyun Peng.
2021. Document-level entity-based extraction as tem-
plate generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Yusheng Huang and Weijia Jia. 2021. Exploring sen-
tence community for document-level event extraction.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 340–351, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level
event argument extraction by conditional generation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL).

Yuan Liang, Zhuoxuan Jiang, Di Yin, and Bo Ren. 2022.
RAAT: Relation-augmented attention transformer for
relation modeling in document-level event extraction.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL).

Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi
Chen, Kun Wang, and Jing Shao. 2022. Prompt for
extraction? PAIE: Prompting argument interaction
for event argument extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (ACL).

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvis-
ticae Investigationes.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016. Joint event extraction via recurrent neural
networks. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL).

10843

https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
http://arxiv.org/abs/2211.05344
http://arxiv.org/abs/2211.05344
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.714
https://www.aclweb.org/anthology/2020.emnlp-main.49
https://www.aclweb.org/anthology/2020.emnlp-main.49
https://doi.org/10.18653/v1/2021.eacl-main.52
https://doi.org/10.18653/v1/2021.eacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.70
https://doi.org/10.18653/v1/2020.acl-main.718
https://doi.org/10.18653/v1/2020.acl-main.718
https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2021.nuse-1.4
https://doi.org/10.18653/v1/2021.nuse-1.4
https://doi.org/10.18653/v1/2021.emnlp-main.426
https://doi.org/10.18653/v1/2021.emnlp-main.426
https://doi.org/10.18653/v1/2021.findings-emnlp.32
https://doi.org/10.18653/v1/2021.findings-emnlp.32
https://web.eecs.umich.edu/~pettie/matching/Kuhn-hungarian-assignment.pdf
https://web.eecs.umich.edu/~pettie/matching/Kuhn-hungarian-assignment.pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2022.naacl-main.367
https://doi.org/10.18653/v1/2022.naacl-main.367
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://nlp.cs.nyu.edu/sekine/papers/li07.pdf
https://nlp.cs.nyu.edu/sekine/papers/li07.pdf
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced represen-
tation through knowledge integration. arXiv preprint
arXiv:1904.09223.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems (NeurIPS).

Amir Pouran Ben Veyseh, Franck Dernoncourt,
Quan Hung Tran, Varun Manjunatha, Lidan Wang,
Rajiv Jain, Doo Soon Kim, Walter Chang, and
Thien Huu Nguyen. 2021. Inducing rich interac-
tion structures between words for document-level
event argument extraction. In Advances in Knowl-
edge Discovery and Data Mining - 25th Pacific-Asia
Conference (PAKDD).

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 28.

Kaiwen Wei, Xian Sun, Zequn Zhang, Jingyuan Zhang,
Guo Zhi, and Li Jin. 2021. Trigger is not sufficient:
Exploiting frame-aware knowledge for implicit event
argument extraction. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Xi Xiangyu, Wei Ye, Shikun Zhang, Quanxiu Wang,
Huixing Jiang, and Wei Wu. 2021. Capturing event
argument interaction via a bi-directional entity-level
recurrent decoder. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Runxin Xu, Tianyu Liu, Lei Li, and Baobao Chang.
2021a. Document-level event extraction via hetero-
geneous graph-based interaction model with a tracker.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021b. Raise a child in large language model: To-
wards effective and generalizable fine-tuning. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Runxin Xu, Peiyi Wang, Tianyu Liu, Shuang Zeng,
Baobao Chang, and Zhifang Sui. 2022. A two-stream
AMR-enhanced model for document-level event ar-
gument extraction. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics (NAACL).

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and
Jun Zhao. 2018. DCFEE: A document-level Chinese
financial event extraction system based on automat-
ically labeled training data. In Proceedings of ACL
2018, System Demonstrations.

Hang Yang, Dianbo Sui, Yubo Chen, Kang Liu, Jun
Zhao, and Taifeng Wang. 2021. Document-level
event extraction via parallel prediction networks. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and
Dongsheng Li. 2019. Exploring pre-trained language
models for event extraction and generation. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Zhisong Zhang, Xiang Kong, Zhengzhong Liu, Xuezhe
Ma, and Eduard Hovy. 2020. A two-step approach
for implicit event argument detection. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL).

Shun Zheng, Wei Cao, Wei Xu, and Jiang Bian. 2019.
Doc2EDAG: An end-to-end document-level frame-
work for Chinese financial event extraction. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).

Yang Zhou, Yubo Chen, Jun Zhao, Yin Wu, Jiexin Xu,
and JinLong Li. 2021. What the role is vs. what plays
the role: Semi-supervised event argument extraction
via dual question answering. In Thirty-Fifth AAAI
Conference on Artificial Intelligence (AAAI).

Tong Zhu, Xiaoye Qu, Wenliang Chen, Zhefeng Wang,
Baoxing Huai, Nicholas Yuan, and Min Zhang. 2022.
Efficient document-level event extraction via pseudo-
trigger-aware pruned complete graph. In Proceed-
ings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence (IJCAI).

