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Abstract

In this work, we assess the ability of founda-
tion models to recall encyclopedic knowledge
across a wide range of linguistic contexts. To
support this, we: 1) produce a 20-language
dataset that contains 303k factual associations
paired with counterfactuals, 2) evaluate 5 mod-
els in a multilingual test, and 3) benchmark a
diverse set of 24 models in an English-only test.
Meta’s LLaMA achieves the highest scores in
both multilingual and English-only evaluations.
Yet, an analysis of LLaMA’s errors reveals sig-
nificant limitations in its ability to recall facts in
languages other than English, plus difficulties
related to the location and gender of fact sub-
jects. Overall, our findings suggest that today’s
foundation models are far from polyglots.1

1 Introduction

Can foundation models be used as multilingual
knowledge bases? Foundation models typify an
emerging paradigm that warrants further study;
all-purpose Large Language Models (LLMs) that
are trained on internet-scale corpora excel in gen-
eralization to some new tasks (Radford et al.,
2018; Brown et al., 2020; Touvron et al., 2023).
Their widespread adoption and ostensible credibil-
ity come with risks, though. For instance, founda-
tion models inherit inaccuracies from training cor-
pora (Argyle et al., 2023), which are in turn propa-
gated downstream to the models that are fine-tuned
from them (Bommasani et al., 2022; Chung et al.,
2022). Additionally, foundation models spend the
majority of their training phase absorbing infor-
mation in English; for example, Touvron et al.
(2023)’s LLaMA devotes two-thirds of its training
dataset to an English-only subset of the Common-
Crawl (Wenzek et al., 2020). Thus, foundation
models are potentially deficient when performing
non-English tasks (Kassner et al., 2021).

∗All authors contributed equally
1Supporting code and data are openly released

2 Related Work

An impressive amount of knowledge is encoded
within LLMs (Roberts et al., 2020), which store
factual associations as key-value pairs within their
memory (Geva et al., 2022; Meng et al., 2022b).
Expose models to a large number of facts during
self-supervised training, and they’ll adeptly recall
this information at deployment (Kaplan et al.,
2020). However, along with useful facts, models
can ingest dubious or harmful associations (Bender
et al., 2021), particularly if training corpora are
poorly constructed or unrepresentative of the world
(Dodge et al., 2021).

To benchmark how robustly LLMs learn
factual associations, Jiang et al. (2020) and
Kassner et al. (2021) evaluated the encyclopedic
knowledge of models like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019; Conneau
et al., 2020) using rank-based approaches. Our
study builds off this research in a few ways. We
utilize a contrastive scoring approach, which tests
the extent to which a model grasps a concept with
more rigor than rank-based methods, as detailed
below. Additionally, we inspect a diverse group of
causal and masked language models rather than
testing a single architecture to capture a more
representative view of the field.

3 Task

We formulate the Polyglot of Not? test with cloze
statements: given some context, we prompt an
LLM to predict the next token. Factual associa-
tions are formalized as the triplet ⟨s, r, o⟩ where s
and o denote the subject and object entity and r is
a linking relation, in line with Elsahar et al. (2018).
Thus, the fact “Paris is the capital of France” is rep-
resented by ⟨Paris, capital of, France⟩ where
“Paris” corresponds to s, “capital of” corresponds
to r, and “France” corresponds to o. We then
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prompt a model M using the original natural lan-
guage sentence with o masked out. To assess if M
has correctly encoded an association, we calculate
PM (o | s, r). Prior knowledge assessments em-
ployed a rank-based reward (Petroni et al., 2019)
where a model is thought to understand the associa-
tion if o has a high chance of occurring as the next
token (relative to all other options). However, this
practice has pitfalls such as an inability to parse
unsatisfactory outcomes for questions with numer-
ous correct answers and a lack of insight into the
LLM’s confidence in its response. To address these
issues, our work uses a variant of the Contrastive
Knowledge Assessment (CKA) from prior work
(Dong et al., 2022). Erroneous “counterfactuals”
⟨s, r, o′⟩ like ⟨Paris, capital of, Italy′⟩ are used
to assess a model M ’s understanding of ⟨s, r, o⟩.
Simply put, if M truly knows the fact, PM (o | s, r)
should be larger than PM (o′ | s, r) (Dong et al.,
2022). Formally, CKA measures whether M cor-
rectly knows a fact ⟨s, r, o⟩ via calculating:

CKAM(s, r, o) =
PM (o | s, r)

Eo′ [PM (o′ | s, r)]

When CKAM(s, r, o) > 1, the model is said to
understand the factual association. This approach
alleviates the issues that arise from ranking a
model’s vocabulary-wide token probabilities at
inference; using counterfactuals elicits connections
across different languages and contexts which
forces the model to demonstrate generalized
understanding of a given concept. Furthermore,
examining the contrast allows us to quantify the
confidence level with more nuance. Our work
builds off Dong et al. (2022) by applying CKA to
a multilingual dataset for the first time.

