
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 10903–10914
December 6-10, 2023 ©2023 Association for Computational Linguistics

Program Translation via Code Distillation

Yufan Huang1,* Mengnan Qi1,* Yongqiang Yao1,* Maoquan Wang1,*

Bin Gu2,3 Colin Clement1 Neel Sundaresan1

1 Microsoft Cloud and AI
2 School of Artificial Intelligence, Jilin University

3 Mohamed bin Zayed University of Artificial Intelligence
{yufanhuang,mengnanqi,yongqiangyao,maoquanwang}@microsoft.com

Abstract

Software version migration and program trans-
lation are an important and costly part of the
lifecycle of large codebases. Traditional ma-
chine translation relies on parallel corpora for
supervised translation, which is not feasible for
program translation due to a dearth of aligned
data. Recent unsupervised neural machine
translation techniques have overcome data lim-
itations by included techniques such as back
translation and low level compiler intermediate
representations (IR). These methods face signif-
icant challenges due to the noise in code snippet
alignment and the diversity of IRs respectively.
In this paper we propose a novel model called
Code Distillation (CoDist) whereby we capture
the semantic and structural equivalence of code
in a language agnostic intermediate represen-
tation. Distilled code serves as a translation
pivot for any programming language, leading
by construction to parallel corpora which scale
to all available source code by simply apply-
ing the distillation compiler. We demonstrate
that our approach achieves state-of-the-art per-
formance on CodeXGLUE and TransCoder
GeeksForGeeks translation benchmarks, with
an average absolute increase of 12.7% on the
TransCoder GeeksforGeeks translation bench-
mark compare to TransCoder-ST.

1 Introduction

Program translation is the process of converting
code written in one programming language to an-
other. Unlike compilers that only convert high-
level languages to low-level machine code, pro-
gram translation can generate translations between
complex high-level programming languages. The
industry demand for high-quality program transla-
tion is ever-present, as many companies require the
migration of project codes from older programming
languages to new ones with better support, features,
and a modern workforce. For example, COBOL

*Joint first author

code libraries that are widely used in banks and
other financial institutions need to be migrated to
updated languages for easier maintenance and de-
velopment. Additionally, adaptation to different
hardware platforms and operating systems often
requires projects to be implemented in different
high-level languages or different versions of the
same language. An automatic program translation
system, such as Java to Swift, is a blessing for
Android developers who want to adapt their appli-
cations to the iOS operating system.

Natural language translation typically relies
heavily on high-quality parallel corpora. However,
creating parallel data for program translation tasks
can be prohibitively expensive as it requires the
generated code to be as aligned as possible. Unlike
natural language, even minor variations or missing
tokens can result in significant errors in code lan-
guages. Additionally, perfect alignment of tokens
does not guarantee accuracy due to unique syntax
rules and restrictions present in each code language.
For example, when translating Java code to C++,
the variable name "xor" in Java cannot be directly
mapped as a variable name in C++ because it is a
reserved word in C++. Therefore, program trans-
lation is a challenging task due to the difficulty in
obtaining high-quality parallel code data.

Recent research has proposed unsupervised
methods for neural machine translation in pro-
gram translation tasks. PLBART (Ahmad et al.,
2021) randomly adds various types of noise (to-
ken deletion, token shuffling, etc.) to multilin-
gual code snippets and forces the model to re-
cover them. This strategy not only helps close the
gap between different programming languages but
also improves the alignment ability of the model.
TransCoder (Roziere et al., 2020), introduced an
unsupervised approach for translating source code
by constructing a pseudo-parallel corpus using
back-translation to augment translation data pairs.
Another system, TransCoder-ST (Roziere et al.,

10903

2021b), employs open-source automatic test gener-
ation tools to develop unit tests for commonly used
programming languages. This system eliminates
potentially invalid data pairs in back-translation
and refines the unsupervised model using high-
confidence data examples that have passed the tests,
thus enhancing the overall level of confidence in
the machine translation process.

These methods, however, face significant chal-
lenges, which currently limit their ability to serve as
a perfect method of translation. Due to the random
noise, PLBART may end up paying more attention
to irrelevant information in the input, overlooking
the crucial information needed for alignment, re-
sulting in slower convergence speed and reduced
performance. TransCoder models can be biased
towards certain data patterns, which can result in
poor performance on new or unseen data. Besides,
the implementation of back translation in language
alignment can introduce randomness and ambigui-
ties between program languages, which ultimately
slows the convergence of the model and presents
challenges when aligning low-frequency words. To
alleviate this problem, TransCoder-ST filter out
these errors during back translation though unit
tests, but the ensuing challenge is the cost of con-
structing unit tests, which can be particularly high
in industrial projects where the code requires multi-
ple dependencies. This poses a significant obstacle
in the capturing of appropriate test data for code
fragments in complex scenarios and at times, make
it infeasible.

