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Abstract

The meaning of polysemous words often varies
in a highly productive yet predictable way. Gen-
eralizing the regularity between conventional
senses to derive novel word meaning is cru-
cial for automated processing of non-literal
language uses such as figurative expressions.
We introduce a novel task called systematic
word meta-sense extension (SWORME) to test
and improve language models’ ability to ex-
tend word meaning to denote new semantic do-
mains (also called meta-senses) that bear regu-
lar semantic relations with existing senses. We
found that language models prefer incremental
lexical semantic change toward conceptually
similar meta-senses such as logical metonymy,
and are much worse at predicting highly non-
literal meaning extensions such as metaphors.
We propose a novel analogy-based method of
word meaning extension, and show that it effec-
tively improves language model systematicity
in making both gradual and radical types of
meta-sense extension. We further demonstrate
that learning systematic meta-sense extensions
benefits language models on multiple bench-
marks of figurative language understanding. 1

1 Introduction

Many words in the lexicon are polysemous in that
the same word form can express multiple distinct
yet related senses: for instance, some English
verbs describing our interactions with physical ob-
jects such as get, grasp can also denote the acqui-
sition or distribution of abstract knowledge (e.g.
to grasp/get someone’s idea); as a result, human
speakers are able to extend the meaning of other
interaction verbs like steal to form metaphorical
expressions such as “to steal information”. On the
other hand, although recent work suggests that dis-
tributed semantic models such as word embeddings
and contextualized language models can be applied

1We release the code and data for our work here: https:
//github.com/jadeleiyu/sworme.
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Figure 1: Illustration of systematic word meta-sense
extension. Given two conceptually related semantic
domains (e.g. ITEM and INFORMATION) and usages
of polysemous words describing both domains (e.g. the
verbs get, grasp, sell that can take both ITEM class and
INFORMATION class nouns as objects), we wish to
extend the meaning of another word (e.g. steal with its
literal sense only) from denoting one of the two domains
to denoting both.

to disambiguate related word senses (Reisinger and
Mooney, 2010; Mikolov et al., 2013; Wiedemann
et al., 2019; Reif et al., 2019) and recognize regu-
lar relations between lexical items (Boleda et al.,
2012a; Vulić et al., 2020; Garí Soler and Apid-
ianaki, 2021), few has investigated whether ma-
chines can also productively leverage the detected
regularity to generate and understand novel lan-
guage use in a human-like way.

Linguists and cognitive scientists have suggested
that the extensional processes of many polysemous
words from conventional to novel senses are gov-
erned by the same set of generative lexical rules
(Copestake and Briscoe, 1995; Pustejovsky, 1998;
Gentner, 1983; Gentner et al., 2001; Pustejovsky
and Rumshisky, 2010) and are therefore intrinsi-
cally related to each other – that is, word mean-
ing extensions exhibit systematicity, as suggested
by both theoretical studies of human cognition
(Gentner and Toupin, 1986; Fodor and Pylyshyn,
1988) and empirical investigations of word mean-
ing change (Xu and Kemp, 2015; Xu et al., 2017;
Fugikawa et al., 2023). Here we show that neural
language models often fail to generate plausible
novel word meaning that bears predictable system-
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atic relations with existing senses, a pattern that
is consistent with their poor systematicity in NLP
(Ettinger et al., 2018; Goodwin et al., 2020; Key-
sers et al., 2020; Yanaka et al., 2020) and simi-
lar failures observed in other domains of machine
learning (Bentivogli et al., 2016; Lake and Baroni,
2018; Bahdanau et al., 2018). The lack of system-
aticity in word meaning extension also explains
recent findings that language models tend to strug-
gle at processing under-represented figurative ex-
pressions including metaphor (Stowe et al., 2022),
simile (Chakrabarty et al., 2022) and slang (Ni and
Wang, 2017; Sun et al., 2022).

A recent line of work has proposed to predict
word meaning extension based on the cognitive
theory of chaining (Lakoff, 1987; Malt et al., 1999),
where novel meaning is linked to existing ones
due to their proximity in semantic space (Habibi
et al., 2020; Yu and Xu, 2021; Grewal and Xu,
2021; Sun et al., 2021; Yu and Xu, 2023). However,
existing chaining models prefer extensions across
literally similar domains with high overlapping in
semantic features, while ignoring the relational
similarity between word senses that is essential to
understanding conceptual and linguistic metaphors
(Gentner et al., 2001; Gentner and Bowdle, 2008).
As a result, chaining models often fail to predict
many figurative word senses that share few similar
semantic features with literal meaning.