To carry out the test by language, we solicited
cloze completions for each of the associations
contained in the dataset. The percentage of fact-
completions that M recalls correctly is calculated
by tallying up the number of completions where
CKAM(s, r, o) > 1 and dividing by the total
number of completions. We accommodated dif-
ferent tokenizers by removing special tokens from
text generation and ensuring that the completion
probing corresponded to the first token to the
right of cloze. Additionally, all evaluated models
are fully open-source.2 While we would have

2LLaMA weights were accessed with Meta’s permission

liked to test proprietary LLMs such as GPT-4
(OpenAI, 2023), these models don’t currently
provide vocabulary token probabilities at inference,
a prerequisite for CKA (see Assessing Open vs.
Proprietary LLMs for details).

4 Dataset

The dataset includes 303k knowledge statements
in 20 languages.3 Each row includes: dataset_id
(primary key), stem, true, false, relation,
subject, and object. In total, the dataset contains
31 unique relation categories, 76,036 unique
subjects, 18,837 unique objects, 18,503 unique
trues, and 88,224 unique falses. Masked true/false
objects consistently appear on the right-hand side
of the statement to support masked and causal
LLMs. The translated subset for each language
contains different amounts of statements due
to varying syntactic capacities to support this
requirement. On average, a given fact appears in
12 of the 20 languages tested.

To construct the dataset, we first merged
two English-language datasets from Dong et al.
(2022) and Meng et al. (2022a) that share common
lineage in the T-REx Wikidata (Elsahar et al.,
2018) project. We then improved the dataset by
filtering out inaccuracies and grammatical errors,
as well as de-duplicating the ⟨s, r, o⟩ triplets, as
detailed by Dataset Preprocessing in the Appendix.
After preprocessing, the dataset contained 26,254
knowledge statements in English. We then used the
Google Translate API to translate the data into 19
target languages: bg, ca, cs, da, de, en, es, fr, hr,
hu, it, nl, pl, pt, ro, ru, sl, sr, sv, and uk (ISO
639-1 codes). Our translation approach mirrors
prior multilingual studies such as the programmatic
translation of MMLU (Hendrycks et al., 2021)
prompts when analyzing GPT-4. Additionally,
work from Kassner et al. (2021) shows minimal
practical differences when using machine versus
manually translated cloze statements.

5 Results

Table 1 displays mean performance across the
20 languages used in the multilingual test. We
present results for 5 foundational models here, with
LLaMA-33B outperforming the others by a wide
margin. We display LLaMA-33B’s accuracy on

3https://huggingface.co/datasets/Polyglot-or-Not
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model accuracy (%)

llama-33b 79.31 (+/- 0.74)
m-bert 62.00 (+/- 0.87)
bloom-7b1 57.70 (+/- 0.88)
xlm-roberta 56.03 (+/- 0.90)
mt5-xl 52.51 (+/- 0.91)
Random Baseline 50

Table 1: Multilingual test leaderboard. Here, accu-
racy refers to the average performance of each model
across 20 languages. The uncertainty estimates are av-
eraged 95% confidence intervals computed from 10k
bootstrap iterations per language. The results suggest
tested models struggle to recall facts in a multilingual
setting relative to English-only performance (Table 4).

model accuracy (%)

llama-65b 89.56 (+/- 0.37)
llama-33b 89.40 (+/- 0.38)
falcon-40b 87.01 (+/- 0.41)
llama-13b 86.66 (+/- 0.42)
llama-7b 85.53 (+/- 0.43)
redpajama-7b 85.07 (+/- 0.44)
Random Baseline 50

Table 2: English-only test leaderboard, top 6 models.
Here, accuracy refers to model performance on English
data. The uncertainty estimates are 95% confidence
intervals computed from 10k bootstrap iterations. Con-
sistent with the trends in Table 1, LLaMAs of varying
sizes emerge as the front-runners. Reference Table 4 in
the Appendix for the full leaderboard.

each of the 20 languages individually in Table 3 and
Figure 1. This model scores higher on languages
written in Latin script than those written in Cyrillic
script (bg, ru, sr, uk). A chi-squared test confirms
that LLaMA-33B’s performance is dependent on
language script (χ2 = 3570.58, p < 0.001). Ad-
ditionally, the results on the English-only test are
displayed for two dozen models in Table 2 and
4. LLaMA models again top the leaderboard here,
closely followed by Technology Innovation Insti-
tute’s Falcon-40B (Penedo et al., 2023).