In this paper, we introduce code distillation,
which overcomes the limitations of parallel data
and alignment in different languages by leverag-
ing a custom compiler to a simplified intermediate
representation which contains only the essential
logical aspects and object names. We train a model
to decompile the distilled code, so that the pro-
cess of translation is to compile the source snippet
to the distilled representation, and decompile to
the target language using the trained model. We
systematically discovered which elements of each
source language are necessary for code understand-
ing, eliminating these language-specific elements
from the distilled code representation. Further, our
distillation unifies basic morphemes, blurring gram-
matical differences between languages, and uses a
more abstract form to merge high-level semantic ex-
pressions between different languages. To demon-
strate the effectiveness of using distilled code as

translation pivot, we introduce a novel multilin-
gual program translation model called CoDist that
unifies multiple translation pairs into a single dis-
tilled code decompiler task. Through the specific
language token switch, the distilled code derived
from a source language code snippet can be seam-
lessly converted into any target language supported
by the model. Our experiments demonstrate that
our method surpasses state-of-the-art techniques on
the CodeXGLUE (Lu et al., 2021) and TransCoder
GeeksforGeeks benchmark datasets. Furthermore,
our model exhibits zero-shot and few-shot abili-
ties that are competitive in low-resource code lan-
guages. To summarize, our main contributions are:

1. In this study, we introduce a pivot language
in programming translation called distilled
code. The code distillation technique is a lossy
compression, extracting the core semantics of
any code snippet of high-level programming
languages into a language agnostic format.
Distilled code unifies all basic morphemes
across languages. For high-level semantics
(e.g., complex API calls), code distillation
extracts the core part of program logic, and
decomposes concatenated object names into
bag-of-words representations.

2. Through our novel multilingual program trans-
lation model, we unify multiple translation
pairs into a single distilled code decompiler
task. To build a code translation system that
support N programming languages transla-
tion, our system only need to train one neural
network model instead of N2 sequence-to-
sequence model tasks by traditional transla-
tion techniques.

3. Our method can leverage massive unsuper-
vised code corpora through self-supervised
pre-training tasks, and our final pre-training
form is identical to the program translation
form, which reduces the gap between pre-
training and fine-tuning. It is noteworthy in
that our training does not rely on parallel cor-
pora, and can produce translations of much
higher quality than traditional methods.

4. Our method outperforms current state-of-
the-art techniques on the CodeXGLUE
and TransCoder GeeksforGeeks benchmark
datasets, and it is competitive in low-resource
code languages.

10904

2 Related Work

The lack of parallel translation pairs poses a signif-
icant challenge for automated program translation.
To overcome this challenge, many recent works
have focused on designing pre-training tasks or us-
ing various unsupervised methods. In this section,
we will discuss the benefits and limitations of these
approaches.

2.1 Pre-training for Program Translation

The goal of the paradigm of large-scale pre-training
is to stimulate the potential of models in pro-
gram translation by designing well-structured pre-
training tasks. CodeBERT (Feng et al., 2020) pre-
trains the masked language modeling task proposed
by BERT (Devlin et al., 2018) on code corpora,
then adds a decoder for end-to-end training on pro-
gram translation. However, it treats the code as
ordinary text and loses the structural information
of the code. Some works incorporate intrinsic fea-
tures of programming languages to overcome this
shortcomings. GraphCodeBERT (Guo et al., 2020)
improves on CodeBERT (Feng et al., 2020), adding
data flow graphs extracted from source code to
improve the model’s understanding of code struc-
ture. StructCoder (Tipirneni et al., 2022) improves
the transformer model to make encoder decoders
structure-aware, and introduces abstract syntax tree
and data flow graph information. Most of these
models are encoder-only pre-trained models that fo-
cus on code understanding, the lack of pre-training
in the decoder consistently restricts the model’s
performance on the task of program translation.

Some researchers begun to investigate the joint
pre-training of the encoder and decoder. PLBART
(Ahmad et al., 2021) builds on the existing natu-
ral language translation model BART (Lewis et al.,
2019), continuing the same pre-training on code do-
main data. They incorporate various forms of noise,
including token masking, deletion, and infilling,
into the input code and force the model to recon-
struct the original code at the decoder. MuST-PT
(Zhu et al., 2022b) pre-trained on multilingual code
snippets for translation task. Those pre-training
tasks is still disparate from program translation
task, making them still rely on fine-tuning using
parallel program translation data sets.

2.2 Unsupervised for Program Translation

Unsupervised program translation aims to automat-
ically translate code from one programming lan-

guage to another without the need for parallel data
or human supervision. TransCoder (Roziere et al.,
2020) combines cross-lingual masked language
modeling (Lample and Conneau, 2019), denois-
ing auto-encoding, and back-translation (Artetxe
et al., 2017) and applies them to the source code
setting. However, back translation creates many
pseudo-parallel code pairs with a lot of noise,
which restricts the upper limit of the model’s abil-
ity. TransCoder-ST (Roziere et al., 2021b) adds an
automated unit-testing system to get high-quality
pseudo-translation pairs in back translation. Af-
ter filtering by unit test, the model can align on
some common basic elements, but it still cannot
generate correctly in complex scenarios such as
industrial projects where the code requires multiple
dependencies.

3 Distilled Code Compiler

Since these approaches mentioned in the "Related
Work" section still have their own limitations, we
choose an alternative approach that involves build-
ing a translation pivot. Instead of one-to-one trans-
lation processes, we first compile any source lan-
guage program to a distilled code representation
and then decompile it into target program using a
trained model. We provide a unified front-end for
compilation, which improves information density
and narrows the language gap by distilling core se-
mantics from the original code. In this section, we
will briefly introduce translation pivots and explain
the construction process of our compiler.