A Appendix

A.1 Index
We build an index of each appendix subsections in
Table 6 for better understanding our paper.

Subsection Title
Appendix A.2 Symbol Reminder
Appendix A.3 Named Entity Recognition
Appendix A.4 Event Detection
Appendix A.5 Two Stage Matching Function
Appendix A.6 Effect of Templates
Appendix A.7 Effect of Iteration Number
Appendix A.8 Speed Comparison
Appendix A.9 Case Study
Appendix A.10 Details of Experiment Settings
Appendix A.11 Details of Entity Enhancement
Appendix A.12 Details of Templates
Appendix A.13 Details of EDAG Orders
Appendix A.14 Details of Optimization Analysis

Table 6: The index table of appendix subsections.

10844

https://openreview.net/pdf?id=BJJsrmfCZ
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://link.springer.com/chapter/10.1007/978-3-030-75765-6_56
https://link.springer.com/chapter/10.1007/978-3-030-75765-6_56
https://link.springer.com/chapter/10.1007/978-3-030-75765-6_56
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.360
https://doi.org/10.18653/v1/2021.acl-long.360
https://doi.org/10.18653/v1/2021.acl-long.360
https://doi.org/10.18653/v1/2021.acl-long.18
https://doi.org/10.18653/v1/2021.acl-long.18
https://doi.org/10.18653/v1/2021.acl-long.18
https://doi.org/10.18653/v1/2021.acl-long.274
https://doi.org/10.18653/v1/2021.acl-long.274
https://doi.org/10.18653/v1/2022.naacl-main.370
https://doi.org/10.18653/v1/2022.naacl-main.370
https://doi.org/10.18653/v1/2022.naacl-main.370
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/2021.acl-long.492
https://doi.org/10.18653/v1/2021.acl-long.492
https://doi.org/10.18653/v1/P19-1522
https://doi.org/10.18653/v1/P19-1522
https://doi.org/10.18653/v1/2020.acl-main.667
https://doi.org/10.18653/v1/2020.acl-main.667
https://doi.org/10.18653/v1/D19-1032
https://doi.org/10.18653/v1/D19-1032
https://ojs.aaai.org/index.php/AAAI/article/view/17720
https://ojs.aaai.org/index.php/AAAI/article/view/17720
https://ojs.aaai.org/index.php/AAAI/article/view/17720
https://doi.org/10.24963/ijcai.2022/632
https://doi.org/10.24963/ijcai.2022/632

A.2 Symbol Reminder

We list the important symbols of methodology into
Table 7, for better understanding our approach.

Symbol Meaning
d ∈ N hidden dimension
Ns ∈ N sentence number
Na ∈ N argument number
Nr ∈ N role number
Nt ∈ N template token number
Nz ∈ N event record number
Ngt ∈ N ground truth record number
Ni ∈ N iteration number
Nc ∈ N event type number

Hs ∈ RNs×d sentence representation
Ha ∈ RNa×d argument representation
Hc ∈ RNc×d event type representation
Ht ∈ RNt×d filled template representation
Hz ∈ RNz×d event record representation
P c ∈ RNc event type score

P r ∈ RNr×(Na+1) argument score for event roles
P z ∈ RNi event record filter score

Ŷ r ∈ RNi×Nr×(Na+1) output arguments (score)
Y r ∈ NNgt×Nr ground truth arguments (index)
Ŷ z ∈ RNi event record filter score
Y z = INgt ground truth record label

Table 7: The reminder of important symbols.

A.3 Named Entity Recognition

Given a document D = {si}Ns
i=1 that has Ns sen-

tences, IPGPF first embeds words of each sentence
as s = (w1, w2, ..., wNw) from the document in-
dividually, where Nw is the number of words in
the sentence. Then these tokens are encoded by a
vanilla transformer encoder (Vaswani et al., 2017)
to get the hidden representation:

Hw = Encoder1([w1, w2, ..., wNw]) (15)

Where Hw ∈ RNw×d, d is the hidden dimension.
We further add a conditional random field (CRF)
layer (Lafferty et al., 2001) after the encoder. Then
we employ the BIO (Begin, Inside, Other) tag
schema on word representation to extract entity
mentions by maximum likelihood labeling:

LNER = −
∑

s∈D

∑

w∈s
logP (y|w) (16)

where y is the label of the word w.

A.4 Event Detection

After sentence-level named entity recognition, we
get the entity mentions E = {ei}Ne

i=1, where Ne

is the number of entity mentions in the document.

We obtain the candidate arguments representation
H̃a = [h̃a1, h̃

a
2, ..., h̃

a
Na

, h̃aNa+1] ∈ R(Na+1)×d by
max pooling corresponding entity mention rep-
resentation, Na is the number of candidate argu-
ments in the document and h̃aNa+1 is an additional
embedding to represent NULL argument. Simi-
larly, we get the sentence representation H̃s =
[h̃s1, h̃

s
2, ..., h̃

s
Ns

] ∈ RNs×d by max pooling all word
representations in the sentence.