6 Analysis

Training Data and Model Parameters

LLaMA excels in our tests relative to other foun-
dation models. This challenges some previous no-
tions that compute should be spent to support enor-
mous (parameter-wise) models in lieu of larger

amounts of training data (Kaplan et al., 2020). For
instance, LLaMA-7B with 1T tokens outperforms
OPT-30B with 180B tokens (Zhang et al., 2022)
on the English-only test (see Table 4). Moreover,
the lean 110M parameter mBERT model (Devlin
et al., 2019) outperforms two 7B parameter mod-
els on the multilingual test. Lastly, the LLaMA
family provides a side-by-side comparison on the
English-only test; the performance differential is
largest from the 13B to 33B variants, aligning with
the 1T to 1.4T training token jump (see Table 4).

Subject Entity Error Analysis

We analyzed LLaMA-33B’s errors across each
of the 20 languages tested and found systemic
gaps in its factual recall.4 We began by explor-
ing associations from our dataset that feature
geographic locations as their subject entity. The
3,213 geographic entities we worked with appear
in 48,606 prompts in our 20 language assessment
(see Geographic Labeling in the Appendix for
details). LLaMA-33B answered these types of
questions correctly at an 89.94% clip. The top
performing continent was Asia with 93.31%
accuracy for 10,729 questions, and the lowest
was Antarctica with 80.65% accuracy for 5,167
questions. A chi-squared test for independence
comparing LLaMA-33B’s performance on ge-
ographic questions related to Asian locations
versus European locations confirms the superior
performance on Asian locations is significant
(χ2 = 66.408, p < 0.001).

We also explored whether LLaMA-33B’s er-
rors were systematically related to the gender
(male/female) of a fact’s subject. The 951 entities
sampled appear in 16,003 prompts in the test (see
Gender Labeling in the Appendix for details).
LLaMA answered 75.87% of these questions
correctly. Male subjects are nearly 5 times as
common as female subjects in the sample, yet
the model performs slightly worse on facts about
male subjects. A chi-squared test for independence
comparing LLaMA’s performance on questions
about male subjects compared to female subjects
confirms its superior performance on facts about
females is significant (χ2 = 69.096, p < 0.001).

4We analyzed LLaMA-33B because it both performs well
on the multilingual test and boasts a parameter count suitable
for interrogations on lightweight compute resources
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Wikipedia’s Role in LLaMA Performance

LLaMA learns information by reading Wikipedia
pages, so we studied data quality on each lan-
guage’s Wikipedia. We began by tabulating how
many pages were present during LLaMA’s training
period (see Table 5). Of course, sheer page count
is perhaps not the strongest indicator of the qual-
ity and diversity of information available on that
language’s Wikipedia; a single well-written page
can be more informative than a dozen low-quality
pages. To delve deeper, we analyzed Wikipedia
pages from languages of interest (see Wikipedia
Entity Analysis in the Appendix for details). Ta-
ble 6 records word count, the number of named-
entities that appear in the article (both total and
unique), and the number of named subject entities
in the dataset that appear in the article which we
refer to as “target” entities (both total and unique).
We adopt an approach such that a page that men-
tions 8 different target entities is considered to
be denser and thus more informative than an ar-
ticle that narrowly focuses on a single target entity.
Analysis of the articles we sampled reveals major
gaps across each language’s Wikipedia. We ob-
serve a strong and significant correlation (Pearson’s
r = 0.78, p < 0.001) between the average unique
target entities on the page and LLaMA’s perfor-
mance; the more subjects on a Wikipedia page, the
better LLaMA recalled facts in that language. This
underlines the connection between dataset quality
and performance on our assessment.

Qualitative Insights

Qualitative analyses underscore the influence of
frequency bias. For instance, LLaMA frequently
erred when prompted with statements containing
“Antarctica” in a variety of languages. In the En-
glish language prompt “Cape Monaco is a part of
the continent of”, LLaMA ranked “Europe” to be
a more likely completion than the correct “Antarc-
tica.” Cape Monaco’s Wikipedia page makes nu-
merous references to European people and places
(including its appellation), and LLaMA appears to
prioritize the presence of a European entity rather
than connect this location’s correct continent. Not
all signals in its training dataset, then, appear to be
treated with equal diligence. What’s more, when
conducting pairwise comparisons between English
and other languages for common facts, relative
rankings remain largely consistent with overall per-
formance. We observe degraded performance out-

side of English in LLaMA’s results for prompts
entailing English speaking countries, with Slavic
languages exhibiting more significant deviations
than others. Cross-lingual transfer of knowledge
thus exhibits a lack of reliability.