We propose a novel task called systematic word
meta-sense extension (SWORME) to evaluate a
language model’s ability to predict regular types of
word meaning extension in naturalistic context. As
illustrated in Figure 1, given two semantic domains
that are conceptually related via general cognitive
processes such as analogy, we wish to simulate the
scenario where a person, after learning usages of
polysemous words describing both domains, can
leverage the regular relation between them to ex-
tend the meaning of a new target word from one
domain to the other. Inspired by research in ana-
logical inference (Falkenhainer et al., 1989; Tur-
ney, 2006; Levy et al., 2015), we introduce a new
model that infers novel word meta-sense based on
the relational similarity between systematically al-
ternating word meta-senses, which predicts both
incrementally and radically novel usages for over
7,300 polysemous English words.

2 Related work

2.1 Regular polysemy and meaning extension
Several lexical semantics and cognitive linguistic
theories have been proposed to explain word mean-
ing extension using symbolic rules operating on the
semantic structures of lexical entries, including the
Generative Lexicon theory by Pustejovsky (1998),
the semi-productive sense extension framework by
Copestake and Briscoe (1995), and the conceptual
metaphor theory by Lakoff and Johnson (2008).
Inspired by the ontological view of word meaning
variation in Generative Lexicon, some pioneering
studies on regular polysemy grouped word senses
into broader classes of semantic categories based
on WordNet (Buitelaar, 1998; Tomuro, 2001) or
linguistic corpus statistics (Boleda et al., 2012b),
so that regular polysemy can be defined as a set
of words showing the same variation between two
(or more) categories (Utt and Padó, 2011). Our
framework adopts a similar definition of regular
polysemy but instead tackles the problem from a
generative perspective.

2.2 Systematicity in NLP
It has been argued for a long time that neural net-
works are not cognitively feasible models of nat-
ural language because they fail to make system-
atic generalizations (Fodor and Pylyshyn, 1988;
Marcus, 1998), and there has been an extensive
line of empirical work to evaluate and improve
the systematicity of neural networks (Bentivogli
et al., 2016; Lake and Baroni, 2018; Bahdanau
et al., 2018). Existing NLP studies on systematicity
mostly focus on investigating whether words have
consistent contributions to the meaning representa-
tions of their composed expressions (Ettinger et al.,
2018; Goodwin et al., 2020; Keysers et al., 2020;
Yanaka et al., 2020). However, there also exists
a wide range of non-compositional, idiosyncratic
expressions that can still confuse state-of-the-art
large language models like GPT-3 (Li et al., 2022).
We shall demonstrate that while many figurative
expressions are non-compositional at word-level,
their meaning can be modeled as the composition
of literal word senses and regular types of semantic
relation.

2.3 Figurative language processing
Most previous work on figurative language focuses
on constructing datasets and training models of
identifying metaphors in text (Stowe and Palmer,
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2018; Leong et al., 2018; Aghazadeh et al., 2022).
Several studies built metaphor interpretation sys-
tems by first identifying metaphorical usages and
then translating them into its literal word sense
recorded in WordNet (Su et al., 2017; Bizzoni and
Lappin, 2018; Mao et al., 2018). Other work has
focused on interpreting figurative language in narra-
tives in context (Chakrabarty et al., 2022; Jhamtani
et al., 2021) and observed that many models show
very large drops in performance compared to con-
texts without figurative language.

3 Computational framework

In this section, we first introduce the concept of
word meta-sense, and formulate regular polysemy
as systematic types of meta-sense alternation. Next,
we introduce the process of partitioning a polyse-
mous word type into multiple hypothetical tokens
signifying its different meta-senses to operational-
ize the scenario of meaning extension toward novel
domains. We then define SWORME as a task of
inferring partitioned token pairs denoting systemati-
cally related meta-senses to substitute each other in
naturalistic context. We finally introduce methods
of learning systematicity in meta-sense extension.

3.1 Meta-sense and systematic alternation

It has been suggested that regular polysemy can
be indicated by multiple words sharing the same
distribution over denoted semantic domains (Apres-
jan, 1974; Nunberg, 1979). We define a meta-sense
as a group of word senses that share certain high-
level semantic features, and a pair of meta-senses is
called a meta-alternation if there exists a word form
that has senses from both meta-sense categories,
and we call such word a lexical instantiation of the
meta-alternation. Following the frequency-based
definition of systematic polysemy in Utt and Padó
(2011) , we consider a meta-alternation as system-
atic if there is a large set of words instantiating
the same meta-alternation 2, and a systematic word
meta-sense extension (SWORME) is the case where
a word w with existing senses only under meta-
sense m is used to express a new sense from m′

which together with m forms a systematic alterna-
tion (m,m′). For example, the two meta-senses
ANIMAL and FOOD together form a systematic

2In particular, we define a meta-alternation to be systematic
if its amount of observed lexical instantiations in a reference
corpus is greater than a threshold θ, whose value will be
specified in the Data section.

meta-alternation with metonymic lexical instanti-
ations such as chicken and lamb that denote both
animal names and their meat.