Then we make an interaction between sentence
representation and argument representation by em-
ploying a vanilla transformer encoder:

[Ha, Hs] = Encoder2([H̃a, H̃s]) (17)

For focusing on the comparison of event record
generation module, we keep the same feature Ha ∈
R(Na+1)×d and Hs ∈ RNs×d with (Zheng et al.,
2019; Yang et al., 2021) in Equation (17).

Thus, we can use the argument-aware sentence
representation Hs to detect event types by multi-
head attention:

Hc = Attention(Qc, [Ha, Hs], [Ha, Hs]) (18)

P c = Sigmoid(HcW c) (19)

where Qc ∈ RNc×d,W c ∈ Rd are trainable pa-
rameters, Hc ∈ RNc×d is hidden representation,
P c ∈ RNc is the score of event types, and Nc is the
number of predefined event types.

Finally, we train the modules for the event type
detection task by optimizing the cross-entropy loss:

LED = −
Nc∑

i=1

I(yci = 1) log pci

+

Nc∑

i=1

I(yci = 0) log (1− pci)

where yci ∈ {0, 1} is the i-th entry of golden label
Y c ∈ RNc and pci ∈ (0, 1) is the i-th entry of P c.

A.5 Two Stage Matching Function
Greedy Role Matching After getting the cost
function refer to Equation 6

Crole(Ŷi
r
, Y r

j) = −
Nr∑

k=1

Y r
j,k logP

r
i,j

We greedily assign the most similar ground truth
record for each Ŷ r

i as its label:

j∗ = argmin
j

Crole(Ŷi
r
, Y r

j)

10845

To inspire our model to generate records that
have not been generated in history, we assign la-
bels from ground truth records without replace-
ment. After all ground truth records have been
assigned, i.e., all records in the document have
been discovered, we put all ground truth records
back and greedily choose label with replacement.

Thus, the greedy many-to-one matching can be
described as a surjective function {τ(i) = j, i ∈
Îz, j ∈ Iz} mapping i-th output event record to j-
th ground truth record, and satisfying ∀j ∈ Iz, ∃i ∈
Îz, s.t.τ(i) = j.

Filtered Record Matching After obtaining the
total cost function refer to Equation 10:

Call(Ŷi, Yj) = Cevent(ŷi
z, yzj) + Crole(Ŷi

r
, Y r

j)

To find the best matching between output event
records and ground truth records, we define an in-
jective function {π(j) = i, j ∈ Iz, i ∈ Îz} that
map index j from ground truth records index set
Iz to index i of output records index set Îz , and
satisfying {π(j1) ̸= π(j2), j1 ̸= j2,∀j1, j2 ∈ Iz}.
Denoting Π(Iz, Îz) as the set of all injection map-
pings from Iz to Îz , we choose the optimal map-
ping by searching the minimal cost:

π∗ = argmin
π∈Π(Iz ,Îz)

Ngt∑

j=1

Call(Ŷπ(j), Yj) (20)

the minimal cost mapping can be effectively com-
puted by the hungarian algorithm (Kuhn, 1955).
Then we can compute the binary cross-entropy loss
for event filtering:

Levent = −(
∑

i∈A
log pzi +

∑

i∈B
log (1− pzi)) (21)

where A = π∗(Iz) and B = Îz − π∗(Iz).

A.6 Effect of Templates
To explore the influence of different template con-
texts, we change the template contexts for each
event type (IPGPF/IPFPG+-change context). As
shown in Tabel 8, the change of template con-
text just brings a slight performance fluctuation
to IPGPF-change context compared with IPGPF.
Details of our default templates and replacement
templates are in Table 8.

To verify the effect of template context,
we remove the contexts from templates
(IPGPF/IPFPG+-remove context) and just

retain the special tokens corresponding to event
roles. Results in Tabel 8 show 1.5 F1 decrease on
multi-record set compared with IPGPF-remove
context, which indicates template context is helpful
for multiple events scenarios. Details of templates
without context can be found in Table 8.

Model P R F1 S. M.
IPGPF 82.0 73.8 77.7 87.6 66.0
-change context -0.1 -0.2 -0.1 -0.7 +0.5
-remove context +1.3 -1.7 -0.4 +0.6 -1.6
IPGPF+ 85.7 77.3 81.3 91.0 70.1
-change context +0.4 -0.2 +0.1 -0.2 +0.4
-remove context +0.5 -1.5 -0.6 +0.3 -2.1

Table 8: Performance of IPGPF for manual templates.
The change of template contexts causes little fluctuation.
The removal of the template context reduces the Recall
and multi-record set F1-score. S.: single-record set; M.:
multi-record set.