7 Future Work

There are many directions left to pursue in this
domain. Model weight editing in a multilingual
setting presents a novel next step for our project
since our data finds its roots in two projects (Dong
et al., 2022; Meng et al., 2022a) that explore how
to remedy inaccuracies located in LLMs. Also, ap-
plying the test to future open-source models will
fortify this work’s impact and relevance for future
researchers (see Testing New Models in the Ap-
pendix for details). We can also add languages
that use neither Cyrillic nor Latin scripts; we are
working with native Hindi and Japanese speakers to
create cloze statements in these languages. There
is also work to be done regarding the variable dif-
ficulty of a given fact based on the availability of
training data in that language; the values from our
Wikipedia analysis could be used as prior proba-
bilities in a future iteration of CKA. Additionally,
we could analyze more facets of training corpora
metadata. Perhaps it’s possible to causally connect
a model erring on a particular fact to artifacts in its
training data rather than the measured, associative
approach we adopt. Current work (Elazar et al.,
2023) affords helpful scaffolding for this endeavor.

8 Conclusion

Here, we present a multilingual contrastive knowl-
edge assessment of encyclopedic facts. Our origi-
nal evaluation benchmarks 5 foundation models in
a multilingual test and two dozen in an English-
only test. Meta’s LLaMA demonstrated supe-
rior performance in both settings. Accompany-
ing analyses reveal that LLaMA struggles to oper-
ate in non-English languages, particularly in Cyril-
lic script, suggesting an absence of robust cross-
lingual knowledge transfer. These findings vouch
for the utility of high-quality, multilingual datasets
for training the next-generation of foundation mod-
els. Our hope is that this project motivates future
interrogations of foundation model data sources
and provides a roadmap for others to conduct trans-
parent evaluations. By doing so, LLMs can be bet-
ter equipped for broad application across diverse
linguistic contexts.
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Limitations

Assessing Open vs. Proprietary LLMs
One prerequisite for carrying out the test is access
to the full schedule of vocabulary-level token score
probabilities generated when an LLM synthesizes
text. For this reason, researchers in related inquiries
typically work with fully open-source models with
weights uploaded to the Hugging Face model hub
(Jiang et al., 2020; Dong et al., 2022; Meng et al.,
2022a). Proprietary models, meanwhile, lack this
transparency rendering their generated texts resis-
tant to analysis. Notably, OpenAI’s GPT-3 API
only surfaces the probabilities of the 5 most likely
next tokens, a functionality which Hendrycks et al.
(2021) leveraged to apply GPT-3 to their evaluation
task. We submitted a request for this limit to be
raised through OpenAI’s official channel — a fully
automated, chat-bot customer service agent — and
we have yet to receive a response. What’s more, the
GPT-4 API nixed the reporting of token probabili-
ties entirely (as of this writing), thwarting an impor-
tant avenue for research into their newest founda-
tion model and adding an additional layer of opac-
ity into how their systems produce results (OpenAI,
2023). Likewise, as things stands today, the largest
(parameter-wise) foundation models from other re-
search consortiums such as DeepMind’s Gopher
(Rae et al., 2022), Google’s LaMDA (Thoppilan
et al., 2022), and Huawei’s PanGu-Sigma (Ren
et al., 2023) are all proprietary.

GPU Resources
We performed experiments on a range of LLM fam-
ilies and sizes. This required many hundreds of
hours of GPU usage (see Reproducibility in the
Appendix for details). In total, we batched over
100 model runs that required approximately 500
hours of GPU usage. For instance, testing LLaMA-
7B’s performance on the 22,974 Portuguese factual
associations in the dataset required 2.5 hours of
GPU usage with 1x T4. In addition to having to
schedule long-periods of compute uptime, we were
also constrained by fixed resource requirements,
using workstations with a single NVIDIA GPU.
Thus, we could not evaluate the gamut of truly mas-
sive (parameter-wise) models in our experiments.
Going forward, we believe more accommodations
need to be made for groups to effectively exper-
iment with LLMs, in particular as organizations
release models that require extremely demanding
compute requirements to host and run.