We use the CoreLex ontology made by Buite-
laar (1998) as our meta-sense inventory for English
words. CoreLex builds on WordNet (Miller, 1995)
and defines a layer of abstraction above WordNet
synsets consisting of 39 basic meta-senses, with
each meta-sense having a namesake anchor synset
in WordNet. 3 We follow the method introduced in
Boleda et al. (2012a) to map each WordNet synset
s to a meta-sense whose anchor synset is closest
to s on the taxonomy tree, and we can therefore
assign a meta-sense label for each usage of a word
in a sense-annotated corpus. Since CoreLex only
covers noun synsets, we extend meta-sense catego-
rization to verbs and adjectives by assigning each
usage of a verb or adjective the same meta-sense
label as its syntactic noun object – for instance, the
both verb grasp and the adjective big can then have
two meta-senses ITEM and INFORMATION, with
the former meta-sense being signified in phrases
like “to grasp an item” and “a big item", and the
latter being reflected by expressions such as “to
grasp an idea" and “a big idea”.

3.2 Meaning-based word type partitioning

We wish to investigate whether language models
can flexibly extend word meaning across a system-
atic meta-alternation (m,m′). We operationalize
this idea by training a language model from scratch
on a text corpus in which some lexical instantia-
tions w of (m,m′) are partitioned into two new
hypothetical tokens: a token t(w,m) replacing all
mentions of w in a sense-annotated corpus that ex-
hibit the meta-sense m, and another token t(w,m′)
replaces w for sentences in the corpus signifying
the meta-sense m′, as illustrated in Figure 2(a)-
(c). The resulting language model can therefore
compute valid meaning representations for usages
of w with meta-sense m′ using the partitioned to-
ken t(w,m′) without knowing that w can actually
express m′.

3.3 SWORME as token substitution

Let (m,m′) be a systematic meta-alternation
with a lexical instantiation w, and let
U(t(w,m)), U(t(w,m′)) be two sets of us-
age sentences with w replaced by its partitioned
tokens t(w,m), t(w,m′) respectively. As illus-

3See Appendix B for a full list of CoreLex meta-senses.
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Figure 2: Illustration of the SWORME framework. Given a sense-annotated text corpus, we first decide a set of
systematic meta-alternations (e.g. the INFORMATION/ITEM and the LOCATION/PSYCHOLOGICAL-STATE
alternations in (b)) with sufficient lexical instantiations denoting both meta-senss (e.g. arrive at with both m =
LOCATION type objects such as school and m′ = PSYCHOLOGICAL-STATE type objects such as conclusion).
We then partition each lexical instantiation by replacing it with two hypothetical tokens – e.g. the nonce words
t(w,m) = galumph and t(w,m′) = chortle in (c) replace mentions of arrive at exhibiting the LOCATION and the
PSYCHOLOGICAL-STATE meta-senses respectively, and their systematic relation is indicated by their matching
background shape figures. A language model is then pretrained from scratch on the replaced corpus and is then
evaluated on the token substitution task, where the model is asked to choose the correct partitioned token galumph
in (e) to paraphrase its “sibling” token chortle.

trated in Figure 2(e), given a usage sentence
u ∈ U(t(w,m′)), we say that a model extends the
meaning of t(w,m) to m′ under context u if the
model infers that t(w,m) is a good substitution to
paraphrase t(w,m′) in u. In particular, let T be
a list of candidate paraphrase tokens containing
t(w,m), we would ask the language model to first
compute the contextualized embedding h(t, u) of
each t ∈ T in context u (with t(w,m) replaced by
t), and choose the best paraphrase token t∗ that
maximizes the semantic similarity between the
contextualized embeddings of t and t(w,m′) in u:

t∗ = argmint∈T ||h(t, u)− h(t(w,m′), u)||2 (1)

the meaning extension of t(w,m) to m′ is success-
ful if and only if t∗ = t(w,m).