A.7 Effect of Iteration Number
To investigate the effect of the iteration number of
IPGPF. We list the model performance of different
iteration numbers in Figure 6. Specially, we set
the iteration number from {1, 3, 5, 7, 9, 11, 13, 15}.
As shown in Figure 6, after the iteration number
larger than 5, the overall F1 score is in the range
from 77.5 to 77.7, and the F1 score fluctuation
on both single-record set and multi-record set are
within 1 point. Even if the iteration number is 15,
the model performance does not get a significant
decrease. The slight fluctuation during the increase
of the iteration numbers suggests the robustness of
our IPGPF model.

Figure 6: The performance of IPGPF for different it-
eration numbers. Overall: the entire ChFinAnn test
set; Single: single-record set; Multi: multi-record set.
The performance on all datasets improves rapidly as the
number of iterations increases and stabilizes after the
number of iterations is greater than 5.

A.8 Speed Comparison
We list the comparison of training and inference
speed in Table 9. As auto-regressive generation

10846

models, Doc2EDAG, GIT, and RAAT are the slow-
est in both training and inference speed, whereas
the efficient model PTPCG and the parallel model
DE-PPN have faster speed, but their performance
is relatively lower than other models.

In comparison, our IPGPF+ achieves significant
better performance than the current state-of-the-
art model RAAT while also having significantly
faster training and inference speed. Additionally,
we have found that setting the iteration number of
IPGPF / IPGPF+ to 5 (default is 10) is a viable op-
tion that sacrifices a slight amount of performance
for a much faster training speed (16% of RAAT’s
training time).

Model
One Epoch

Training
(mins)

Total
Training

(days)

Inference
Speed

(docs/s)

Overall
F1

Doc2EDAG 15.8 2.2 13.2 55.5
DE-PPN 3.5 0.5 24.6 45.8
IPGPF 9.0 1.3 18.7 57.5
IPGPF-5 5.6 0.8 25.3 57.3
PTPCG 2.1 0.3 45.5 59.3
GIT 17.7 2.5 9.9 58.7
RAAT 44.6 6.2 6.1 62.8
IPGPF+ 11.3 1.6 11.6 64.8
IPGPF+-5 7.2 1.0 14.9 64.5

Table 9: The comparison of training and inference speed
between different models. We experiment with all mod-
els on the DuEE-fin dataset by 8*32G Tesla V100 GPUs.
IPGPF-5 / IPGPF+-5 means the iteration number of
IPGPF / IPGPF+ is 5 (default is 10).

A.9 Case Study

To demonstrate the difference between our itera-
tively parallel method with auto-regressive meth-
ods and parallel methods, we conduct a case study
on the auto-regressive model Doc2EDAG, par-
allel model DE-PPN and our iteratively parallel
model IPGPF, which use the same NER and ED
modules but different ERG modules. Figure 7
shows the prediction results of different generation
methods. The document case contains two Equi-
tyPledge event records, one is an equity pledge
release, and another is an equity re-pledge. For
auto-regressive models, after changing the genera-
tion order of event roles, Doc2EDAG-RS-1 loses a
whole event record than Doc2EDAG-HS. For par-
allel models, DE-PPN failed to learn the event role
TotalPledgedShares and always generates NULL
for TotalPledgedShares, which encounters a zero-
accuracy due to the inadequate training. After
removing the pre-filling strategy, although IPGPF
-w/o pre-filling leverages the iterative generation

to decrease the incorrect arguments than DE-PPN,
it still has the inadequate training and misses all
arguments for TotalHoldingRatio. Fortunately, the
usage of our pre-filling strategy alleviates the inad-
equate training in parallel methods, and obtains the
best results compared to other models. The only in-
correct argument Jun 27, 2016 is not an actual error,
the reason is all pledge release records in ground
truth just use ReleasedDate, but set StartDate and
EndDate to be NULL.

A.10 Details of Experiment Settings

Device and Data To ensure a fair comparison,
we run all experiments on the same 8 Tesla-V100
GPUs under the same version of python dependen-
cies. However, we had to use 8 Tesla-A100 GPUs
to reproduce the RAAT model on the DuEE-fin
dataset, as it uses too many features and causes
an out-of-memory problem on V100 GPUs. All
compared models in our experiments use the same
train/dev/test split for both ChFinAnn 2 and DuEE-
fin 3.

Model Reproduction We reproduce the com-
pared models Doc2EDAG 4, DE-PPN 5, PTPCG 6,
GIT 7, and RAAT 8 by using the code they released,
and use the same parameter settings in their paper.
We use the results reported in the SCDEE paper
since it is not open-sourced. We use the results
of DuEE-fin dataset reported in RAAT paper be-
cause it just released the human selected order of
ChFinAnn dataset but did not release the order for
DuEE-fin dataset.