3.1 Brief Review of Translation Pivot

TransCoder-IR (Szafraniec et al., 2022) explored a
new path for program translation, it utilizes a low-
level intermediate representation (IR), provided by
LLVM (Lattner and Adve, 2004), to be the pivot be-
tween the source code and the target code. LLVM
IR is a low-level programming language used as
an intermediate step in the compilation process
between a high-level programming language and
machine code, it provides a relatively uniform rep-
resentation for different programming languages.
In their experiment, the source code is converted
into LLVM IR through the compiler, and LLVM
IR is restored into the target code. Its great ad-
vantage is that, the process of translating source
language code to the LLVM IR does not require
additional neural network training, and training a
neural decompiler should suffice to obtain the tar-

10905

get language code.
According to (Szafraniec et al., 2022), the ex-

perimental results were limited by the huge varia-
tions between different IR dialects in LLVM. The
LLVM ecosystem is jointly developed by many
teams, which leads to different IRs for each lan-
guage. On the other hand, the original intention of
LLVM IR design is not just to align different lan-
guages, so there is a lot of redundant information
that has weak correlation with program translation
(such as for garbage collection and debugging).
These factors lead to LLVM IR to be extremely
verbose, so that even short programs can consume
the entire limited context window of LLMs.

3.2 Our Distilled Code Compiler
A well-designed translation pivot should be a inde-
pendent from specific languages and still be able to
capture the semantics of the input as much as pos-
sible. We design a new set of compilers called dis-
tilled code compilers for languages such as Python,
C++, Java and C#. Compare with the intermediate
representations from the low-level compiler like
LLVM, our distilled code contains less information
from the source language, while preserving overall
logical flow and data type relations, which makes
it more consistent with the design principles of a
translation pivot.

Specifically, our distilled code compiler first con-
vert origin codes into abstract syntax tree, and
then unimportant language-specific elements are
removed from the tree and reassembled into code
forms that embody the original logic and data flow.
Figure 1 depicts the comprehensive procedure of
code distillation.

3.2.1 Distillation
The abstract syntax tree (AST) serves as a graphi-
cal representation of the grammatical structure of a
programming language, which is a natural medium
for expressing distillation operations on different
code parts. We compute the AST by using a parser
generator tool called TreeSitter1. Code distillation
compresses language-specific information and re-
duces variations in programming languages while
preserving the input code semantics to the greatest
extent possible. This section will describe the dis-
tillation process in details.
Syntax Tree Pruning The experiments docu-
mented in Appendix A reveal the impact of various

1https://tree-sitter.github.io/
tree-sitter/

code components on the semantic representations
of the data. It is concluded, based on the findings
in Appendix A, that moderate elimination of non-
central information will not significantly affect the
semantic understanding of the input code by pre-
trained models such as PLBART. As a result, we
have implemented a pruning technique to filter out
non-significant syntax tree nodes while retaining
crucial components such as variable names, func-
tion names, data types, and reserved keywords. De-
spite some loss of information during the pruning
process, the utilization of a robust language model
enables us to restore it in the decompilation stage.
Unify Basic Morphemes While the logical flow of
the code components are retained in pruned syntax
trees are preserved, various high-level program-
ming languages own a distinct set of symbols and
keywords to express semantics. In Appendix B, the
design scheme for mapping the basic morphemes in
Python, Java, C++, and C# languages into a unified
expression form is presented and discussed in de-
tail. Additionally, the existing program translation
model faces obstacles related to the unique expres-
sion form of each language. A case in point is the
switch expression in Java, which is not supported
by the current Python and must be substituted with
an if-else structure to achieve the same result. We
also unify these specialized expressions from vari-
ous languages into a unified form.
Fuzzing Remaining Variations Different lan-
guages often have library and API names which
have similar sub-word elements but differ in subtle
ways like sub-word order or choice. We overcome
this difference by representing function and ob-
ject names by a bag of words representation of the
snake and camel-case segmented elements. Further,
we randomize the order of these during decom-
piler training to ensure the model is not sensitive to
language-specific orderings except in the decompi-
lation stage.

3.2.2 Reassembling
The final step involves reassembling the syntax tree
into a sequence format that is acceptable for use
with the language model. Special string templates
are designed for morphemes shared by all program-
ming languages such as for loops, if statements,
and while loops. These templates take into account
the design patterns of different languages, retaining
causal, nested, referring and other logical relation-
ships between different components in the syntax
tree, resulting in a comprehensive, expressive, and

10906

https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/

var
name

data
type

method
invo

built-in
method

args

function

signature body

declare

modifer
func

name
return
type

comment

call

Source Code Syntax Tree Distilled Tree Distilled Code

Parsing Distillation Reassembling

CreateClient()

System.out.print

BOW: client create ()

printvar
name

data
type

built-in
method

method
invo

args

function

signature body

declare

modifer
func

name
return
type

comment

call

Prune

Unify

Fuzzy

Figure 1: The overall pipeline for converting source code into distilled code. In the first step, the source code is
represented as a syntax tree. Next, we align different languages to translation pivots by removing language-specific
elements which are not important to the logical and semantic function. Finally, the nodes are combined in string
templates to yield distilled code strings suitable for large language model training.

extensible representation.