3.4 Learning systematic meta-sense
extensions

We hypothesize that the language model embed-
ding space optimized on standard pretraining ob-
jectives such as masked language modeling may
not well capture the regularity underlying meta-
alternations, and we next propose two methods to
incorporate knowledge of systematic meta-sense
extension into language models. Our methods are
based on the cognitive theory of chaining (Lakoff,
1987) which states that word meaning extends to
novel yet semantically similar meta-senses, and
we consider two chaining models with different
operationalizations of semantic similarity.

Analogical chaining. We define a word meta-
sense prototype h(w,m) as the mean contextu-
alized embedding of all mentions of w exhibit-

ing meta-sense m in a reference corpus, and
z(w,m,m′) = h(w,m) − h(w,m′) be the off-
set between the prototypes of w’s two meta-senses.
Let W (m,m′) be the whole set of lexical instan-
tiations of meta-alternation (m,m′), the analogi-
cal chaining model draws inspirations from par-
allelogram models of human and machine ana-
logical inference (Gentner, 1983; Turney, 2006;
Mikolov et al., 2013; Peterson et al., 2020) and
assumes that the relational representations between
the meta-sense prototypes of any two (w1, w2) ∈
W (m,m′), operationalized as the offset embed-
dings z(w1,m,m′) = h(w1,m)− h(w1,m

′) and
z(w2,m,m′) = h(w2,m)− h(w2,m

′), should be
similar. We could therefore train a language model
to align z(w1,m,m′), z(w2,m,m′) for a subset
of lexical instantiations of each meta-alternation,
and then test whether the model can generalize
the learned relational regularity to unseen lexical
items in the same meta-alternation category. In
particular, at each trial, we sample a systematic
alternation (m,m′) and a pair of its lexical instan-
tiations (w1, w2), and train the language model to
minimize the following loss function:

Lanalog = −
∑

(m,m′,w1,w2)

d(w1, w2,m,m′) (2)

d(w1, w2,m,m′) = ||z(w1,m,m′)− z(w2,m,m′)||2 (3)

Associative chaining. The associative model
follows recent computational implementations of
semantic chaining (Ramiro et al., 2018; Habibi
et al., 2020; Pinto Jr and Xu, 2021) and predicts
that the token t(w,m) with an existing meta-sense
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Word POS Usage CoreLex meta-sense
Systematic

meta-sense alternation

chicken noun
The Scots had a tradition of deep frying chicken in fat,
unlike their English counterparts who baked or boiled chicken.

FOOD ANIMAL – FOOD

arrive (at) verb
then a rising and expanding parcel of air will arrive at the new altitude
at a lower temperature than the surrounding air

DEFINITE QUANTITY
LOCATION –
DEFINITE QUANTITY

cold adjective
Although he shows a cold attitude, she realizes
she can’t help but love him.

PSYCH.FEATURE
SUBSTANCE –
PSYCH.FEATURE

Table 1: Sample entries of the SWORME dataset. Target words (lexical instantiations of meta-alternations) in usage
sentences are shown in bold italic, and noun objects that decide meta-sense labels of verb and adjective lexical
instantiations are underlined.

m can be extended to express a new meta-sense
m′ if they share similar semantic feature values –
i.e. the semantic distance between their prototypes
z(w,m,m′) = h(w,m)− h(w,m′) is small. We
use the formulation of prototype-based chaining
in (Sun et al., 2021; Yu and Xu, 2023) and train
language models on a contrastive learning objec-
tive: in each step, we sample a meta-sense triplet
Mtrip = (m,m+,m−), so that (m,m+) together
form a meta-alternation while (m,m−) is not a
systematic alternation. We then sample a lexical
instantiation w of (m,m+) and another word w′

with meta-sense m−, and train the language model
to minimize the following loss function:

Lassoc = −
∑

Mtrip

∑

w,w′
l(w,w′) (4)

l(w,w′) = ||h(w,m)− h(w,m+)||2 − ||h(w,m)− h(w′,m−)||2

(5)

4 Data

We construct our SWORME usage dataset based
on the sense-annotated text corpus made by (Yu
and Xu, 2023), which consists of 1.47M sentences
taken from the Wikitext-103 corpus (Merity et al.,
2016) and contains usages of over 7,500 English
polysemous words labeled with their associated
WordNet synset IDs. We obtain the CoreLex meta-
sense label for each polysemous word usage via
the mapping method introduced in section 3.1. For
each word, we only keep usages of its top-2 most
frequent meta-senses in the corpus, so that there is
no overlap between the lexical instantiation sets of
any two meta-alternation classes. To decide a set
of systematic meta-alternations, we then take all
meta-sense pairs (m,m′) with at least 50 lexical in-
stantiations of more than 10 usage examples under
each meta-sense (i.e. with at least 20 mentions in
total). This gives us a total of 50 meta-sense alter-
nation pairs that covers a variety of widely studied

types of regular meaning alternation including logi-
cal metonymy, weak metaphor and strong metaphor
4. For each systematic meta-alternation, we take
the top-100 lexical instantiations with highest num-
bers of usage examples in the corpus. This pipeline
finally yields approximately 880,000 usage sen-
tences for 7,346 English words (3,155 nouns and
2576 verbs and 1,615 adjectives). See Table 1 for
sample entries of the resulting dataset.