We note that DE-PPN employs extra training
tricks and data augmentation, which are not ex-
plicitly mentioned in their paper. In our reproduc-
tion of DE-PPN, we adopt the extra training tricks
and achieve similar performance as described in
their official response. However, we have refrained
from using any extra training data, as such data

2https://github.com/dolphin-zs/Doc2EDAG/blob/
master/Data.zip

3https://aistudio.baidu.com/aistudio/
competition/detail/46

4https://github.com/dolphin-zs/Doc2EDAG
(commit da4f4bc)

5https://github.com/HangYang-NLP/DE-PPN
(commit b2bc813)

6https://github.com/Spico197/DocEE
(commit 3fe44b4)

7https://github.com/RunxinXu/GIT
(commit 3f91743)

8https://github.com/TencentYoutuResearch/
EventExtraction-RAAT
(commit 7a9a726)

10847

https://github.com/dolphin-zs/Doc2EDAG/blob/master/Data.zip
https://github.com/dolphin-zs/Doc2EDAG/blob/master/Data.zip
https://aistudio.baidu.com/aistudio/competition/detail/46
https://aistudio.baidu.com/aistudio/competition/detail/46
https://github.com/dolphin-zs/Doc2EDAG
https://github.com/HangYang-NLP/DE-PPN
https://github.com/Spico197/DocEE
https://github.com/RunxinXu/GIT
https://github.com/TencentYoutuResearch/EventExtraction-RAAT
https://github.com/TencentYoutuResearch/EventExtraction-RAAT

are neither mentioned in the DE-PPN paper nor
open-sourced. This decision was taken to maintain
consistency with the experimental setup reported in
the original paper and to ensure a fair comparison
with other models that were not using extra training
data.

Hyperparameters Value
Batch Size 64
Gradient Accumulation Steps 8
Training Epochs 100 / 200
Pre-filling Epochs 30
Learning Rate 3e-5 / 5e-5
Hidden Dimension 768
Dropout Rate 0.1
α 0.5
β 0.75
γ1 0.5
γ2 1.0
λ1 0.1
λ2 0.4
λ3 0.5
Layers of Encoder1 4
Layers of Encoder2 4
Layers of Decoder1 4
Layers of Decoder2 4

Table 10: Hyperparameters of our IPGPF model

Hyperparameters To mitigate the error-
propagation of entity mentions recognized by the
model, we leverage the same scheduled sampling
(Bengio et al., 2015) as (Zheng et al., 2019) did. In
the training process, we use golden entity mentions
from epoch 1 to epoch 10. From epoch 10 to epoch
20, we gradually switch the mentions from golden
label to model output results, by a linear decrease
of proportion from 100% to 0%. In our enhanced
model IPGPF+, we use the ChildTuning (Xu et al.,
2021b) to adapt the model to downstream tasks.

For the pre-filling strategy, we linearly decrease
the pre-filling probability κ from 120% to 0% in
the first 30 epochs of model training, κ will be set
to 100% if κ > 100% at the current epoch.

We implement IPGPF under Pytorch (Paszke
et al., 2017) based on codes released by (Zheng
et al., 2019) and (Yang et al., 2021).

For hyperparameters, we do not tune all the hy-
perparameters in our experiment. For model com-
parison, we use the same random seed following
(Zheng et al., 2019) for compared models.

For the training epochs, we follow (Zheng et al.,
2019; Yang et al., 2021; Xu et al., 2021a) to train
100 epochs for all compared models on the ChFi-
nAnn dataset. We train 200 epochs for all com-

pared models on the DuEE-fin dataset since DuEE-
fin has more event and argument types but less
training data than the ChFinAnn dataset.

A.11 Details of Entity Enhancement

Table 11 lists our merge rule of entity labels on
the ChFinAnn dataset. To further reduce the
missing entity labels, we add additional entities
matched through regular expressions (Zhu et al.,
2022). Regarding the pre-trained encoder, we uti-
lize LERT (Cui et al., 2022) for ChFinAnn and
ERNIE (Sun et al., 2019) for DuEE-fin.

To make a fair comparison of different event
generation types, IPGPF uses the same entity anno-
tations and entity labels with Doc2EDAG, DE-PPN.
We only merge entities or add additional entities for
IPGPF+ when compared with the entity-enhanced
models such as SCDEE, PTPCG, GIT and RAAT.

Raw Entity Type Simplified Type
EquityHolder

Person
&

Organization

CompanyName
Pledger
Pledgee

RepurchaseAmount

Amount
HighestTradingPrice
LowestTradingPrice

AveragePrice
StartDate

Date
EndDate

ReleasedDate
ClosingDate
UnfrozeDate

TotalHoldingShares

Share

TotalPledgedShares
PledgedShares
FrozeShares

RepurchasedShares
TradedShares

LaterHoldingShares

Table 11: The entity label merge rule for the ChFinAnn
dataset. Raw entity labels come from the event argument
labels.

