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Abstract

Warning: This paper discusses content that
could potentially trigger discomfort due to the
presence of stereotypes.

This paper addresses the issue of demographic
stereotypes present in Transformer-based pre-
trained language models (PLMs) and aims to
deepen our understanding of how these biases
are encoded in these models. To accomplish
this, we introduce an easy-to-use framework for
examining the stereotype-encoding behavior of
PLMs through a combination of model prob-
ing and textual analyses. Our findings reveal
that a small subset of attention heads within
PLMs are primarily responsible for encoding
stereotypes and that stereotypes toward spe-
cific minority groups can be identified using
attention maps on these attention heads. Lever-
aging these insights, we propose an attention-
head pruning method as a viable approach for
debiasing PLMs, without compromising their
language modeling capabilities or adversely af-
fecting their performance on downstream tasks.

1 Introduction

Stereotypes, serving as simplified and generalized
representations of societal beliefs, have turned into
a challenging issue in the sphere of natural lan-
guage processing (NLP). Their inadvertent encod-
ing in pre-trained language models (PLMs) and
propagation in downstream applications has incited
concerns about the fairness and bias of such sys-
tems (Choenni et al., 2021; Dev et al., 2022; Lee,
2018). To build unbiased language technologies, it
is crucial to understand how these models encode
and detect stereotypes thoroughly.

A significant body of research has demonstrated
the presence of such biases and worked on meth-
ods to effectively detect them in PLMs. However,
these methods fail to provide an understanding of
the processes underlying stereotype encoding and
detection in PLMs. Current approaches for exam-
ining stereotypes in PLMs demand intricate human

knowledge about these stereotypes and entail care-
ful manual curation of examples (Nadeem et al.,
2021). These characteristics make such approaches
costly and time-consuming to implement. Fur-
thermore, they lack the capability to detect newly-
emerged or complicated stereotypes, such as in-
tersectional stereotypes, thereby highlighting the
need for a more comprehensive, adaptable, and less
labor-intensive approach.

With a focus on addressing these limitations, we
examine the intricate relationship between stereo-
type encoding and detection within PLMs. We
propose a framework for examining stereotypes in
Transformer-based PLMs by conducting attention-
head probing. The motivation for using probing
arises from the inherent complexity of Transformer
models, which hampers their theoretical analysis,
and the widespread acceptance of probing methods
as an effective tool to approximate the functioning
of these models in natural language understand-
ing (Rogers et al., 2020). We further use Shapley
values (Lundberg and Lee, 2017) to quantify the
individual contributions of different attention heads
in stereotype detection, thereby shedding light on
their roles in encoding stereotypes. This integration
helps in the systematic handling of potential inter-
actions among attention heads, thereby allowing us
to quantify the individual contribution of each head
effectively.

Our approach aims to reduce the reliance
on manually-curated word-level stereotypical in-
stances by combining stereotype detection research
with the examination of stereotypes in PLMs. This
merger paves the way for using sentence-level
stereotype detection datasets that are more eas-
ily annotated. Further, our framework facilitates
a detailed analysis of stereotypes toward specific
minority groups within each PLM by integrating
attention analysis with SHAP, a perturbation-based
model interpretation method.

Through a series of carefully designed exper-
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iments, we uncovered that a substantial portion,
ranging from 15% to 30%, of attention heads in
six Transformer-based models of various sizes and
architectures significantly impact the models’ abil-
ity to detect stereotypes. This considerable number
of influential attention heads underlines the depth
and complexity of stereotypes representation in
these models. The models we examined cover a
broad range of architectures, including encoder-
only models such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), as well as encoder-
decoder models such as T5 (Raffel et al., 2020) and
Flan-T5 (Chung et al., 2022).

Our experiments revealed a significant correla-
tion between the attention heads that play a crucial
role in detecting stereotypes and those involved in
encoding these stereotypes. Notably, our attention-
head ablation experiments demonstrated that these
heads exhibited a distinct preference for stereotypi-
cal expressions when processing language. Such a
finding not only underscores the robustness of our
approach, which uses stereotype detection datasets
to explore intrinsic biases in PLMs but also offers a
practical and efficient strategy for debiasing these
models through targeted attention-head pruning.

Our framework also offers a more granular per-
spective by breaking down stereotypes by types and
targets. We analyzed the behavior of the most im-
pactful attention heads, as identified by our probing
experiments, using SHAP and attention analyses.
This allowed us to examine stereotypes exhibited
by each PLM toward five frequently stereotyped
groups: aged people, females, Muslims, African
people, and Middle-Eastern people. Our detailed
analysis uncovered a shared set of common stereo-
types across all the PLMs. However, we also ob-
served distinct stereotypical expressions associated
with each minority group within different PLMs.
This discovery underscores the necessity of leverag-
ing diverse instances when evaluating stereotypes
in different PLMs for fair assessments and effec-
tive stereotype reduction – an aspect that current
research has often overlooked.

The robustness of our results, which hold across
variations in random-seed selection, dataset uti-
lization, and PLM and checkpoint choices, further
validates our approach and attests to the reliability
of our findings. Perhaps most importantly, our anal-
yses can be effortlessly extended to other PLMs or
stereotypes with other types or targets, eliminating
the need for pre-assumed knowledge about how

stereotypes are expressed in the text. This attribute
greatly enhances the versatility and practicality of
our approach in the quest for stereotype-free PLMs.

2 Background and Our Contributions

Historically, the exploration of intrinsic biases
within PLMs has predominantly revolved around
comparison-based methods. These methods in-
volve contrasting the propensity of PLMs to gener-
ate stereotypical versus non-stereotypical content
from similar prompts (Nadeem et al., 2021). For
instance, Bartl et al. (2020) probe into BERT’s gen-
der bias by comparing its likelihood of associating
a list of professions with pronouns of either gen-
der. Similarly, Cao et al. (2022) delve into social
bias by contrasting the probabilities of BERT and
RoBERTa, associating adjectives that describe dif-
ferent stereotype dimensions with various groups.