4 Distilled Code Decompiler

After source code is transformed into the transla-
tion pivot through the distilled code compiler, next
we need to build a decompiler that can output the
target code. We introduce our multilingual dis-
tilled code decompiler model, which is a encoder-
decoder transformer based model pre-trained on
large-scale multilingual code corpora. Under the
framework of multilingual models, all languages
share the same encoder and decoder and map to
the same latent space. In this section, we introduce
several self-supervised pre-training tasks that we
implemented. The first two tasks provide good rep-
resentations for our distilled code and original code.
The last pre-training task is similar to the final de-
compiler task, which further aligns the distilled
code and target code.

4.1 Problem Setting

In this work, the primary focus will be on program
translation at the function level, as these sequences
embody a minimal semantic program of an appro-
priate length. Suppose our model supports the fol-
lowing set of code languages C = {C1, . . . , Ck},
where each Ci is the monolingual code corpora
in language i. Giving a source code function
X = {x1, x2, . . . , xl} in code language Ci, which
consists of l code snippets. It is first input to the
distilled code compiler to obtain its corresponding
distilled code Dx = {d(x)1 , d

(x)
2 , . . . , d

(x)
l }, the goal

of program translation is to generate a target code
function Y in code language Cj .

4.2 Representation Pre-training
There are a substantial amount of high-quality code
corpora available for different program languages
on internet. However, these monolingual codes are
not aligned across programming languages, which
presents a significant obstacle for conventional
supervised training methods to effectively utilize
them for translation. To overcome this challenge,
we propose a set of unsupervised pre-training meth-
ods that aim to mine the hidden semantic infor-
mation in these data. The pre-training methods
discussed in this subsection allow the model to ob-
tain a more robust embedding for translation tasks.
Masked Language Modeling First introduced in
(Devlin et al., 2018), Masked Language Model
(MLM) pre-training task is a self-supervised learn-
ing task designed to train models to understand
context and semantics in natural language. In this
work, we extend the application of the aforemen-
tioned method to our translation pivot, the distilled
code. We propose to train our model simultane-
ously on multiple programming languages, lever-
aging the distilled code as a unified representation.
This approach has the potential to improve the per-
formance of our model on cross-lingual program-
ming tasks. Specifically, we first obtain the distilled
codes for the multilingual program language codes
through the distilled code compiler, concatenate
it with source code and then train the encoder to
predict randomly masked tokens.

10907

Figure 2: The whole process of pre-training. From top to bottom, we implemented three pre-training tasks step
by step. Our pre-training first allows the model to fully understand the domain data, and then moves closer to the
downstream task decompiler form.

Denoising Auto-Encoding Inspired by the BART
model, our approach incorporates various types
of program corruption on both the word and sen-
tence level, such as random word shuffle, random
word dropout, and sentence permutation. Both the
source code and the corresponding distilled code
are intentionally corrupted, and then combined into
a single sequence. The model is then trained to
reconstruct the original sequence. To enhance the
robustness of the model decompiler, we specifically
add more noise to the code snippets stored in the
bag of words in the distilled code.

4.3 Training for Translation

Upon completion of the pre-training phase de-
scribed in the previous subsection, our model has
already obtained a good embedding representa-
tion for distilled codes from different program lan-
guages. The pre-training task outlined in this sec-
tion further assists the model in aligning distilled
code and various target codes.
Multilingual Program Generation We start from
the distilled code to generate the complete code
across various programming languages. During the

pre-training stage, our model utilizes programming
language code and its corresponding distilled code
in each monolingual corpus as a training data pair.
In order to aid the model in accurately translating to
the corresponding language, special language sym-
bols (e.g., <java>, <python>) are added as a
switch on the decoder. There are subtle differences
between translation pivots distilled from different
languages. To narrow the gap among them, we add
noise during the training process. After training,
the model is able to uniformly understand distilled
codes in different languages and generate corre-
sponding target codes on the decoder side.

5 Experiments

5.1 Training Details

Training Datasets We select C#, C++, Java, and
Python files from projects with more than 5 stars
in the GitHub public repositories and CodeNet
projects (Puri et al., 2021). We extract complete,
structurally sound code at the function level and
preprocess the data by deleting docstrings, com-
ments, and dead code blocks. We also employed
XLCoST (Zhu et al., 2022a), a benchmark dataset