A.12 Details of Templates

We listed the templates for the ChFinAnn dataset in
Figure 8. As shown in Figure 8, . In the comparison
of different templates corresponding to Table 8, we
use the default context to train our IPGPF model,
the changed context to train the IPGPF-change con-
text model, and the none context to train the IPGPF-
remove context model. All templates for the model
training on ChFinAnn are in Chinese, and here we
translate these templates to English for illustration.

A.13 Details of EDAG Orders

As shown in Figure 12, we list the relation between
the event roles in the ChFinAnn dataset and their

10848

Sentence ID Text

[S5] On Sep 25, 2018, ZhongXin Inc released the 25,000,000 shares (8.33% of the company's total share capital) that it pledged to ICBC Taizhou Branch on Jun 27, 2016.

[S6] ZhongXin Inc pledged 25,000,000 shares of the company's restricted shares held by it (accounting for 8.33% of the company's total share capital and 16.18% of the
company's shares) to ICBC Taizhou Branch for a period From Sep 25, 2018 to Sep 17, 2021, the relevant pledge registration procedures have been completed.

[S7] As of the date of this announcement, ZhongXin Inc holds a total of 154,508,497 shares of the company, accounting for 51.48% of the company's total share capital.

[S8] The total number of pledged shares of ZhongXin Inc is 142,250,000 shares, accounting for 92.07% of the company's shares and 47.39% of the company's total share capital.

Event records of EquityPledge (EP): Ground Truth

Record ID Pledger PledgedShares Pledgee TotalHoldingShares TotalHoldingRatio TotalPledgedShares StartDate EndDate ReleasedDate

[R1] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares 51.48% 142,250,000 shares NULL NULL Sep 25, 2018

[R2] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares 51.48% 142,250,000 shares Sep 25, 2018 Sep 17, 2021 NULL

Event records of EquityPledge (EP): Doc2EDAG-HS

Record ID Pledger PledgedShares Pledgee TotalHoldingShares TotalHoldingRatio TotalPledgedShares StartDate EndDate ReleasedDate

[R1] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares 51.48% NULL Jun 27, 2016 NULL Sep 25, 2018

[R2] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares 51.48% NULL Sep 25, 2018 Sep 17, 2021 NULL

Event records of EquityPledge (EP): Doc2EDAG-RS-1

Record ID Pledger PledgedShares Pledgee TotalHoldingShares TotalHoldingRatio TotalPledgedShares StartDate EndDate ReleasedDate

[R1] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares 51.48% 142,250,000 shares Sep 25, 2018 NULL NULL
- - - - - - - - - -

Event records of EquityPledge (EP): DE-PPN

Record ID Pledger PledgedShares Pledgee TotalHoldingShares TotalHoldingRatio TotalPledgedShares StartDate EndDate ReleasedDate

[R1] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares 51.48% NULL Sep 25, 2018 NULL NULL

[R2] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares 51.48% NULL Jun 27, 2016 Sep 17, 2021 NULL

Event records of EquityPledge (EP): IPGPF-w/o pre-filling

Record ID Pledger PledgedShares Pledgee TotalHoldingShares TotalHoldingRatio TotalPledgedShares StartDate EndDate ReleasedDate

[R1] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares NULL 142,250,000 shares Sep 25, 2018 NULL NULL

[R2] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares NULL 142,250,000 shares Jun 27, 2016 Sep 17, 2021 NULL

Event records of EquityPledge (EP): IPGPF

Record ID Pledger PledgedShares Pledgee TotalHoldingShares TotalHoldingRatio TotalPledgedShares StartDate EndDate ReleasedDate

[R1] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares 51.48% 142,250,000 shares Jun 27, 2016 NULL Sep 25, 2018

[R2] ZhongXin Inc 25,000,000 shares ICBC Taizhou Branch 154,508,497 shares 51.48% 142,250,000 shares Sep 25, 2018 Sep 17, 2021 NULL

Figure 7: A Case for model comparison. We show the text of related sentences. Ground truth entity mentions and
arguments are colored in blue, while incorrectly predicted arguments are colored in red. Event roles that get zero
accuracies on the whole test set are highlighted .

ids. The event role generation orders of the auto-
regressive EDAG models in our experiments are
listed in Table 13 to Table 18 by their ids.

A.14 Details of Optimization Analysis

Figure 9, 10, and 11 show the gradient norm ratio
of all event role queries of the parallel models DE-
PPN, IPGPF-without pre-filling, and our IPGPF
during the first 3, 000 training steps on the DuEE-
fin training set which has 13 event types. In detail,
each query is a 768-dimensional query tensor in
the model parameters corresponding to an event
role. Each broken line in the figure corresponds
to one event role, the repeated line refers to the
overlapped event roles cross different event types.
To better show the comparison, we choose a value
for the broken line every 100 steps in the first 3, 000
training steps, and draw the final line with a moving
average of 5.