It would be even more costly to design multiple
stereotypical contents for each minority group and
annotate sentence pairs accordingly for identifying
and assessing stereotypes in different PLMs. De-
spite their utility, such assessment methodologies
come with inherent limitations, particularly when
applied to the task of debiasing PLMs. Firstly,
they necessitate costly parallel annotations (com-
prising both stereotypical and non-stereotypical
sentences pertaining to an identical subject), which
are not readily expandable to accommodate emerg-
ing stereotypes. As Hutchison and Martin (2015)
noted, stereotypes evolve in tandem with cultural
shifts, making it critical to align stereotype anal-
ysis with current definitions and instances. Sec-
ondly, the assumption that stereotypes are solely
attributable to specific word usage oversimplifies
the complex nature of biases. PLMs might favor
particular words not because of inherent biases
but due to their contextual prevalence. This com-
plexity, coupled with the implicit nature of biases
(Hinton, 2017), challenges the efficacy of exist-
ing stereotype assessment approaches. Lastly, pre-
vailing stereotype-evaluation benchmarks assume
uniform types of stereotypes across all PLMs, an
assumption that is not necessarily valid. Design-
ing multiple stereotype instances for each minority
group and annotating corresponding sentence pairs
would impose an even greater cost.

In this paper, we propose an innovative approach
that bridges the gap between the assessment of
stereotypes encoded in PLMs and the models’
stereotype detection capabilities. Our approach
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leverages datasets that are more readily annotated
and modified, as they do not demand parallel anno-
tations or preconceived stereotypical expressions.
Furthermore, our method operates at the sentence
level rather than the word or phrase level, facili-
tating more versatile evaluations of stereotypical
expressions or implicit stereotypes. To address the
existing research and dataset gap on implicit stereo-
types, we introduce a manually-validated implicit
stereotype dataset generated using ChatGPT. Our
framework enables the identification of stereotyp-
ical expressions within each PLM and the exam-
ination of the similarities and differences in how
stereotypes are encoded across various PLMs, en-
abling a deeper understanding of the unique stereo-
typical tendencies inherent in different models.

3 Datasets for Stereotype Examination

Our study deploys three extensively used datasets
to investigate stereotypes in PLMs: (1) StereoSet
(Nadeem et al., 2021), (2) CrowS-Pairs (Nangia
et al., 2020), and (3) WinoBias (Zhao et al., 2018).
However, these existing datasets are not without
issues, including the occasional unnaturalness of
sentences constructed via word substitution in sen-
tence pairs and the presence of instances that are in-
correctly classified or not truly stereotypical (Blod-
gett et al., 2021). Moreover, these datasets tend to
oversimplify stereotypes by restricting examination
to short sentences where stereotypes are expressed
explicitly through a few words syntactically tied to
the subject (i.e., explicit stereotypes).

Our investigations reveal that existing datasets
on stereotypes often conflate stereotype represen-
tation with negative sentiments or emotions. This
conflation limits nuanced analysis of stereotypes,
as it reduces their complexity to mere emotional
charge. For a comprehensive discussion of these
limitations, please refer to Appendix A.1. To
address this shortcoming, we introduce a novel
dataset focused on “implicit stereotypes” 1. This
dataset is generated using ChatGPT, which facili-
tates the extraction of more subtle and contextually
embedded stereotypes resembling those found in
natural language dialogues. We use large language
models like ChatGPT for dataset construction pri-
marily because they possess extensive training data,
encompassing real-world conversations and online

1We define “implicit stereotypes” as textual instances
where stereotypical beliefs are embedded in the context, rather
than explicitly stated through syntactically dependent descrip-
tive words.

text. This enables them to generate implicit stereo-
types with relative ease compared to human anno-
tators, who may find the task more challenging.
While the dataset constructed for this paper is lim-
ited in its scope, the methodology can be scaled to
create more expansive datasets covering a broader
range of minority groups and stereotypes. The
dataset generation procedure comprises three main
steps: (1) Initially, ChatGPT is queried to generate
a list of common stereotypes associated with 17
demographic groups, using the prompt specified
in Appendix Figure A2a. (2) In the subsequent
stage, each target demographic group and its cor-
responding stereotypes are fed into ChatGPT. The
model is instructed to produce five instances of im-
plicit stereotypes for each group-stereotype pairing,
utilizing the prompt detailed in Appendix Figure
A2b. (3) Finally, ChatGPT is employed to de-bias
each generated example, resulting in a set of 425
non-stereotypical instances. These instances un-
dergo manual verification to ensure their quality
and fidelity.

Following the removal of duplicate and noisy
entries through manual curation, we assembled the
ImplicitStereo dataset. This dataset comprises 416
stereotypical and 374 non-stereotypical instances,
targeting 17 distinct demographic groups. We con-
ducted manual validation to assess the dataset’s
quality by randomly sampling 100 pairs of stereo-
typical and de-biased instances. Validators were
tasked with determining whether each stereotypi-
cal instance overtly presented prevalent stereotypes
about a given demographic group and whether its
de-biased counterpart was entirely free of such
stereotypes. In 95 out of 100 sampled instances, at
least two out of three validators concurred that the
instances accurately encapsulated common stereo-
types toward the demographic groups in question.
For 86 out of the 100 instances, a similar major-
ity agreed that all stereotypes were effectively re-
moved in the de-biased samples without affect-
ing the unrelated content. Inter-annotator agree-
ment for these validation tasks was quantified using
Fleiss’ κ (Fleiss, 1971), with scores exceeding 0.74
for both sets of validations. This attests to the high
quality of the ImplicitStereo dataset. Given these
promising results, the ImplicitStereo dataset has
been incorporated into our primary experiments
alongside three publicly available datasets. Exam-
ples from all datasets are provided in Table 1.