10908

that contains fine-grained parallel data in seven
commonly used programming languages.
Evaluation Studies focusing on code translation
typically use the CodeXGLUE dataset (Lu et al.,
2021) (Java to C#, C# to Java) as the evaluation
data. We follow them and utilize the two metrics
offered by the benchmark, BLEU (Papineni et al.,
2002) and CodeBLEU (Ren et al., 2020), to assess
the performance of our model. These metrics can
measure n-gram overlap, code syntax, and seman-
tic equivalence between the generated code and the
target code. Compared with these metrics that re-
flect the quality of the generated code, sometimes
humans expect to intuitively feel whether the trans-
lation result can run correctly and return the same
result as the ground truth. GeeksforGeeks is an on-
line platform with computer science and program-
ming articles, which gathers many coding problems
and presents solutions in several programming lan-
guages. The TransCoder model provides test envi-
ronments and test samples for the C++-Python-Java
code pairs collected from GeeksforGeeks. They
evaluate whether the generated function returns the
same output as the reference when given the same
input. Top-N (CA@N) will check whether any
of the top-N translations generated by the model
passes the test. Following TransCoder, we use the
CA@1 metric computed with beam size 10.
Experimental Details Our model is a sequence-
to-sequence (seq2seq) transformer model with 12
layers (6 in the encoder and 6 in the decoder), 8
attention heads, and a dimension of 1024. all pro-
gramming language share a single encoder and a
single decode, At training time, we alternate be-
tween each of programming language corpora. For
multilingual translation language modeling task,
we mask 15% of the token. In multilingual transla-
tion auto-encoding task, the implementation ratios
of the three noise addition schemes, random token
mask, random token dropout, and sentence permu-
tation are 0.3, 0.3, and 0.2, respectively, and they
are 0.5, 0.5, and 0 in the bag of words of distilled
code. We optimize our model with the Adam opti-
mizer and a polynomial decay learning rate sched-
uler, with an initial learning rate of 10-5 in most
of our experiments. Our experiments use mixed
precision accelerated training and are conducted in
8 V100 GPUs.

Java→C# C#→Java
Method BLEU CodeBLEU BLEU CodeBLEU

Naive copy 18.54 - 18.69 -
PLBART 83.02 87.92 78.35 85.27

StructCoder 85.02 88.42 80.66 86.03
CoDist 85.80 88.75 83.19 86.20

Table 1: Results on the CodeXGLUE translation task. Our
model achieves state-of-the-art performance on BLEU score
of C#-Java and both BLEU and CodeBLEU on Java-C#.

5.2 Results

Performance on CodeXGLUE We conducted
an evaluation of our proposed model on the
CodeXGLUE benchmark, comparing it to two ex-
isting works, PLBART and StructCoder. PLBART,
a strong baseline model, utilizes auto denoising
pre-training tasks on Java and Python methods and
natural language texts before fine-tuning on the
task of program translation. StructCoder, on the
other hand, employs abstract syntax trees and data
flow graphs to make the encoder-decoder structure-
aware, and currently holds the top position. The
"naive copy" baseline simply replicates the input
source code as the output translation, illustrating
how closely similar two programming languages
are. Table 1 presents our model’s results which
indicate its state-of-the-art performance in terms
of BLEU score and CodeBLEU for both Java-C#
and C#-Java translation tasks. This showcases the
exceptional alignment capabilities of our method
at the n-gram level.
Performance on GeeksforGeeks The exper-
imental setup of TransCoder was followed,
using the CA@1 metric calculated with a beam
size of 10, for comparison of our model with
TransCoder, TransCoder-ST, TransCoder-IR on
Python-Java-C++ program translation pairs. Our
model proved to have excellent results across
various sub-translation tasks, as shown in Table 2,
particularly in regards to starting from Python code.
This success is mainly attributed to the distilled
code design style which is more geared towards
C++ and Java code, reducing the difficulty in
aligning the target code from the Python code for
the decompiler model. In contrast, TransCoder-ST
requires the construction of a more precise
automated unit-testing system to eliminate invalid
translations, whereas our model does not require
unit-testing and can be easily expanded to include
more programming languages and other program
translation models. We also compare with large
language models InstructGPT (text-davinci-003

10909

Method C++→Java C++→Python Java→C++ Java→Python Python→C++ Python→Java
TransCoder 65.1% 47.1% 79.8% 49.0% 32.6% 36.6%

TransCoder-ST 68.0% 61.3% 84.6% 68.9% 56.7% 58.2%
TransCoder-IR 62.9% - 74.5% - - -

text-davinci-003 77.8% 74.7% 72.1% 79.8% 74.1% 69.6%
gpt-3.5-turbo 88.6% 85.2% 80.6% 88.7% 85.67% 80.9%

CoDist 82.1% 67.9% 87.9% 68.1% 86.9% 81.1%

Table 2: Results on the TransCoder GeeksforGeeks translation task. We follow the experimental configuration of
TransCoder and ensure that all ground-truth test files in Python, Java and C++ output correct results in advance.

Method C++→Java C++→Python Java→C++ Java→Python Python→C++ Python→Java
Codist 82.14% 67.89% 87.85% 68.10% 86.94% 81.12%

w/o MPG 33.61% 22.62% 45.61% 23.92% 42.61% 30.71%
w/o MLM 70.12% 61.21% 80.08% 60.78% 77.94% 71.36%

w/o MLM and DAE 69.08% 58.41% 79.44% 57.11% 76.44% 68.46%

Table 3: Abalation study of pretraining task in TransCoder GeeksforGeeks. The setting of w/o MPG indicates that our
model removes the multilingual program generation task, while w/o MLM and DAE means neither the masked language model
task nor the denoising auto-encoding task are used. The rest of the configuration can be deduced by analogy.

version) (Ouyang et al., 2022) and ChatGPT
(gpt-3.5-turbo version) (OpenAI., 2022) using the
OpenAI official recommended translation prompt
template, and turn off sampling to generate the
final code. We cannot be sure of the generalization
of OpenAI models as their test sets are proprietary,
so we cannot rule out the influence of data leakage.
While our model size is significant smaller than
those models. ChatGPT potentially has state of the
art translation rates for half the language pairs in
GeeksForGeeks, but even still CoDist has the best
performance on the other half of langauge pairs.