Ethics Statement

Although we test a language model’s ability to
serve as multilingual knowledge bases, we do not
find these models to be particularly reliable sources
of knowledge; none of the models scored above
90% for any of the languages that we tested. We
thus caution readers that LLMs should not be used
as an authoritative source of facts — whether in a
research setting such as this or in a real-world envi-
ronment. The test sheds light on the types of lan-
guages, topics, and contexts where LLMs are more
likely to produce factual errors, but the same meth-
ods might also enable a malicious actor to check
whether a particular set of facts is committed to
model memory and subsequently insert damaging
information into a model that was not originally
present in the training data with other methods,
such as the MEMIT algorithm proposed by Meng
et al. (2022b). Lastly, while our work points to the
need for testing low-resource languages, the test at
present is restricted to a relatively small number of
languages (20), most of which are high-resource.
We intentionally use the 20 languages included in
the LLaMA training dataset in this work. However,
future work must further explore fact-completion
testing for low-resource languages and devote at-
tention to a larger number of languages.
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Appendix

Reproducibility

Supporting code and data are openly released on
GitHub and Hugging Face, respectively. Text gen-
eration was conducted with the transformers5

and bitsandbytes6 packages (see Text Genera-
tion Configuration below for details). Subsequent
steps of the Polyglot or Not? test were executed
with the pytorch7 package. In regards to com-
pute resources, the experiments were performed on
workstations equipped with various Nvidia GPUs.
We employed 1x H100 (80 GB PCIe) for larger
models (e.g., LLaMA-65B), 1x A100 (40 GB
SXM4) for medium-sized models (e.g., LLaMA-
33B), and 1x T4 (15 GB) for smaller models (e.g.,
LLaMA-13b/7b).

Dataset Preprocessing

An in depth data preprocessing pipeline was ap-
plied to the dataset to improve its quality. The
Calinet (Dong et al., 2022) dataset originally con-
tained 50,451 stem/fact items which we consider
“valid” cloze statements, items where the masked
object appears on the right-hand side of the stem.
Many of these stem/fact pairings were paraphrased,
though, to support their model rewrite process,
which this paper does not explore. After removing
these paraphrased ⟨s, r, o⟩ triplet duplicates, we
were left with 11,960 statements from this data
pool. Meanwhile, the ROME (Meng et al., 2022a)
dataset contributed 21,919 valid stem/fact pairs, all
of which were unique ⟨s, r, o⟩ triplets. We merged
the data and were left with 33,870 items. From
there, we performed the following enhancements:

• Removed 227 stem/fact pairs that were manu-
ally flagged as errors

• Removed 371 stem/fact pairs with “a/an + _”
due to consistent grammatical errors

• Removed 3,088 stem/fact pairs where the cor-
rect fact is explicitly stated in the stem, ren-
dering the completion trivial

• Removed 610 stem/fact pairs that were rela-
tion P190 (sister city) due to consistent inac-
curacies

5https://github.com/huggingface/transformers
6https://github.com/TimDettmers/bitsandbytes
7https://github.com/pytorch/pytorch

• Removed 418 stem/fact pairs that were rela-
tion P140 (religion) to filter sensitive topics

• Removed 490 stem/fact pairs that were rela-
tion P530 (diplomatic ties) due to consistent
inaccuracies

• Removed 1,427 stem/fact pairs that were rela-
tion P27 (citizen of) due to consistent inaccu-
racies

• Removed 576 stem/fact pairs that were rela-
tion P463 (affiliated with) due to consistent
inaccuracies

• Removed 39 stem/fact pairs that compared
football with soccer due to cultural differences
in these word meanings

• Removed 131 stem/fact pairs with “expired at”
wording due to awkward phrasing

• Removed 50 stem/fact pairs with “-language”
wording due to awkward phrasing

• Removed 73 stem/fact pairs with facts/coun-
terfacts starting with “the” due to the fre-
quency of the word “the” in training datasets

• Removed 125 stem/fact pair duplicates to
retain a dataset of entirely unique ⟨s, r, o⟩
triplets

Our straightforward improvements provide more
validity to our pool of data and its ultimate use in
the Polyglot or Not? test, such as removing the
over 3,000 statements whose correct answer can be
found in the unmasked portion (bullet number 3).
See Table 7 for a handful of examples filtered out
during the above operations. After preprocessing,
we are left with 26,254 unique rows in the final
English-only subset of our dataset.