5 Results on SWORME

5.1 Experimental setup

We split the collection of lexical instantions
W (m,m′) of each meta-alternation (m,m′) into
two subsets Wtrain(m,m′),Wtest(m,m′), and eval-
uate transformer-based language models on the task
of SWORME via three steps: 1) in the pretrain-
ing step, the model is trained from scratch via the
masked language modeling (MLM) objective on
usage sentences of each w ∈ W (m,m′), where the
model takes batches of sampled usage sentences
with 15% of randomly chosen tokens masked out,
and updates its parameter weights to maximize the
probability of infilling the correct missing tokens.
We replace each w ∈ Wtest(m,m′) with its par-
titioned tokens, and increase the vocabulary size
of the language model by adding rows to its first
embedding layer and its language model head layer
accordingly. For words with multiple tokens, we
would replace all of its constituent tokens with a
single new token added into the tokenizer vocab-
ulary. We keep the original word form for each
w ∈ Wtrain(m,m′) so that the model learns that
(m,m′) can be expressed together by some word
forms suggesting systematic relations. 2) in the
SWORME learning step, the language model is
further fine-tuned on one of the two chaining objec-
tives Lanalog or Lassoc over usage sentences of each

4See Appendix B for the full list of systematic meta-
alternations in our dataset.
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w ∈ Wtrain(m,m′) in its original word form; 3) in
the evaluation step, we test the language model on
the lexical substitution task over usage sentences
of w ∈ Wtest(m,m′) with w replaced by its par-
titioned tokens. In particular, at each evaluation
trial, we present the model with a usage sentence
of a hypothetical token t(w,m′), and a list of 100
candidate tokens consisting of a ground-truth sub-
stitution t(w,m) and 99 negative alternatives ran-
domly sampled from the set of hypothetical tokens
partitioned from other words w′ ∈ Wtest(m,m′) 5.
We use mean precision to measure model perfor-
mance, which is the percentage of cases where the
model predicts t(w,m) as the most likely substitu-
tion among 100 candidates, so a random baseline
would yield a 1% predictive accuracy.

We expect a systematic model of SWORME
to generalize the meaning of a token t(w,m) to
express a new meta-sense m′ after learning from
a small set of examples indicating the regularity
between (m,m′). We therefore change the pro-
portion of unpartitioned training words per meta-
alternation α = |Wtrain(m,m′)|

|Wtrain(m,m′)+Wtest(m,m′)| from 0
to 0.8 with a step size of 0.2, and learn 5 inde-
pendent SWORME models to examine how their
performance change as the linguistic evidence of
systematic meta-sense alternation increases. Fur-
ther details of experimental setups can be found in
Appendix A.

5.2 Models of SWORME

We take a randomly initialized transformer en-
coder with the same architecture as BERT-base-
uncased by Devlin et al. (2019) as our main lan-
guage model, based on which we implement three
models of SWORME: 1) a SWORME-analogy
model pretrained on MLM and fine-tuned on
SWORME using the analogical chaining objec-
tive, 2) a SWORME-associate model pretrained on
MLM and fine-tuned using the associative chaining
objective, and 3) a SWORME-full model that is
fine-tuned on both chaining objectives after being
pretrained via MLM. We also include a baseline
model BERT-MLM baseline that is only pretrained
om MLM but is not fine-tuned on chaining.

5We experimented with several alternative sampling meth-
ods of negative source tokens, such as taking the top-100 parti-
tioned tokens with most similar static embeddings to the target
token, but did not observe significant performance change.
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Figure 3: Average model precision on SWORME with
increasing amount of of training evidence for each meta-
sense alternation. Error bars show the standard devia-
tions over five independent runs.