5.3 Analysis

We utilize a model that incorporates pre-training
tasks (MLM, DAE and MPG) to enhance the
performance of our distilled code decompiler. To
examine the contribution of each pre-training
task, we select the TransCoder GeeksforGeeks
dataset and conduct experiments by removing
some of the tasks. As demonstrated in Table 3, the
results show that MLM and DAE tasks help model
better understand semantics of distilled code and
programming languages, while MPG task form
and downstream translation task form are unified,
which narrows the gap between the pre-training
and finetune stages, and significantly improves the
effect of the model. Our research shows that a
judicious combination of these pre-training tasks
can lead to more advanced and efficient code
decompile.

6 Conclusion

In this paper, we propose a novel method for pro-
gram translation with distilled code. Our distilled
code has the characteristics of high information
density and general applicability, making it an ideal
candidate for serving as a translation pivot. We
have developed distilled code compilers for C#,
Java, Python, and C++, and a new multilingual pro-
gram translation model. This model unifies multi-
ple translation pairs into the distilled code decom-
piler task. Our results demonstrate the competitive-
ness of the proposed approach on the CodeXGLUE
and GeeksforGeeks datasets, and highlights the
potential for building good translation pivots in
program translation tasks. We argue that our dis-
tillation idea has universality and is a highly effi-
cient information compression method for struc-
tured texts like high-level programming languages,
documents and tables with minimal data loss.

Limitations

LLMs frequently encounter the issue of hallucina-
tions, where generated text invents facts, objects or
relationships. Our approach is not devoid of this
problem, especially when method invocation has
a complex web of dependencies. The insufficient
availability of factual knowledge and world knowl-
edge in the training corpus is primarily responsible
for the current limitations of our model. In fu-
ture work we will incorporate a Retrieval-Enhanced
mechanism to obtain missing information from ex-
tensive databases in order to enhance the model.

10910

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi

Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. arXiv
preprint arXiv:2103.06333.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. arXiv preprint arXiv:1710.11041.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Chris Lattner and Vikram Adve. 2004. Llvm: A com-
pilation framework for lifelong program analysis
& transformation. In International symposium on
code generation and optimization, 2004. CGO 2004.,
pages 75–86. IEEE.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

OpenAI. 2022. Chatgpt: Optimizing language models
for dialogue. https://openai.com/blog/
chatgpt. Blog post.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
et al. 2021. Codenet: A large-scale ai for code
dataset for learning a diversity of coding tasks. arXiv
preprint arXiv:2105.12655.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. Advances in
Neural Information Processing Systems, 33.

Baptiste Roziere, Marie-Anne Lachaux, Marc
Szafraniec, and Guillaume Lample. 2021a. Dobf: A
deobfuscation pre-training objective for program-
ming languages. arXiv preprint arXiv:2102.07492.

Baptiste Roziere, Jie M Zhang, Francois Charton,
Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. 2021b. Leveraging automated unit tests
for unsupervised code translation. arXiv preprint
arXiv:2110.06773.

Marc Szafraniec, Baptiste Roziere, Hugh Leather Fran-
cois Charton, Patrick Labatut, and Gabriel Synnaeve.
2022. Code translation with compiler representations.
arXiv preprint arXiv:2207.03578.

Sindhu Tipirneni, Ming Zhu, and Chandan K Reddy.
2022. Structcoder: Structure-aware transformer for
code generation. arXiv preprint arXiv:2206.05239.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K Reddy. 2022a.
Xlcost: A benchmark dataset for cross-lingual code
intelligence. arXiv preprint arXiv:2206.08474.

Ming Zhu, Karthik Suresh, and Chandan K Reddy.
2022b. Multilingual code snippets training for pro-
gram translation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages
11783–11790.

10911

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

A Code Representation Analysis

Code developers often use descriptive and informa-
tive identifiers when writing programs to enhance
the code’s readability and maintainability. This
practice of using informative identifiers helps to
maintain the rich semantics of the code. In this
section, we aim to investigate the influence of vari-
ous code components(identifiers, program reserved
words, token order etc.) on the semantic under-
standing. The findings of this analysis guides us in
designing of distilled code.

Our research endeavors to identify which nodes
of the abstract syntax tree can be removed without
compromising the model’s ability to comprehend
the code. In the context of code pre-training mod-
els, our experiments aim to investigate the impact
of adding noise to a specific code part. If the per-
formance of these models significantly decreases
as a result, it provides evidence that the semantics
implied in the code part have a substantial influ-
ence on the model’s ability to comprehend the code.
The worse the performance of the model with noisy
code parts, the more likely these parts damaged by
noise contains core information and should be kept
in our distilled code.