Geographic Labeling
We sought a labeled dataset of geographic entities
connected to the continents they’re located on.
To do so, we filtered our original dataset down
to the Wikidata relation IDs that most clearly
signal that a geographic entity, such as Paris
or France, occupies the subject of the stem:
capital (relation P17 + P1376), continent (P30),
country (P36), shares border with (P47), and is
in the territory of (P131). Then, we extracted
the unique, English translations of the subjects
from this data, leaving us with 3,427 “geographic”

11246

https://github.com/daniel-furman/Polyglot-or-Not
https://huggingface.co/datasets/Polyglot-or-Not/Fact-Completion
https://github.com/huggingface/transformers
https://github.com/TimDettmers/bitsandbytes
https://github.com/pytorch/pytorch


entities in our dataset. To more quickly move
into substantive analysis, we utilized a Generative
AI assistant, ChatGPT (gpt-3.5-turbo accessed
April, 2023)8, to label these entities by geographic
continent. Our prompt (see below) offered an
option for an “unsure” label if the assistant did not
know the correct answer, the location stretched
across multiple continents, etc. Of the 3,427 we
requested prompts for, the assistant labeled 3,213
with a tag for one of the world’s continents. To
verify the veracity of the labels we randomly
sampled 10% of the labeled data and found
that the affixed continent labels were correctly
applied to every entity in the validation sample.
The resulting labeled data provided interesting
terrain for mining insights, as detailed in the Sub-
ject Entity Error Analysis subsection. Prompt used:

I have a list of locations. Can
you return the continent on which they
are located in the following format:

Iran|AS
Bavaria|EU
Pennsylvania|NA

If there are items in the list that
don’t seem like locations or perhaps are
very difficult to classify you can write
“unsure” beside those, e.g.

WTJU-FM|unsure
Ottoman Empire|unsure

Gender Labeling

We also desired a labeled dataset of person entities
connected to their assigned birth gender, as
understood in the popular consciousness. To do
so, we filtered our original dataset down to the
Wikidata relation IDs that most clearly signal
that a person entity, such as Steve Jobs or Marie
Curie, occupies the subject of the stem: place of
death (relation P20), position held (P39), field of
work (P101), native language (P103), occupation
(P106, employer (P108), position played on team
(P413), sport (P641), work location (P937), and
instrument (P1303). We followed a near-identical
procedure for Gender Labeling as we did for
Geographic Labeling, using ChatGPT to label

8https://chat.openai.com

these identities by gender. However, because there
are far more people entities in our dataset after
filtering for these relation IDs (7,905 in total) we
randomly sampled a portion of them, extracting
1,200 unique entities to hand off to ChatGPT. Our
prompt (see below) for gender also offered an
option for an “unsure” label if the assistant did
not know the correct answer, the entity wasn’t a
name, etc. Of the 1,200 we requested prompts
for, the assistant labeled 1,057 with a gender tag.
To verify the veracity of the labels we randomly
sampled 10% of the labeled data and found that
the affixed gender labels were correctly applied
to every entity in the validation sample. The
resulting labeled data is also explored in the Sub-
ject Entity Error Analysis subsection. Prompt used:

I have a list of names. Can you
return the gender (male, female, or
other) in the following format:

Sundar Pichai|Male
Brigitte Fontaine|Female

If there are items in the list that
don’t seem like names or perhaps are very
difficult to classify, you can write
“unsure” beside those, e.g.

WTJU-FM|unsure
Wagnerian|unsure

Wikipedia Entity Analysis

To produce Table 6, we began by randomly sam-
pling 10k pages from every language of interest’s
Wikipedia via Wikipedia’s REST API. We did this
because we wanted to gather a sample of the text in
the article body for each language. From there, we
extracted the body content of these articles and per-
formed minimal preprocessing such as removing ci-
tations and navigation headers. With the clean page
content in hand, we then used a named-entity recog-
nition utility from SpaCy.9 SpaCy provides models
for 14 of the 20 languages LLaMA was tested on.
For each of these languages, the core_news_lg
tagger was used save for English where we used
the core_web_lg tagger. We then tallied counts
for the entities found in each page. We tracked
the overall and distinct number of entities found in

9https://spacy.io
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each article. We also stored the overall and distinct
subset of entities that are found in each article and
who appear in our dataset.

Text Generation Configuration
All tests were conducted with the same text gen-
eration hyper-parameters, by and large employing
the default configuration from the transformers
package. The principle deviation from the de-
fault settings in our tests was the use of mixed-
precision quantization; we explored the impact of
adjusting matrix multiplication precision on a given
model’s test performance to confirm the efficacy
of this method. Specifically, we ran LLaMA-7B
and LLaMA-13B on the English-only subset of
the dataset under both fp16 and 8-bit configura-
tions. In the case of fp16 precision, all values were
simply assigned the torch.float16 data type. For
8-bit precision, we adopted the mixed-precision
algorithm from the bitsandbytes package as pre-
sented by Dettmers et al. (2022), which utilizes
the torch.int8 data type for the majority of the
values and the torch.float16 data type for out-
liers. We found minute but noticeable differences
in model performance between the two precision
levels (0.35-0.47%, see Table 8). The savings in
GPU memory consumption, however, were much
more significant by comparison. By opting for 8-
bit over fp16 precision, we reduce the memory
footprint of the two models roughly in half. Based
on these results, we determined that the trade-offs
between performance and memory footprint were
acceptable for our test, as we were running tests on
relatively lightweight compute resources. We thus
elected to employ 8-bit precision throughout the
experiments.