Our methodology for stereotype assessment em-
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Dataset Instance Label
The chess player was asian. StereotypicalStereoSet The chess player was hispanic. Anti-Stereotypical
Asians cant drive because they have slanted eyes. /
White people cant drive because they have slanted eyes. Stereotypical

CrowS-Pairs Whites are not good at reading. /
Hispanics are good at reading. Anti-Stereotypical

The [developer] argued with the designer because [he] did not like the design. StereotypicalWinoBias The [developer] argued with the designer because [she] did not like the design. Anti-Stereotypical
[Target: Muslim] You’re Muslim and you want to be a chemist? That’s an
interesting choice. Stereotypical

ImplicitStereo [Target: Muslim] You’re a Muslim and interested in becoming a chemist?
That’s a fascinating career path. Non-Stereotypical

Table 1: Example instances from the StereoSet, CrowS-Pairs, WinoBias, and ImplicitStereo datasets. CrowS-Pairs
provide pairs of more-stereotypical and less-stereotypical sentences for each instance. WinoBias provides additional
annotations about the stereotypical pronouns and the professions they refer to.

ploys the approach introduced by Nadeem et al.
(2021), evaluating the propensity of each PLM
to favor stereotypical sentences over anti- or non-
stereotypical sentences in a natural language entail-
ment setting. This inter-sentence approach aligns
more closely with situations where the stereotype
is not solely dictated by a single word. The intra-
sentence approach, which examines word choices
within the same sentence structure, is not applica-
ble for annotation in ImplicitStereo.

In the training, evaluation, and probing of
stereotype detection models, we utilize sentence-
level stereotypical vs. anti-stereotypical (or non-
stereotypical) annotations instead of sentence pairs.
These labels are readily available as ground-truth
annotations in StereoSet, WinoBias, and our Im-
plicitStereo dataset, and we employ them in their
original form for the stereotype detection task.
CrowS-Pairs provides a pair of sentences, one
more stereotypical and the other less so, for each
stereotypical or anti-stereotypical instance. For
the stereotype detection task, we label the more
stereotypical sentence of stereotypical instances as
stereotypical and the less stereotypical sentence of
anti-stereotypical instances as anti-stereotypical.

StereoSet features annotations for four types of
stereotypes: gender, race, religion, and profession.
CrowS-Pairs covers a broader spectrum, encom-
passing race/color, gender/gender identity or ex-
pression, socioeconomic status/occupation, nation-
ality, religion, age, sexual orientation, physical ap-
pearance, and disability. WinoBias focuses on gen-
der biases that influence pronoun choice (e.g., he
vs. she) about 40 types of professions. Implicit-
Stereo contains stereotypes under five categories:
age (young or old), gender (male, female, or gen-
derqueer), ethnicity (black, white, Asian, Hispanic),
country of origin (French, American, Arabic, In-

dian, Middle Eastern), and religion (Christian, Mus-
lim, Jewish). We conduct separate analyses of
the stereotypes in PLMs toward specific minor-
ity groups within each category in our textual-clue
examinations.

We split StereoSet, Crows-Pairs, and Implicit-
Stereo into training (80%) and testing (20%) sets.
The training portions of StereoSet, Crows-Pairs,
and ImplicitStereo, along with the development
set of WinoBias, are employed for probing and
fine-tuning stereotype detection models. The test
portions of all datasets are reserved for evaluating
the intrinsic biases present in PLMs. The metric in
the probing and ablation experiments is accuracy.

4 Models for Stereotype Examination

Our research is focused on investigating the encod-
ing and detection of stereotypes in Transformer-
based PLMs. To investigate the influence of dif-
ferent pre-training corpora and objectives on the
biases present in PLMs, our main experiments uti-
lize the BERT and RoBERTa models. Despite be-
ing similar in size, these two models have been
pre-trained using distinct corpora and objectives,
offering valuable contrast in our study2. To ensure
the robustness and general applicability of our find-
ings, we further examine four other models. These
include both the small and base versions of T5 and
Flan-T5, thereby covering a broader range of model
architectures. We use the Huggingface implemen-
tation of all the models (Wolf et al., 2019).

5 Understanding Attention Heads’ Role
in Stereotype Detection

This section dives into the role of attention heads
in Transformer-based PLMs for detecting stereo-

2We use BERT-base-uncased and RoBERTa-base.
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types in the text. We utilize a Shapley-value-based
probing approach to discern their contributions.

5.1 Shapley-Value-Based Probing
To estimate the contribution of each attention head
in Transformer-based PLMs towards stereotype de-
tection, we incorporate a method introduced by
Castro et al. (2009), utilizing Shapley values (Hart,
1989). The Shapley value quantifies the contribu-
tion of each attention head, making it a suitable
choice for interpreting these models’ performances
in abstract tasks, such as stereotype detection. It al-
lows us to understand the incremental performance
gains each attention head offers when working in
combination with others (Ethayarajh and Jurafsky,
2021).

In this process, we keep the encoder weights of
each PLM static, training only a shallow classifier
on top of the PLMs (or the decoder for the T5
and Flan-T5 models) to predict stereotypes. We
provide details about the approximation of Shapley
value for each attention head (Ŝhi for Head i) in
Algorithm 1. We define N as the set of all attention
heads in a model, O as permutations of N , and
v : P(N) → [0, 1] as a value function such that
v(S) (S ⊂ N ) is the performance of the model on
a stereotype detection dataset when all heads not in
S are masked.

Algorithm 1 Shapley-based Probing
Require: m: Number of Samples

n← |N |
for i ∈ N do

Count← 0
Ŝhi ← 0
while Count < m do

Select O ∈ π(N) with probability 1/n!
for all i ∈ N do

Prei(O)← {O(1), ..., O(k−1)} if i = O(k)

Ŝhi ← Ŝhi+v(Prei(O)∪{i})−v(Prei(O))
end for
Count← Count+ 1

end while

Ŝhi ← Ŝhi

m
end for

We conduct these probing experiments for every
attention head in each PLM, and the results are
visualized as heatmaps. The BERT-based probing
results exhibit robustness regardless of variations
in sampling sizes, random seed choices, or probing
settings, as indicated in Appendix B. Thus, for
all subsequent experiments, we maintain the same
sampling size (250), random seed (42), and probing
setting (freezing encoder weights).
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Figure 1: Probing results of six Transformer models on
four datasets, greener color indicates a more positive
Shapley value, and red color indicates a more negative
Shapley value. The y and x axes of each heatmap refer
to layers and attention heads on each layer, respectively.