Meta-alternation Example usage
Meta-sense
similarity

Model
accuracy

ARTIFACT
– ATTRIBUTE

light box
– light color

0.276 (35/50)
Assoc.: 0.087
Analog.: 0.361

SUBSTANCE
– TIME

waste food
– waste time

0.158 (44/50)
Assoc.: 0.110
Analog.: 0.357

LOCATION
– CONSEQUENCE

reach destination
– reach goal

0.213 (40/50)
Assoc.: 0.133
Analog.: 0.368

Table 2: Top-3 meta-alternation classes with most im-
proved model accuracy by analogical chaining (Analog.)
over associative chaining (Assoc.).

5.3 Results

Figure 3 shows model precision with various val-
ues of α over 5 independent runs. We observe
that all BERT-based models achieve significantly
above chance accuracy and perform better as be-
ing exposed to more lexical instantiations per meta-
alternation during pretraining. In particular, even in
the case where a pair of systematically related meta-
senses are never expressed together by any word
form in training data (i.e. α = 0), BERT can still
predict that words denoting one of the two semantic
categories can be extended express the other, sug-
gesting that the language model has captured some
intrinsic conceptual relatedness between semantic
domains during MLM pretraining. Moreover, the
superior performance of the analogical chaining
models over their associative chaining counterparts
suggest that the analogical or relational similar-
ity between semantic domains is more useful than
their overall featural proximity for systematic word
meaning extensions.

We further examine model sensitivity to the con-
ceptual relatedness between existing and extended
meta-senses. We quantify the degree of conceptual
relatedness as the mean Wu-Palmer similarity (Wu
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Figure 4: Meta-sense semantic similarity vs. mean predictive accuracy of models trained on SWORME via
associative and analogical chaining objectives under zero-shot (α = 0), few-shot (α = 0.2) and many-shot
(α = 0.8) setups. When α = 0 all models are equivalent to BERT-MLM so only one set of data points are plotted.
Pearson correlations ρ between accuracy and semantic similarity are shown in legends (p < 10−35 for all cases).

and Palmer, 1994) between the anchored Word-
Net synsets of two meta-senses, and we then com-
pute the mean model precision of predicting sub-
stituted partitioned tokens from each meta-sense
alternation pair (averaged over both extensional
directions), as shown in Figure 4 for three exper-
iment setups with increasing amount of training
words per meta-alternation (α = [0, 0.2, 0.8]). We
found that all models generally make better pre-
dictions on meta-alternations that are conceptu-
ally more contiguous (e.g., metonymy), and per-
form less well on examples where the novel meta-
sense is conceptually very different to the exist-
ing one (e.g., strong metaphor). Moreover, ana-
logical chaining model exhibits less sensitivity to
semantic proximity and generally does better at
predicting radical meta-sense extensions than its
associative chaining counterpart. Table 2 shows
the top-3 meta-alternation classes on which analog-
ical chaining improves model performance most
significantly over associative chaining. We found
that all these meta-alternations are typical examples
of “metaphorical” extensions consisting of a con-
crete meta-sense and a semantically very different
abstract meta-sense. These results again suggest
that the literal similarity between conventional and
novel meaning is insufficient to account for various
types of lexical creativity.

6 Application to figurative language
understanding

We finally demonstrate that learning SWORME
can benefit transformer language models on the
task of figurative language understanding (FLU).

Data. We evaluate models on two publicly avail-
able datasets of natural language inference (NLI)
with figurative expressions: the IMPLI dataset
by Stowe et al. (2022) contains 25,860 figurative-
literal expression pairs, where each literal expres-
sion can be either entailed or non-entailed by its
paired figurative expression that comes from one
of the two classes: metaphors or idioms. The Fig-
QA dataset by Liu et al. (2022) consists of 10,256
Winograd-style questions (Levesque et al., 2012),
where a model is asked to identify a literal entail-
ment among two candidates for a pair of superfi-
cially similar figurative expressions with opposite
meaning. The questions in Fig-QA can be catego-
rized into four classes based on the type of knowl-
edge required to answer them: objective knowledge
(Obj), visual metaphors (Vis), social understanding
(Soc), and cultural metaphors (Cul).