Testing New Models
The results included herein exclusively feature
foundation models released before June 2023. We
have continued to test new LLM releases since
then, including Meta’s Llama-2 model family, Mis-
tral.ai’s Mistral-7B, and TII’s Falcon-180B. A reg-
ularly updated leaderboard is maintained at the
project repo, with the hopes that the Polyglot or
Not? test retains its relevance and impact as text-
based foundation models proliferate.10

10https://github.com/daniel-furman/polyglot-or-not
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language accuracy (%) pairs

English 89.40 (+/- 0.38) 26,254
German 85.74 (+/- 0.53) 16,287
Dutch 85.35 (+/- 0.46) 25,590
Italian 84.39 (+/- 0.49) 20,448
French 84.18 (+/- 0.52) 18,395
Swedish 84.06 (+/- 0.48) 21,576
Catalan 84.01 (+/- 0.52) 18,898
Portuguese 83.81 (+/- 0.48) 22,974
Romanian 82.72 (+/- 0.57) 17,568
Danish 81.79 (+/- 0.50) 23,365
Spanish 81.74 (+/- 0.57) 18,786
Czech 77.94 (+/- 0.84) 9,427
Polish 77.50 (+/- 0.84) 9,484
Croatian 76.69 (+/- 0.97) 7,358
Slovenian 75.99 (+/- 0.95) 7,873
Hungarian 75.74 (+/- 1.24) 4,650
Ukrainian 73.00 (+/- 0.98) 7,918
Bulgarian 72.50 (+/- 0.61) 20,577
Russian 69.72 (+/- 1.57) 3,289
Serbian 60.01 (+/- 1.30) 5,426
Random Baseline 50 -

Table 3: LLaMA-33B’s performance across languages. Here, accuracy denotes the LLaMA-33B model’s
performance assessed individually for each language, while pairs refers to the number of stem/fact items evaluated
per language. LLaMA-33B demonstrates higher proficiency with languages utilizing the Latin script as compared
to those using the Cyrillic script (Ukrainian, Bulgarian, Russian, and Serbian). A chi-squared test substantiates a
significant dependency of the model’s test performance on the language script (χ2 = 3570.58, p < 0.001). For a
graphical representation of these results, refer to Figure 1 below.

11249

https://arxiv.org/pdf/2302.13971.pdf


model accuracy (%) params n tokens

llama-65b 89.56 (+/- 0.37) 65.2B 1.4T
llama-33b 89.40 (+/- 0.38) 32.5B 1.4T
falcon-40b 87.01 (+/- 0.41) 40B 1T
llama-13b 86.66 (+/- 0.42) 12.5B 1T
llama-7b 85.53 (+/- 0.43) 6.7B 1T
redpajama-7b 85.07 (+/- 0.44) 7B 800B
mpt-7b 83.39 (+/- 0.46) 7B 1T
opt-30b 82.09 (+/- 0.47) 30B 180B
redpajama-3b 82.09 (+/- 0.47) 3B 800B
opt-13b 81.94 (+/- 0.46) 13B 180B
gpt-neox-20b 81.50 (+/- 0.47) 20B 420B
falcon-7b 81.34 (+/- 0.47) 7B 1.5T
gpt-j-6b 81.14 (+/- 0.47) 6B 420B
pythia-12b 80.53 (+/- 0.48) 12B 420B
t5-v1-xxl 76.55 (+/- 0.52) 13B 34B
bloom-7b1 76.16 (+/- 0.51) 7.1B 341B
gpt2-xl 73.76 (+/- 0.54) 1.5B -
bert 72.60 (+/- 0.54) 110M -
m-bert 71.80 (+/- 0.55) 110M -
stablelm-7b 68.85 (+/- 0.55) 7B 1.5T
distilgpt2 64.23 (+/- 0.59) 82M -
mt5-xxl 61.58 (+/- 0.59) 13B -
xlm-roberta 61.55 (+/- 0.59) 355M 295B
mt5-xl 59.96 (+/- 0.59) 3.7B -
Random Baseline 50 - -

Table 4: English-only test leaderboard. Here, accuracy refers to model performance on English data. The
uncertainty estimates are 95% confidence intervals computed from 10k bootstrap iterations. Params and n tokens
record each model’s number of parameters and number of dataset tokens, respectively (when such data is available).
Consistent with the trends in Table 1, LLaMAs of varying sizes emerge as the front-runners.
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language article count