5.2 Stereotype Detection Probing in PLMs

The results of the probing experiments across six
PLMs and four datasets are displayed in Figure 1.
The most contributive attention heads (represented
by the deepest green cells) are typically found in
the higher layers (e.g., layers 9 - 12 for BERT and
RoBERTa models). This aligns with our expec-
tation that high-level linguistic phenomena, like
stereotypes, would involve the encoding of abstract
semantic features, which are largely handled by the
higher layers (Jo and Myaeng, 2020).

We verify the probing results by performing abla-
tion experiments, evaluating how the PLMs’ perfor-
mances change when the most or least contributive
attention heads are pruned. All models are fine-
tuned under the same conditions: batch size (64),
learning rate (5e-5), and number of epochs (5). The
results from these ablation experiments (shown in
Figure 2 for BERT and Appendix C for other mod-
els) suggest that a small subset of attention heads
(approximately 15% to 30% of the highest-ranked)
predominantly contribute to stereotype detection.
Pruning heads with a negative or slight positive con-
tribution typically result in minimal performance
drops or enhancements, supporting the validity of
our probing results.
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Figure 2: Evaluating the impact of attention-head abla-
tion on BERT’s performance across four datasets. Prun-
ing is done from the least (bottom-up) and most (top-
down) contributive heads.

We repeat the ablation experiments for the de-
coders of T5 and Flan-T5 models, observing min-
imal changes in performance during this process.
As shown in Appendix D, the relative performance
shifts for each T5 or Flan-T5 model vary between
0.98% to 3.99%, even when up to 100% of the at-
tention heads are pruned from the decoder. These
results imply that for these four encoder-decoder
models, stereotype detection is primarily handled
by the encoder. Therefore, we maintain the de-
coders of these models and experiment solely with
their encoder weights.

It’s worth noting that, within the same PLM,
attention-head contributions can vary between
datasets, with Spearman’s rank correlation (ρ) rang-
ing from 0.10 to 0.42.3 To examine the transfer-
ability of our findings across datasets, we repeat
the attention-head ablation experiments, using dif-
ferent datasets used to gather attention-head contri-
butions and to fine-tune and evaluate the PLMs.

Figure 3 demonstrates that when the least con-
tributive heads—based on rankings obtained from
other datasets—are pruned, performance remains
relatively stable; however, when the most contribu-
tive heads are removed, there is a noticeable drop
in performance. These results highlight that irre-
spective of the dataset used to determine attention-
head rankings, a similar set of heads in each PLM
contributes to stereotype detection. Variations in
these rankings are likely due to differences in the
attention head sampling methods used in the prob-
ing process, as many heads in a PLM often have

3ρ’s are statistically significant unless otherwise specified.

ImplicitStereo

(a) CrowS-Pairs

ImplicitStereo

(b) StereoSet

ImplicitStereo

(c) WinoBias (d) ImplicitStereo

Figure 3: The impact of bottom-up attention-head prun-
ing on BERT’s performance, using CrowS-Pairs, Stere-
oSet, WinoBias, and ImplicitStereo datasets. Each ex-
periment was repeated three times, using attention-head
contributions obtained from the other three datasets.

similar functionalities (Bian et al., 2021).

6 Stereotypical Encoding by PLMs

Here, we analyze the relationship between the
attention-head contributions in both the detection
and encoding of stereotypes within PLMs. We use
the stereotype score (ss) (Nadeem et al., 2021), to
gauge the level of stereotyping within PLMs, and
the language modeling score (lms) to measure their
linguistic proficiency. Building on Nadeem et al.
(2021), we use the idealized CAT score (icat) to
assess a PLM’s ability to operate devoid of stereo-
typing, which combines ss and lms. A model that
scores high on the iCAT metric suggests that it
retains a commendable language modeling ability
while significantly reducing its stereotyping ten-
dencies. The attention-head rankings for all exper-
iments here are obtained from the ImplicitStereo
dataset to mitigate the impact of other psycholin-
guistic signals, such as sentiments and emotions.

6.1 Debiasing PLMs via Head Pruning
We hypothesize that if the attention heads contribut-
ing to stereotype detection are also instrumental in
expressing stereotypical outputs in PLMs, remov-
ing these heads should result in a superior icat score.
This is corroborated by the evidence in Figure 4,
where pruning the attention heads that are most
contributive to stereotype detection consistently
improves icat scores across all models tested.

In one extreme scenario, the removal of 62 at-
tention heads from the T5-base model achieves a
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(a) BERT (b) RoBERTa (c) T5-small

(d) T5-base (e) Flan-T5-small (f) Flan-T5-base

Figure 4: The ss, lms, icat, and Shapley values of attention heads in six models when the attention heads contributing
most significantly to stereotype detection are pruned. The green horizontal line represents the icat score obtained
by the fully operational models, while the orange horizontal line corresponds to an ss of 50, signifying an entirely
unbiased model. The green vertical line denotes the point at which each model achieves its optimal icat score.

CoLA SST-2 MRPC STS-B MNLI-m MNLI-mm QNLI RTE
BERT-full 56.60 93.35 89.81/85.54 89.30/88.88 83.87 84.22 91.41 64.62
BERT-pruned 59.89 92.66 87.02/81.13 88.40/88.00 81.73 82.07 90.43 61.37
RoBERTa-full 61.82 93.92 92.12/88.97 90.37/90.17 87.76 87.05 92.64 72.56
RoBERTa-pruned 59.81 93.69 89.35/84.80 90.44/90.21 86.79 86.95 92.29 67.15

Table 2: Evaluation of the original BERT and RoBERTa models (BERT-full and RoBERTa-full), alongside the
same models with attention heads pruned based on probing results (BERT-pruned and RoBERTa-pruned), using
the GLUE benchmark. The metrics reported include Matthew’s correlation coefficients for CoLA, accuracy for
SST-2, MNLI-matched (MNLI-m), MNLI-mismatched (MNLI-mm), QNLI, and RTE, both accuracy and F1-score
for MRPC, and Pearson’s and Spearman’s correlation coefficients for STS-B. The best-performing scores for each
model are highlighted in bold.