The gradient norm ratio of query parameters cor-
responding to zero-accuracy event roles decreases
around zero rapidly and fails to escape, while the
gradient norm ratio corresponding to non-zero-
accuracy event roles is still larger than zero sig-
nificantly.

After using the pre-filling strategy, our IPGPF
solves the zero-accuracy problem for almost all
event roles. The reason for the rest 4 event roles
with zero accuracies is the few role arguments in
the DuEE-fin dataset. For instance, the event role
"Underweight/Holding Ratio" just has 20 and 1 not
NULL arguments on the DuEE-fin training set and
dev set, respectively. Moreover, these 4 event roles
get zero accuracies for all other compared models
such as Doc2EDAG.

10849

Remove Context (IPGPF-remove context)
Event Type Template

EquityFreeze UnfrozeDate LegalInstitution FrozeShares EquityHolder StartDate EndDate TotalHoldingShares TotalHoldingRatio.

EquityRepurchase CompanyName RepurchasedShares HighestTradingPrice LowestTradingPrice ClosingDate RepurchaseAmount.

EquityUnderweight EquityHolder TradedShares AveragePrice StartDate EndDate LaterHoldingShares.
EquityOverweight EquityHolder TradedShares AveragePrice StartDate EndDate LaterHoldingShares.
EquityPledge ReleasedDate Pledger PledgedShares Pledgee StartDate EndDate TotalHoldingShares TotalHoldingRatio TotalPledgedShares.

Default Context (IPGPF)
Event Type Template

EquityFreeze
On UnfrozeDate, LegalInstitution freezes or unfreezes the FrozeShares held by EquityHolder. It starts from StartDate and ends at
EndDate. At present, he/she/it still holds TotalHoldingShares shares of the company, accounting for TotalHoldingRatio of the company's
total share capital.

EquityRepurchase CompanyName repurchases RepurchasedShares at the highest price of HighestTradingPrice per share and the lowest price of
LowestTradingPrice per share, the repurchase time is ClosingDate, and the total payment amount was about RepurchaseAmount.

EquityUnderweight EquityHolder sells TradedShares of the company at the average price of AveragePrice per share. The sale starts from StartDate and ends
at EndDate. After the sale, he/she/it still holds LaterHoldingShares shares of the company.

EquityOverweight EquityHolder buys TradedShares of the company at the average price of AveragePrice per share. The purchase starts from StartDate and
ends at EndDate. After the purchase, he/she/it still holds LaterHoldingShares shares of the company.

EquityPledge
On ReleasedDate, Pledger pledges or releases PledgedShares to Pledgee. It starts from StartDate and ends at EndDate. He/She/It still
holds TotalHoldingShares of the company, accounting for TotalHoldingRatio of the company's total share capital, and accumulatively
pledges TotalPledgedShares shares.

Changed Context (IPGPF-change context)
Event Type Template

EquityFreeze From StartDate to EndDate, FrozeShares of EquityHolder were frozen or unfrozen by LegalInstitution. The unfrozen date is UnfrozeDate.
At present, he/she/it still holds TotalHoldingRatio of the company's total share capital which are TotalHoldingShares in total

EquityRepurchase On ClosingDate, RepurchasedShares are repurchased by CompanyName. The highest price is HighestTradingPrice and the lowest price is
LowestTradingPrice. RepurchaseAmount paid for this repurchasement in total.

EquityUnderweight From StartDate to EndDate, TradedShares are sold by EquityHolder at the average price of AveragePrice per share. After the sale,
he/she/it still holds LaterHoldingShares shares of the company.

EquityOverweight From StartDate to EndDate, TradedShares are bought by EquityHolder at the average price of AveragePrice per share. After the purchase,
he/she/it still holds LaterHoldingShares shares of the company.

EquityPledge
From StartDate to EndDate, PledgedShares are pledged or released to Pledgee by Pledger. The release date is ReleasedDate. The
cumulative shares for pledgement are TotalPledgedShares. TotalHoldingRatio of the company's total share capital were still held by
he/she/it, which together account for TotalHoldingShares.

Figure 8: Details for templates. The expressions and event role orders differ between default and replacement
templates. We further remove all contexts in templates to build the none-template.

Event Role ID
EquityHolder 1
FrozeShares 2

LegalInstitution 3
TotalHoldingShares 4
TotalHoldingRatio 5

StartDate 6
EndDate 7

UnfrozeDate 8
CompanyName 9

HighestTradingPrice 10
LowestTradingPrice 11
RepurchasedShares 12

ClosingDate 13
RepurchaseAmount 14

TradedShares 15
LaterHoldingShares 16

AveragePrice 17
Pledger 18

PledgedShares 19
Pledgee 20

TotalPledgedShares 21
ReleasedDate 22

Table 12: The relation between event roles in ChFinAnn
and their ids.