Specifically, we inject noise into some code parts
by replacing the identifiers in code, which is pro-
posed in DOBF (Roziere et al., 2021a), shuffling
the original code , which is actually represented by
the positional embeddings fed to the models, delet-
ing the reserved keywords (e.g. ‘assert’, ‘const’,
and ‘if’) and deleting the structure related symbols
including brackets or certain punctuation symbols
(i.e. ‘(’, ‘)’, ‘[’, ‘]’, ‘’, ‘’, ‘,’, ‘.’, and ‘;’). We
select Java and C# as our target programming lan-
guages and use the corresponding datasets from
CodeNet (Puri et al., 2021). Noticing that prob-
lems in CodeNet with larger indexes tend to have
less valid solutions, we filter the dataset by select-
ing the first 1000 problems and randomly sampling
10 solutions for each problem, and also filter out
the problems that are too short which are possibly
wrong answers and remove the comments and the
documents in the codes to avoid influences from
natural languages in the codes. Finally the filtered
dataset is composed of 7454 Java solutions and
4508 C# solutions. We obfuscate the identifiers
to Java codes with tools borrowed from (Roziere
et al., 2021a). Each identifier is replaced with a
corresponding token like ‘FUNC_0’ and ‘VAR_0’.
After such changes, the code examples still pre-

Figure 3: Full obfuscation version of the two-sum
solution. Full obfuscation of a two-sum solution which
finds the two numbers in a list that will sum up to a
target number in Java. The original code is shown
above the obfuscated code.

Figure 4: Shuffled version of the two-sum solution.
The code with all lines shuffled is shown above the
code with all tokens shuffled.

serve the functionality of the original codes. We
show some examples of the obfuscated code, shuf-
fled code and deleted code are shown separately in
Figure 3, Figure 4 and Figure 5.

We expect some probe tasks to evaluate whether
a well-behaved code representation model is more
confused about the noised code compare with the
original code. We hypothesize that if the specific
code part is damaged and the model’s performance
drops significantly on these tasks, it indicates that
the model relies on this piece of semantic informa-
tion to understand the overall code.

The first probe task is the zero-shot code-to-code
search task proposed in UniXcoder (Guo et al.,
2022), which retrieve codes with the same seman-
tics from a collection of candidates in a zero-shot
setting and rank the candidates with these similari-
ties. Denote the obfuscation transform from code
space W to Wobfuscated by fobf . In practice, we

10912

Figure 5: Deleted keywords Version of the two-sum
solution. The code with keywords removed is shown
above the code with structural symbols replaced with
blank spaces.

can use the original code wi,j as query and the ob-
fuscated codes fobf (wi,j) as candidates, and vice
versa. For an input code wi,j which is the jth solu-
tion to the ith problem, we consider all solutions
for the same problem as the correct retrieval results,
i.e. wi,j′ and fobf

(
wi,j′

)
, and all the solutions for

other problems as incorrect retrieval results, i.e.
wi′,j and fobf

(
wi′,j

)
where i′ ̸= i.

unixcoder-base
qurey-cand bleu@1 p@10 map mrr
Java-Java 53.49 23.81 28.78 36.03

Java-Java(shuffle) 73.58 22.5 26.88 41.97
Java-Java(keywords) 83.09 24.3 29.49 40.21
Java-Java(symbols) 19.9 21.91 26.38 40.38

Java-Java(dobf) 2.59 8.43 9.62 18.23

Table 4: Compare code-code search task performance
appling various noise addition methods. Java-Java means
the ability of the Unix-Coder base to search for all Java codes
with the same semantics from the candidate codes using a
certain Java code as a query. Java(shuffle), Java(keywords),
Java(symbols) and Java(dobf) represents the noise of adding
shuffle code, delete the reserved keywords, delete the
structure related symbols and replace the identifiers to all the
codes in the candidate library.

Table 4 shows the interference of four types of
noise on the zero-shot code-to-code search task.
The BLEU@1 is the BLEU score between the
query and the candidate with the highest similarity.
The P@10 is the percentage of the queries that the
correct code is in the top 10 most similar codes.
The MAP is the average of the average precision of
the correct code for each query. The MRR is the av-
erage of the reciprocal rank of the correct code for
each query. These four metrics comprehensively
measure the quality of the retrieved results. Com-
pared with the baseline, shuffling the original code
and deleting reserved keywords does not interfere
with the model’s performance, which means the

model can tolerate the noise we add when design-
ing the translation pivot to flur different high-level
languages. Meanwhile replacing identifiers and
deleting structure-related symbols significantly re-
duces the model’s effectiveness. This indicates that
identifiers and structure-related symbols are core
information that should be kept in the translation
pivot as much as possible.

Another probe task falls on the semantic analysis.
Here our study aims to analyze the code semantic
understanding of the model by analysing the distri-
bution of cosine similarity on positive and negative
code pairs, where each positive and negative ex-
amples serve as the query and the other positive
and negative examples in the candidate set serve
as the candidate. We collect all the positive code
pairs that are composed of any two solutions to the
same question, and the negative pairs is composed
of any two solutions to different questions. In the
experiment, we inject noise into the positive and
negative examples and observe the changes of their
density plots of cosine similarities. We should try
to ensure that adding noise to the model will not
prevent it from distinguishing between positive and
negative.