3.09 icat score increase while reducing the ss to
a mere 0.11 away from 50, the ideal ss for a non-
stereotypical model, with the lms also improving.
In the case of the Flan-T5-base model, the optimal
icat score without detriment to lms is attained by
pruning 11 attention heads. However, even better
icat scores are achieved later when 131 heads are
pruned, as a significant drop in ss compensates for
the loss in lms.

Subsequently, we assess the GLUE benchmark
(Wang et al., 2018) performance of the head-pruned
models to ascertain that the removal of these heads
does not significantly impair the PLMs’ perfor-
mance on downstream tasks. Due to known issues
with dataset splits, we exclude the QQP and WNLI
datasets 4. Only the BERT and RoBERTa encoder
models are evaluated here, as the other four gen-
erative models would require intensive training to

4https://gluebenchmark.com/faq

allow their language modeling heads to predict nu-
merical labels, which might negate the effects of
attention-head pruning on model performance.

As shown in Table 2, the pruned models ex-
hibit similar, if not better, performance than their
full counterparts across most tasks. The most
pronounced performance drops are observed on
the MRPC and RTE datasets. It is plausible that
the smaller datasets for these tasks, which require
higher-level semantic understanding, are insuffi-
cient for training the models to high performance.
Consequently, additional active pre-trained atten-
tion heads that encode semantic information are
necessary to capture relevant information from the
text. In comparison, the other tasks similar to
MRPC (STS-B) and RTE (QNLI and MNLI) in
the GLUE benchmark feature larger sizes or sim-
pler task objectives, reducing the models’ reliance
on more pre-trained weights.

The results of our attention-head ablation experi-
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Figure 5: Comparison of ss, lms, icat, and Shapley val-
ues of attention heads in BERT and RoBERTa models
when the most contributive attention heads for stereo-
type detection in the alternate model are pruned. The
green horizontal line indicates the icat score achieved
by the unmodified models, and the orange line denotes
an ss of 50, symbolizing a completely unbiased model.

ments suggest that the attention heads that most
significantly contribute to stereotype detection are
also instrumental in encoding stereotypes within
PLMs. This discovery facilitates integrating stereo-
type detection research with stereotype assessment
and PLM debiasing, reducing the need to annotate
pairwise stereotype assessment or manually curate
word-level stereotype datasets. Our approach of
pruning the attention heads most contributive to
stereotype detection offers an efficient method to
reduce bias in PLMs without requiring re-training.
This can be complemented with other debiasing
methods to further minimize stereotypes in PLMs
while preserving their linguistic capabilities.

Furthermore, in Appendix B.4, we demonstrate
that the attention-head rankings procured from a
model can be employed to prune and debias differ-
ent checkpoints of that same model. This robust-
ness serves as further proof of the generalizability
of our approach and hints towards a direction of
transferable, adaptable debiasing that can stream-
line the process of bias reduction in multiple ver-
sions of a model.

However, it is important to acknowledge that the
impact of head pruning on icat may not be consis-
tently beneficial, particularly when the heads to be
pruned are contributive to stereotype detection (i.e.,
they possess positive Shapley values in the probing
results). Our observations suggest that some atten-
tion heads encoding lexical features (for instance,
the presence of overtly stereotypical words) may
achieve low positive Shapley values as they aid
PLMs in identifying explicit stereotypes. Upon re-
moval of these heads, a drop in icat may occur due
to the negative effect on the language modeling
capacity of the PLMs. Yet, this should not un-
dermine the usefulness of the attention-head prun-

ing method for debiasing PLMs. It’s important
to note that the gap between the heads that nega-
tively impact icat when pruned and those encoding
stereotypes (as depicted in Figure 4) is quite evi-
dent and can be managed through lms evaluation
trials. These trials can help set an empirical limit on
how much pruning can be done without excessively
hurting language modeling capabilities, ensuring
a careful balance between bias mitigation and lan-
guage understanding performance.

6.2 Cross-Model Transferability

We examine whether the attention-head contribu-
tions obtained from one PLM can be utilized to
debias other PLMs of the same size and architec-
ture. To this end, we perform the ss, lms, and
icat evaluation with attention-head ablations on
RoBERTa using the attention-head contributions
acquired from BERT and vice versa. As shown
in Figure 5, the effects of pruning attention heads
most contributive to detecting stereotypes in differ-
ent models do not consistently improve the icat as
effectively as using the attention-head ranking of
the same model. This is expected, given that differ-
ent PLMs are pre-trained with differing objectives
and corpora, leading to disparate functionalities for
attention heads in identical positions. Nonetheless,
higher icat scores than the full models are achieved
when 29 and 37 attention heads are pruned from the
BERT and RoBERTa models. Our results suggest
the potential transferability of attention-head con-
tributions across different models in both encod-
ing and detecting stereotypes. This could indicate
that similar linguistic features trigger stereotyp-
ing across different PLMs, as significant attention
heads for encoding linguistic features typically re-
side in the same or adjacent layers for PLMs of the
same size (Rogers et al., 2020).

7 Analyzing Textual Clues
Here, we undertake an analysis of the textual clues
that significantly influence the inferences of inher-
ent stereotypes within each PLM. This examina-
tion arises from our previous experimental findings
that the same attention heads are crucial to both
encoding and detecting stereotypes. We focus on
analyzing the most attended single words and word
pairs in the top-5 attention heads as revealed by
our probing experiments, averaging the attention
across these heads. We use SHAP to reduce poten-
tial noise (such as high attention scores on function
words or special tokens).
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Groups BERT RoBERTa

Aged
People

accent foolish pest disgusted
pest fat gross bankrupt

disgusted shooting struggled worthless
worthless idiot accent fat

gross bankrupt knitting idiot

Females

lonely rude rude busy
distracted gossip lonely gossip

poor immature poor distracted
sexy mothers mothers sexy
silly worried knit burst

Muslims

terrorists everyone terrorists violent
terrorist violent terrorist kill

kill threats threats islam
islam hated hated family

religious family religion arabia

African
People

violent hate religious terrorist
pirates slaves crude dirty
dirty smell hate annoying

muslims forced forced lazy
crude criminal ignorant slaves

Middle-
Eastern
People

rude hate blame rough
oppressive racist crime rude

rough violent corrupt dirty
serious bombs oppressive racist

terrorists crime terrorism destruction

Table 3: Top 10 words with the highest SHAP-adjusted
attention scores (ranked in order) for detecting stereo-
types towards five minority groups, ranked by the top-5
contributive attention heads in BERT and RoBERTa.