Models. We test three off-the-shelf pretrained
transformer language models on FLU: 1) BERT-
base-uncased (with 0.11B parameters, pretrained
on 40 GB of text) implemented by HuggingFace
(Wolf et al., 2019), 2) GPT2-XL (with 1.5B param-
eters, pretrained on 800GB of text) implemented
also by HuggingFace, and 3) LLaMA (with 7B pa-
rameters, pretrained on 1TB of text) implemented
by Meta (Touvron et al., 2023). Before FLU eval-
uation, each language model is fine-tuned on the
the training set of SWORME with α = 0.8 us-
ing either associative or analogical chaining ob-
jective (usage sentences containing the other 20%
word types are left out as the validation set to de-
cide model convergence). For auto-regressive mod-
els (GPT2-XL and LLaMA), the contextualized
embeddings of a target word is computed only
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Model IMPLI Fig-QA
Metaphors Idioms All Obj Vis Soc Cul All

BERT-base 80.15 69.72 71.18 86.50 89.49 82.11 86.32 86.05
+ assoc.chaining 78.60 72.33 73.29 86.41 90.19 80.87 79.19 85.51
+ analog.chaining 85.04 74.98 76.52 86.70 96.24 80.08 86.76 87.84
GPT2-XL 77.56 61.45 61.99 73.72 72.97 72.23 76.10 73.90
+ assoc.chaining 77.31 64.72 65.05 72.18 74.01 71.16 75.34 73.82
+ analog.chaining 79.96 66.20 68.48 73.55 78.96 71.12 80.60 77.03
LLaMA-7B 87.85 84.93 85.21 86.99 90.94 87.02 85.17 89.10
+ assoc.chaining 88.95 80.01 80.97 83.51 83.27 85.50 80.44 83.39
+ analog.chaining 91.62 87.90 88.11 89.73 93.29 86.64 84.08 89.74

Table 3: Model classification accuracy on two figurative language understanding datasets.

Dataset Premise Hypothesis True Label
Model predicted

entailment probability

IMPLI
How have you weathered
the storm?

How have you calmed
the storm?

non-entailment
BERT: 0.76 (✗)
BERT+analog.chain.: 0.30 (✓)

IMPLI
Time to come out from under a
cloud and enjoy yourself.

Time to come out from under a
roof and enjoy yourself.

non-entailment
GPT2: 0.68 (✗)
GPT2+analog.chain.: 0.41 (✓)

Fig-QA
His imagination is as
broad as the sky.

He has a vivid imagination. entailment
LLaMA: 0.39 (✗)
LLaMA+analog.chain.: 0.53 (✓)

Fig-QA
The place was as joyful
as a funeral.

The place was joyful. non-entailment
LLaMA: 0.57 (✗)
LLaMA+analog.chain.: 0.55 (✗)

Table 4: Example FLU questions and model outputs. Entailment labels and model predicted entailment probabilities
are marked in blue, and non-entailment labels/probabilities are marked in red.

using its prefix context in each sentence. After
SWORME training, each model is fine-tuned on
the official training sets of the two FLU datasets,
where we add linear classification layers on top
of each language model that takes contextualized
embeddings of the last [CLS] token of each con-
catenated premise-hypothesis sentence pair and
outputs a binary entailment/non-entailment label.
The classification layers and the underlying en-
coders are then trained together to minimize on
the standard cross entropy loss between model pre-
dicted and true entailment labels. We perform full
model fine-tuning for BERT-base-uncased and ap-
ply parameter-efficient fine-tuning via LoRA (Hu
et al., 2021) for GPT2-XL and LLaMA. We also
include a baseline version for each language model
that is not fine-tuned on SWORME.

Results. Table 3 summarizes model classifica-
tion accuracy on the official evaluation sets of the
two FLU datasets. We found that language models
fine-tuned on SWORME through analogical chain-
ing yield best overall classification accuracy, as
well as on most sub-categories of figurative lan-
guage use. Fine-tuning via associative chaining, on
the other hand, is much less helpful or can some-
times even be harmful for FLU. We hypothesize

that associative chaining pushes usage embeddings
of related meta-senses too close to each other, so
that some important sentence-level semantic fea-
tures in the sentence embedding become degener-
ated. These results together suggest that learning
relational similarity between systematic word meta-
senses can serve as a simple yet effective method
to drive language models toward human-level un-
derstanding of figurative language.

Table 4 shows model predictions on sample FLU
questions. We found that many idiomatic expres-
sions in IMPLI can also be interpreted as system-
atic meaning extensions from more “literal” meta-
senses of common polysemous words (e.g. “storm”
referring to “difficult situation”, which signifies
a systematic extension from (hostile) NATURAL
PHENOMENON to (poor) COGNITIVE STATE),
so learning analogical chaining helps model bet-
ter distinguish such usages against the adversarial
hypothesis with high lexical overlap. We also ob-
serve that even the largest LLaMA-7B model still
makes errors on metaphorical expressions whose
interpretations are obvious to humans (e.g. broad
imagination), while learning SWORME through
analogical chaining helps correct many of these
mistakes. Meanwhile, analogical chaining helps lit-

10960



tle on understanding ironic expressions such as “as
joyful as funeral”, which can also be considered as
a systematic semantic extension toward the oppo-
site word meaning. Future work can explore how
antonymic meaning change can be incorporated
into the SWORME framework.