English 6,513,291
German 2,698,267
Swedish 2,551,218
French 2,430,636
Dutch 2,092,862
Russian 1,828,011
Spanish 1,782,912
Italian 1,758,843
Polish 1,525,414
Ukrainian 1,160,183
Portuguese 1,093,217
Catalan 702,281
Serbian 659,580
Hungarian 505,754
Czech 505,105
Romanian 431,067
Bulgarian 282,130
Danish 280,923
Croatian 212,088
Slovenian 176,565

Table 5: Wikipedia page counts. The number of articles available on Wikipedia during LLaMA’s training time
period of June 2022, as reflected by the article count for each language surfaced on archive.org (arranged descending
by article count). Even a high-resource language like Romanian possesses a rather small Wikipedia in comparison
to other languages like French. (The corresponding archive.org URLs, which link to the initial archived copy of the
language’s homepage on or as close as possible to June 15th, 2022 can be found in our codebase.)
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language words entities unique entities targets unique targets accuracy (%)

Catalan 384.43 26.51 19.54 3.82 2.31 84.01
Croatian 273.29 24.98 19.68 0.87 0.60 76.69
Danish 255.77 22.71 16.90 3.30 2.07 81.79
Dutch 156.54 25.25 19.78 1.85 1.28 85.35
English 463.15 70.12 50.19 6.86 3.68 89.40
French 491.93 36.82 26.27 4.49 2.58 84.18
German 418.59 40.95 30.46 3.90 2.40 85.74
Italian 391.67 31.09 21.52 3.96 2.24 84.39
Polish 214.29 32.70 25.74 0.90 0.60 77.50
Portuguese 320.44 24.95 17.86 3.60 2.18 83.81
Romanian 231.10 42.72 33.68 2.39 1.62 82.72
Russian 382.84 35.70 26.35 0.86 0.58 69.72
Spanish 470.56 33.04 23.80 4.25 2.41 81.74
Swedish 95.03 9.37 7.42 1.30 0.95 84.06
Ukrainian 283.64 25.32 19.90 1.21 0.80 73.00

Table 6: Wikipedia content analysis. Results of performing named-entity recognition on a random sample of 10k
Wikipedia articles across 15 languages (arranged alphabetically by language name). Reported metrics correspond to
per-page averages: words is the article word count as reported by SpaCy’s language specific tokenizer. Entities and
unique entities represent the total and distinct entity counts, respectively, from SpaCy’s named-entity recognition
tagger on the page text while the targets and unique targets columns correspond to the counts of entities that occupy
the subject position of stems in our dataset. LLaMA’s test accuracy for each language occupies the right-most
column, as is also displayed in Table 1 and Figure 1. We find that LLaMA’s performance is significantly correlated
with the number of unique target entities found in our sampled pages (Pearson’s r = 0.78, p < 0.001). Other
takeaways include the rather low average word count of articles on Swedish language Wikipedia due to its high
proportion of machine generated pages.

stem true false(s) notes

“Porsche Panamera is developed by” “Porsche” “BMW” Answer in stem
“Vincent van Gogh took up work in” “The Hague” [“Belfast”, “Worpswede”] “The” in true

“Muhammad is follower of” “Islam” “Buddhism” Religion relation
Table 7: Examples of data filtered out by preprocessing. Here, we show a small sample of items that were filtered
out by the preprocessing pipeline, with steps detailed in Dataset Preprocessing above. The first and third items
originate from Meng et al. (2022a) while the second item originates from Dong et al. (2022).

model precision accuracy (%) memory footprint (GB)

llama-13b fp16 87.01 (+/- 0.40) 26.2
llama-13b 8-bit 86.66 (+/- 0.42) 14.5
llama-7b fp16 86.00 (+/- 0.42) 14.7
llama-7b 8-bit 85.53 (+/- 0.43) 8.3

Table 8: Quantization experiments for LLaMA-7B and LLaMA-13B. Here, accuracy denotes the model’s
performance on English-only data. A small dip in accuracy (0.35-0.47%) is observed between fp16 and 8-bit
precisions.
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Figure 1: LLaMA-33B’s performance across languages, visualized. The model (blue) scores higher on languages
written in Latin script than those written in Cyrillic script (Ukrainian, Bulgarian, Russian and Serbian). A chi-
squared test confirms that the model’s test performance is dependent on language script (χ2 = 3570.58, p < 0.001).
For a tabular representation of these results, refer to Table 3 above.
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