Doc2EDAG-HS / GIT-HS / RAAT-HS
Event Type Event Role Order
EquityFreeze 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8

EquityRepurchase 9 → 10 → 11 → 12 → 13 → 14
EquityUnderweight 1 → 15 → 6 → 7 → 16 → 17
EquityOverweight 1 → 15 → 6 → 7 → 16 → 17

EquityPledge 18 → 19 → 20 → 4 → 5 → 21 → 6 → 7 → 22

Table 13: The event role generation orders for
Doc2EDAG-O and GIT-O. Event roles are represented
by their ids.

Doc2EDAG-RS-1 / GIT-RS-1 / RAAT-RS-1
Event Type Event Role Order
EquityFreeze 6 → 5 → 2 → 8 → 4 → 3 → 7 → 1

EquityRepurchase 11 → 9 → 14 → 13 → 10 → 12
EquityUnderweight 16 → 6 → 17 → 1 → 15 → 7
EquityOverweight 15 → 17 → 1 → 16 → 7 → 6

EquityPledge 21 → 22 → 20 → 5 → 7 → 4 → 6 → 18 → 19

Table 14: The event role generation orders for
Doc2EDAG-1 and GIT-1. Event roles are represented
by their ids.

10850

Figure 9: Gradient Norm Ratio Analysis of DE-PPN Model on DuEE-fin Training Set. The plot depicts the gradient
norm ratio of the queries associated with each event role in the DuEE-fin dataset during the initial 3,000 training
steps. The solid line represents event roles with non-zero accuracy on the dev/test set, while the dashed line denotes
event roles with zero accuracy.

Doc2EDAG-RS-2 / GIT-RS-2 / RAAT-RS-2
Event Type Event Role Order
EquityFreeze 6 → 5 → 4 → 7 → 2 → 8 → 3 → 1

EquityRepurchase 14 → 11 → 13 → 10 → 12 → 9
EquityUnderweight 7 → 16 → 17 → 6 → 15 → 1
EquityOverweight 17 → 15 → 6 → 16 → 1 → 7

EquityPledge 7 → 4 → 22 → 21 → 20 → 6 → 5 → 19 → 18

Table 15: The event role generation orders for
Doc2EDAG-2 and GIT-2. Event roles are represented
by their ids.

Doc2EDAG-RS-3 / GIT-RS-3 / RAAT-RS-3
Event Type Event Role Order
EquityFreeze 7 → 8 → 5 → 6 → 3 → 4 → 2 → 1

EquityRepurchase 13 → 12 → 14 → 11 → 9 → 10
EquityUnderweight 17 → 6 → 7 → 1 → 16 → 15
EquityOverweight 7 → 16 → 17 → 15 → 6 → 1

EquityPledge 21 → 22 → 6 → 7 → 20 → 5 → 18 → 19 → 4

Table 16: The event role generation orders for
Doc2EDAG-3 and GIT-3. Event roles are represented
by their ids.

Doc2EDAG-RS-4 / GIT-RS-4 / RAAT-RS-4
Event Type Event Role Order
EquityFreeze 1 → 4 → 3 → 2 → 8 → 5 → 6 → 7

EquityRepurchase 10 → 9 → 14 → 12 → 11 → 13
EquityUnderweight 15 → 1 → 6 → 16 → 17 → 7
EquityOverweight 1 → 15 → 17 → 7 → 16 → 6

EquityPledge 19 → 5 → 18 → 4 → 7 → 20 → 6 → 22 → 21

Table 17: The event role generation orders for
Doc2EDAG-4 and GIT-4. Event roles are represented
by their ids.

Doc2EDAG-RS-5 / GIT-RS-5 / RAAT-RS-5
Event Type Event Role Order
EquityFreeze 8 → 3 → 1 → 5 → 2 → 4 → 7 → 6

EquityRepurchase 14 → 12 → 9 → 13 → 10 → 11
EquityUnderweight 17 → 15 → 1 → 16 → 7 → 6
EquityOverweight 7 → 6 → 1 → 17 → 16 → 15

EquityPledge 22 → 20 → 21 → 7 → 18 → 19 → 5 → 4 → 6

Table 18: The event role generation orders for
Doc2EDAG-5 and GIT-5. Event roles are represented
by their ids.

10851

Figure 10: Gradient Norm Ratio Analysis of IPGPF-without pre-filling Model on DuEE-fin Training Set. The plot
depicts the gradient norm ratio of the queries associated with each event role in the DuEE-fin dataset during the
initial 3,000 training steps. The solid line represents event roles with non-zero accuracy on the dev/test set, while
the dashed line denotes event roles with zero accuracy.

Figure 11: Gradient Norm Ratio Analysis of our IPGPF Model on DuEE-fin Training Set. The plot depicts the
gradient norm ratio of the queries associated with each event role in the DuEE-fin dataset during the initial 3,000
training steps. The solid line represents event roles with non-zero accuracy on the dev/test set, while the dashed line
denotes event roles with zero accuracy.

10852