7 Conclusion

We have presented a framework of systematic word
meta-sense extension (SWORME) that supports
lexical items to express new semantic domains in a
productive yet predictable way. Our results show
that the feature associative similarity only predicts
incrementally novel meaning, while analogical sim-
ilarity provides a general account for both grad-
ual and radical types of word meaning extension.
We also show that learning analogical chaining-
based meta-sense extension improves transformer
language model performance on figurative natural
language inference.

8 Limitations

Our work has some limitations. For instance, in the
current SWORME framework we train models to
predict extensions across systematically alternating
meta-sense pairs in both directions, while research
in leixcal semantic change suggests that such ex-
tension sometimes only happens uni-directionally
(Xu et al., 2017; Winter and Srinivasan, 2022) – for
example, it is quite natural to extend word meaning
from the ANIMAL domain to the MEAT domain
(e.g. to raise chicken → grilled chicken) but much
less plausible for the opposite direction (e.g. grilled
beef → to raise beef ). A more realistic approach
would be to sort all meta-senses of a word chrono-
logically by their historical time of emergence, and
only ask the model to predict the newer meta-sense
based on the older one. However, we found it in-
feasible to determine accurate timestamps of the
meta-senses or their associated WordNet senses at
a comprehensive scale, and we believe that learn-
ing to make some unattested types of meta-sense
extension would be beneficial for language mod-
els to understand idiosyncratic word uses that are
usually under-represented in training corpora.
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A Details of SWORME experiments

We use the BERT-base-uncased configuration pro-
vided by HuggingFace (Wolf et al., 2020) to initial-
ize all BERT-based SWORME models (the BERT-
MLM baseline and two chaining-based SWORME
models).

During MLM pretraining, we randomly mask
15% of tokens in each sentence, and train each
model on predicting the masked tokens. We add all
partitioned tokens as special tokens into the vocab-
ulary of the BERT tokenizer, so each pseudo-token
will be encoded as a whole in the input sequence.
Learning is performed using the Adam optimizer
(Kingma and Ba, 2015), with a learning rate of 5e-5
and a batch size of 128, for 50 epochs (after which
all models achieved highest evaluation accuracy).

During SWORME training, we kept 10% of us-
age sentences in SWORME training set for valida-
tion, and fine-tune the associative and analogical
chaining models on the rest 90% sentences via
their corresponding objective functions in Eq.3.4
and Eq.3.4 using Adam, with a batch size of 32 and
a learning rate of 2e-5. The associative chaining
model is trained for 8 epochs and the analogical
chaining model is trained for 24 epochs. All exper-
iments are run on machines with an NVIDIA Tesla
A100 GPU.

B CoreLex meta-sense and systematic
meta-alternations

See Table 5 and Table 6.
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abs ABSTRACTION ent ENTITY loc LOCATION prt PART
act ACT evt EVENT log GEO.LOCATION psy PSYCHOL.FEATURE
agt AGENT fod FOOD mea MEASURE qud DEFINITE QUANTITY
anm ANIMAL frm FORM mic MICROORGANISM qui INDEFINITE QUANTITY
art ARTIFACT grb BIOLOG.GROUP nat NATURAL BODY rel RELATION
atr ATTRIBUTE grp GROUPING phm PHENOMENON spc SPACE
cel CELL grs SOCIAL GROUP pho PHYSICAL OBJECT sta STATE
chm CHEMICAL hum HUMAN plt PLANT sub SUBSTANCE
com COMMUNICATION lfr LIVING BEING pos POSSESSION tme TIME
con CONSEQUENCE lme LINEAR MEASURE pro PROCESS

Table 5: CoreLex’s meta-senses (names in lowercase) with their corresponding WordNet anchor synsets (names in
uppercase).

grs-psy com-evt art-com atr-com art-frm
pro-sta art-grs act-pos atr-sta act-hum
fod-plt hum-psy phm-sta act-phm anm-art
psy-sta hum-nat atr-psy act-grp act-pro
hum-prt anm-hum fod-hum art-atr art-log
art-loc com-psy plt-sub sub-psy anm-fod
grs-log act-grs act-com sub-tme com-hum
act-evt atr-rel grp-grs art-evt loc-con
evt-psy art-qui art-psy atr-evt art-sub
act-tme act-sta art-prt art-sta evt-sta

Table 6: Top-50 systematic CoreLex meta alternations with highest corpus frequency.
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