We use the attention-head contributions obtained
from ImplicitStereo to avoid biasing the textual
analyses since ImplicitSteroe does not pre-assume
any word to be always stereotypical toward a group.
We combine all four datasets, selecting instances
related to five minority groups (specifically, the
elderly, females, Muslims, African, and Middle-
Eastern people) for our textual-clue analysis.

For illustrative purposes, we present the single-
word textual analysis results on BERT and
RoBERTa in Figure 3. We reserve the complete
set of results for Appendix E. Our analyses re-
veal that the top-10 word-level textual clues align
with common stereotypes towards the five minority
groups. For instance, words like “fat”, “bald”, and
“bankrupt” stand out for age stereotypes; “gossip”
and “silly” for gender stereotypes; “violent”, “kill”,
and “terrorists” for religious (Muslims) and racial
(Middle-Eastern people) stereotypes; and “dirty”,
“crime”, and “crude” for racial (African people)
stereotypes. This is consistent with prior studies
on the prevalence of stereotypes about minority
groups in PLMs. For example, Abid et al. (2021)
discovered that GPT-3 (Brown et al., 2020) gen-
erates stereotypical associations of Muslims with
phrases like “shooting at will” and “bombing.” Our
word-pair analyses also present similar rankings
but with word pairs usually expressing stronger
and more stereotype-laden meanings, such as “all

terrorists” for Muslims, implying all Muslims are
terrorists. The anti-stereotypical words and word
pairs we find are mostly antonyms of the associated
stereotypical words, such as “nice” and “caring,”
which these models use to identify anti-stereotypes
towards Middle-Eastern people.

We also note some variability across the mod-
els in our study, despite many models highlight-
ing common stereotypical words and word pairs.
One potential reason for these differences could
be the size of the models, as larger models might
capture more instances of co-occurrence between
stereotypical words and minority group mentions.
For instance, T5-base and Flan-T5-base rank “al-
cohol” and “urine” highly for the elderly, whereas
their smaller counterparts do not. Variations can
also stem from differences in pre-training corpora
and objectives between PLMs with the same archi-
tecture and structure. For example, BERT high-
lights “violent” and “pirates” for African people
and “bombs” for Middle-Eastern people, while
RoBERTa does not. Similarly, RoBERTa ranks
“bankrupt” and “gross” much higher than BERT for
stereotypes towards the elderly.

These findings indicate that different PLMs
might harbor diverse stereotypes towards minority
groups. Therefore, using the same dataset to assess
stereotype levels across all PLMs might underes-
timate certain stereotypes. The combined appli-
cation of our probing technique and textual-clue
analysis framework could aid in identifying the
most pronounced stereotypes within each PLM.

8 Conclusion and Future Work
In this paper, we sought to deepen the understand-
ing of the connection between the encoding and
detection of stereotypes within PLMs. We per-
formed extensive probing and ablation studies and,
informed by the results, developed a framework to
explore the intrinsic stereotypes within each PLM.
This framework leverages both textual and atten-
tion analyses and solely relies on stereotype detec-
tion annotations. Our study unveils that stereotypes
are not uniformly distributed across different PLMs.
This highlights the need for model-specific stereo-
type assessment datasets and tailored debiasing
techniques. Our framework introduces an efficient
means of debiasing PLMs without restructuring or
retraining and without the need for expensive pair-
wise stereotype/anti-stereotype annotations. Future
research can potentially merge our methods with
other PLM debiasing techniques.
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9 Limitations

This study has certain limitations. Firstly, our ex-
periments were primarily conducted in English due
to the scarcity of stereotype assessment datasets in
other languages. While our framework is capable
of handling complex scenarios such as intersec-
tional stereotypes, we were unable to explore these
due to a lack of adequately annotated datasets.

We also constructed an implicit stereotype
dataset using ChatGPT alongside three publicly
available datasets. We pursued this approach be-
cause existing stereotype examination datasets of-
ten oversimplify the task and have known quality
concerns, as indicated by Blodgett et al. (2021).
Our dataset addresses several issues of prior ones,
such as unnatural phrasing, overly explicit stereo-
type expression, and excessive intertwining of
stereotypes with negative emotions and sentiments.
Nonetheless, we recognize potential noise in the
ChatGPT-generated data, despite our careful man-
ual curation and high-quality human validation re-
sults via Amazon Mechanical Turk. Unvalidated
data points may still contain biases or incorrect in-
formation from ChatGPT, which could influence
our results. Further, our dataset doesn’t completely
rectify the problems with existing datasets. How-
ever, we view ImplicitStereo as an additional data
source, providing a more equitable examination of
stereotypes in PLMs, and any potential biases from
ImplicitStereo should not significantly impact our
analyses.

10 Ethics Statement

This research tackles harmful stereotypes present
in widely used pre-trained language models. Our
aim is to identify and reduce these biases. We
acknowledge that our analysis could be distressing
or offensive to some, and have therefore included a
warning at the outset of this paper. To ensure ethical
practices, we relied on publicly available stereotype
datasets, thereby avoiding exposing annotators to
potentially harmful language.