Denote the original code of the jth solution to
the ith problem by wi,j and its embedding from
a pre-trained model by hi,j . We apply average
pooling to the outputs from the last layer of the
pre-trained model to get the embedding hi,j of
the input code wi,j ∈ W . All the positive code
pairs and the negative pairs can be denoted as P =
{(wi,j , wi,k)}j ̸=k, and N = {(wi,j , wi′,k)}i ̸=i′ re-
spectively. After computing the cosine similarities
of the embeddings of the code pairs in P and N ,
we plot the histograms of the similarities to observe
the changes in the similarity distribution of posi-
tive and negative under different noise additions in
Figure 6.

Figure 6 shows the similarity distribution of pos-
itive and negative code pairs under different noise
additions. The green histogram and yellow his-
togram in each subfigure represents the similarity
score density distribution of positive pairs and neg-
ative pairs. Ideally, the similarity distribution of
negative examples should tend to 0 as a whole,
while the similarity distribution of positive exam-
ples should tend to 1 as a whole. Therefore, the
larger the overlap between the yellow histogram
and the green histogram, the more confused the
code model is in distinguishing the semantic dif-

10913

Figure 6: Similarity distribution of positive and negative code pairs under different noise additions. The three
subfigures in our study represent Java2Java (no noise added), Java2Java-dobf (dobf noise added to candidate set),
and Java-dobf2Java-dobf (dobf noise added to both query and candidate) from left to right. The yellow histogram in
each subfigure represents the cosine similarity distribution between each negative example and the rest of the
negative examples. We calculated the proportion of code pairs occupying different similarities and formed the
similarity score density distribution of the overall negative example pairs. The green histogram in each subfigure
represents the similarity score density distribution of positive pairs.

ference between positive and negative examples.
To analyze this, we introduced noise such as re-
placing the identifiers in code (dobf), and gradually
increased this noise in the query and candidate
parts in the sub-images from left to right. Our re-
sults showed that as more dobf noise was added to
code pairs, the similarity overlap between positive
and negative code pairs increased, and the overall
similarity distribution gradually moved closer to
1. This suggests that the semantic information in
the identifiers part is important for the model to
correctly understand and distinguish codes with
different semantics.

B Unify Basic Morphemes

Here we demonstrate part of morphemes with
equivalent semantics across the Python, Java, C++,
and C# programming languages, and present these
morphemes in their unified expression forms. To
aid in models pretrained on common code corpora
capable of comprehending the semantics of these
morphemes, we often adopt their unified represen-
tations from the symbols and reserved words found
in various high-level programming languages.

Unified Form C++ Java C# Python
a+b a+b a+b a+b a+b
a-b a-b a-b a-b a-b
a*b a*b a*b a*b a*b
a/b a/b a/b a/b a/b

a%b a%b a%b a%b a%b
int(a/b) int(a/b) int(a/b) int(a/b) a//b

pow(a,b) pow(a,b) Math.pow(a,b) Math.pow(a,b) a**b
a&&b a&&b a&&b a&&b a and b

a||b a||b a||b a||b a or b
!a !a !a !a not a

Table 5: Unify part of common operators.

Unified Form C++ Java C# Python
int a int a int a int a int a

float a float a float a float a float a
string a std::string a String a string a str a
bool a bool a boolean a bool a bool a
char a char a char a char a -

vector<> a vector<> a Vector<> a List<> a a=[]
map<> a std::map<> a HashMap<> a Dictionary<> a a={}
set<> a std::set<> a HashSet<> a HashSet<> a a=set()

queue<> a std::queue<> a Queue<> a Queue<> a a=queue.Queue()
deque<> a std::deque<> a Deque<> a - a=deque()

Table 6: Unify part of common data types.

Unified Form C++ Java C# Python
sqrt(a) sqrt(a) Math.sqrt(a) Math.Sqrt(a) math.sqrt(a)
log(a) log(a) Math.log(a) Math.Log(a) math.log(a)

floor(a) floor(a) Math.floor(a) Math.Floor(a) math.floor(a)
rand(a,b) rand(b-a)%+b rand.nextInt(b-a)+b rand.Next(a,b) random.randint(a,b)
print(a) cout«a System.out.print(a) Console.Write(a) print(a, end=”)

println(a) count«a«endl System.out.println(a) Console.WriteLine(a) print(a)
islower(a) islower(a) Character.isLowerCase(a) Char.IsLower(a) a.islower()
tolower(a) tolower(a) Character.toLowerCase(a) Char.ToLower(a) a.tolower()

replace(c,a,b) c.replace(a,b) c.replace(a,b) c.replace(a,b) c.replace(a,b)
length(a) a.length() a.length() a.Length len(a)

Table 7: Unify part of common built-in methods.

Table 5, Table 6 and Table 7 are presented the
unified forms of operators, data types, and built-in
methods partly. Here we strive to align the vast ma-
jority of common basic morphemes in C++, Java,
C#, and Python language. For those that we do not
yet support, alignment will be handled by the fuzzy
strategy in the compiler and the multilingual code
snippet generation task in the decompiler.

10914