We also enlisted human validators from Ama-
zon Mechanical Turk to validate the ImplicitStereo
dataset we constructed and to understand the im-
portance of constructing a higher-quality and more
challenging implicit stereotype dataset. The dataset
was examined beforehand. The validators received
an hourly rate of $15.00, greatly surpassing the
minimum state and federal (in the U.S.) hourly
wage. This research is driven by the quest to de-

velop more equitable and unbiased AI models, and
we appreciate the contribution of all participants
involved.
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A The ImplicitStereo Dataset

A.1 Shortcomings of Existing Stereotype
Datasets

Figure A1: Example of using ChatGPT to flip the emo-
tional valence of a stereotypical sentence from Stere-
oSet.

There are known problems in existing datasets
for stereotype examinations, e.g., the instances are
all short and simple sentences and the stereotypes
are carried out by single words or short phrases.
We conduct additional experiments to see if this
simplified setting reduces the stereotype analysis
problem to simpler ones, e.g., sentiment analysis
and emotion recognition. Specifically, we sample
50 stereotypical instances from the CrowS-Pairs,
StereoSet, and WinoBias datasets, rewrite them
into sentences with the same stereotypes but differ-
ent sentiment polarity or emotional valence, and
test if the predictions of stereotype detection mod-
els fine-tuned on these datasets change frequently
on the rewritten instances. The task settings of the
three datasets could be heavily intertwined with
the two lower-level tasks if the predictions change
much. We use the ChatGPT model to rewrite the
sentences. Figure A1 shows an example prompt we
use to query ChatGPT and the response it generates.
After rewriting, we conduct manual validations on
Amazon Mechanical Turk (MTurk) to validate the
quality of the rewritings. We regard each instance
to be high in quality if at least 2 out of 3 validators
agree that the instance is with the same stereotype
as the original sentence and (1) the same emotional
arousal and the opposite emotional valence (for
emotional-valence flipping) or (2) the opposite sen-
timent (for sentiment flipping). The final validation
results show satisfaction rates of 86%, 84%, and
94% for emotional-valence flipping and 90%, 88%,
and 96% for sentiment flipping on examples from
the CrowS-Pairs, StereoSet, and WinoBias dataset,

(a)

(b)

Figure A2: Example of using ChatGPT to (a) retrieve
stereotypes targeting each group of people and (b) gen-
erate example implicit stereotypical utterances of each
specific stereotype.

respectively. The inter-annotator agreement rates
are always above 0.76 in Fleiss’ κ (Fleiss, 1971)
in all the cases, suggesting the high quality of our
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rewritings generated by ChatGPT.
We then apply stereotype detection models fine-

tuned on the three datasets on pairs of the original
sentence from each dataset and its rewritings to see
how often the models’ predictions are flipped when
the emotional valence or sentiment in each sen-
tence changes. Our experiments cover all six mod-
els that we examine in the main paper, i.e., BERT,
RoBERTa, T5-small, T5-base, Flan-T5-small, and
Flan-T5-base. We find that these models’ predic-
tions are flipped in 56% to 88% cases when the
emotional valence changes and in 66% to 92%
cases when the sentiment changes. These results
show that for the three publicly-available datasets,
stereotypes in the sentences are so heavily inter-
twined with the emotional valence or sentiment
polarity that models fine-tuned on these datasets
learn to identify stereotypes based mostly on the
two lower-level linguistic features, which oversim-
plifies the stereotype detection and examination
tasks.

A.2 Example Prompts for Constructing
ImplicitStereo

We use ChatGPT to retrieve stereotypes targeting
17 demographic groups and generate dialogues
where the retrieved stereotypes are implicitly ex-
pressed. Figure A2a shows one example prompt
we used to query ChatGPT and get common stereo-
types toward 17 demographic groups, and Figure
A2b shows the prompt used for generating the dia-
logues.

B Robustness of Probing Results

This section introduces robustness tests of the
Shapley-based probing that we use to determine the
contributions of attention heads to the stereotype
detection models. For succinctness, we present
experiments conducted using BERT and, in most
cases, only the StereoSet dataset, while we have
repeated the experiments for all the models and
datasets and the findings echo.

B.1 Random Seed Robustness

As Figure B1 shows, the probing results of BERT
on StereoSet are very robust to the choices of ran-
dom seeds.

B.2 Sampling Size Robustness

We further conduct repeated probing experiments
using the BERT model with different sampling
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(c) seed=2023

Figure B1: The results of the probing experiments on
the StereoSet dataset using the BERT model, with three
different random seeds (42, 2022, and 2023).
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(c) m = 750
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(d) m = 1, 000

Figure B2: The results of the probing experiments on
the StereoSet dataset using the BERT model, with four
different sampling sizes m ∈ 250, 500, 750, 1, 000. The
heatmap shows the Shapley values of each attention
head. Green cells indicate attention heads with positive
Shapley values, while red cells indicate attention heads
with negative Shapley values. The deeper the color, the
higher the absolute Shapley value.

sizes and random seeds. Figure B2 shows the con-
sistency of the results when varying the number
of random permutations used during the probing
process. The results are highly consistent with four
different sampling sizes ranging between 250 and
1,000, with Spearman’s ρ for each pair of probing
results between 0.96 and 0.98. As shown in Fig-
ure B1, the results also remain consistent when
using different random seeds, with a fixed sam-
pling size of m = 250, particularly for the top-
contributing attention heads. The Spearman’s ρ
between the attention-head rankings with different
random seeds are between 0.96 and 0.97 for all
three datasets, indicating the high robustness of our
probing results to random-seed selection. There-
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StereoSet CrowS-Pairs WinoBias

Figure B3: Probing results of BERT with the encoder
weights jointly trained with the classification layer in
the probing process.
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(b) CrowS-Pairs
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(c) WinoBias

Figure B4: Attention-head ablation evaluations of the
BERT model on three datasets with the encoder weights
also fine-tuned during the probing process.

fore, we use a random seed of 42 and sample size
m = 250 for all the probing experiments.

B.3 Probing Setting Robustness
We also compare two probing settings: training
only the classification layer while freezing the en-
coder weights of PLMs, and jointly training the
classification layer with the encoder weights. As
shown in Figure B3, the probing results of BERT
with its encoder weights trained during probing
differ substantially from those when the encoder
weights of BERT are frozen in the probing process
(As shown in Figure 1). The Spearman’s ρ be-
tween each pair of attention-head rankings ranges
between 0.35 and 0.69. To validate the correct-
ness of our previous probing results, we conducted
attention-head ablation experiments using the prob-
ing results with encoder weights trained during
probing. As shown in Figure B4, the performance
changes are consistent with those in Figure 2. This
suggests that the attention-head contributions ob-
tained by training or not training the encoder
weights are both valid. The variations in attention-
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Figure B5: Stereotype examination with attention-head
pruning using three BERT models from MultiBERTs
that are pre-trained with different random seeds. The
experiment is conducted on StereoSet.

head rankings may be due to the redundancy of
attention-heads with similar functionalities. There-
fore, we use the probing results obtained without
training the encoder weights in all the analyses in
this paper.

B.4 Checkpoint Robustness

Our attention-head pruned models yield improved
icat scores (i.e., being less stereotypical while as
strong in language modeling ability) in our main ex-
periments. Here we provide another set of attention-
head pruning experiments on StereoSet using three
BERT checkpoints pre-trained with different ran-
dom seeds since, according to Sellam et al., differ-
ent checkpoints of the same model might behave
differently despite the shared pre-training objec-
tive and data. The attention-head rankings used for
attention-head pruning come from the Huggingface
BERT checkpoint, which is also used in our main
experiments. As Figure B5 shows, the changes
of icat score, ss, and lms when attention heads are
pruned from these 3 checkpoints are very consistent
with those for the BERT model from Huggingface.
These results suggest the high robustness of our
experiments to the choice of checkpoints for each
model. As such, we use only one checkpoint of
each model in the main paper to save space.
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(f) StereoSet
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(g) WinoBias
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(h) ImplicitStereo
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(j) StereoSet
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(l) ImplicitStereo
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(n) StereoSet
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(o) WinoBias
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(p) ImplicitStereo
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(q) CrowS-Pairs
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(r) StereoSet
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(s) WinoBias
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(t) ImplicitStereo

Figure C1: Attention-head ablation results on four stereotype detection datasets using the RoBERTa ((a) - (d)),
T5-small ((e) - (h)), T5-base ((i) - (l)), Flan-T5-small ((m) - (p)), and Flan-T5-base ((q) - (t)) models. Bottom up
and top down refer to two settings where the attention heads are pruned from the least or most contributive attention
heads, respectively.

C Additional Attention-Head Ablation
Experiments for Stereotype Detection

We show the attention-head ablation results of the
RoBERTa, T5-small, T5-base, Flan-T5-small, and
Flan-T5-base in Figure C1. Clearly, all the perfor-
mance changes are clean when the most important
attention heads for stereotype detection (according
to our probing results) are pruned. Except for the
small numbers of very contributive attention heads,
pruning other attention heads does not strongly
negatively affect the performance of the stereotype

detection models. These results support the high
quality of our probing results.

D Ablating Decoder Attention Heads of
Encoder-Decoder Models

Different from the encoder-only models such as
BERT, there are three strategies of attention-head
pruning for encoder-decoder models like T5, i.e.,
pruning attention heads from the encoder, the de-
coder, or both. As Figure D1 shows, ablating at-
tention heads in the decoder of 4 T5 and Flan-T5
models that receive the highest Shapley values does
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(b) CrowS-Pairs
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Figure D1: Performance of the T5-small model achieved
on four datasets when the decoder weights are pruned.

not affect the models’ performance drastically. The
highest performance drop is merely 2.10% in ac-
curacy for all the models. We speculate the result
to be the lower contributions of decoder weights
to the stereotype detection task. Accordingly, we
conduct attention-head pruning experiments only
on the encoders of models in the main paper.

E Additional Textual Analysis Results

We show the word-level textual analysis results for
the T5 and Flan-T5 models in Table E1. The bi-
gram results are strongly correlated with the word-
level results, usually connecting tone modifiers or
minority-group indicators to these stereotypical
words. The results share a lot in common, while
there are also different stereotypical expressions for
the same target group across models. This might
result from the different pre-training corpora and
objectives of these models. We analyze these com-
monalities and differences in Section 7. As such,
stereotype examination and mitigation might have
to be adapted to each model to achieve the best
results.

F Computational Infrastructure

We use a single RTX-6000 card for all the probing
experiments and GLUE evaluations.

11344



Minority T5-small T5-base Flan-T5-small Flan-T5-base

Aged
People

disrespect slow bald sweater waste gross alcohol exhausted
careful asleep health dirty mad bald gross loud
losing classical alcohol men dirty weak bald terrible
gun weak weight smoke promotion surgery urine tired

experienced bankrupt urine disrespect bank selfish selfish retirement

Females

selfish poor hate clothes clothes effortlessly selfish poor
chore mess terrible ruined busy cruel annoying mess

appearance predator gossip romantic tired lazy trouble predator
skin gossip evil annoying poor distracted weak weak

annoying wedding appearance predator happy elf mess wedding

Muslims

violent beautiful kill islam threats kill threats violence
scary women evil terrorist scary hate scary allah

destruction shame destruction threats terrorist shame prayed guilt
terrorist threats dangerous prayed allah terrorism terrorist violent

evil guilt hate religious violence religious terrorism evil

African
People

cleanliness athlete dumb fighting ignorant slave fat blame
dumb steal slave crude fear thieves noisy dangerous
brave hijack selling horror hostile killed nervous crime

struggling notorious steal terrorism dumb colored extreme hostile
terrorism thieves fear terrorist crude crime emotional steal

Middle-
Eastern
People

evil silent exploded corrupt threaten rough extreme crime
racist tough terribly wealthy attacked conservative emotional dead

intelligent economy racist disrespect hijack horrific blame pray
corrupt threaten trouble terrorism trouble noisy smoke crazy

malicious brutal rough weapons tough crazy dangerous hijack

Table E1: 10 words with the highest SHAP-adjusted attention scores (ranked in order) on the top-5 contributive
attention heads in T5-small, T5-base, Flan-T5-small, and Flan-T5-base models for detecting stereotypes toward 5
minority groups.
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