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Abstract

Multilingual information retrieval (MLIR) is a
crucial yet challenging task due to the need for
human annotations in multiple languages, mak-
ing training data creation labor-intensive. In
this paper, we introduce mAggretriever, which
effectively leverages semantic and lexical fea-
tures from pre-trained multilingual transform-
ers (e.g., mBERT and XLM-R) for dense re-
trieval. To enhance training and inference
efficiency, we employ approximate masked-
language modeling prediction for computing
lexical features, reducing 70–85% GPU mem-
ory requirement for mAggretriever fine-tuning.
Empirical results demonstrate that mAggre-
triever, fine-tuned solely on English training
data, surpasses existing state-of-the-art multi-
lingual dense retrieval models that undergo fur-
ther training on large-scale MLIR training data.
Our code is available at https://github.
com/castorini/dhr.

1 Introduction

Fine-tuning a pre-trained transformer has proven
to be highly effective in many tasks of natural lan-
guage processing, including information retrieval
(IR). Despite its success, the recent state-of-the-
art dense retrieval (DR) models (Ni et al., 2022;
Lin et al., 2023a) predominantly focus on English.
This bias arises from the fact that constructing an
effective DR model requires a substantial amount
of annotated training data, which is predominantly
available in English datasets (Bajaj et al., 2016;
Kwiatkowski et al., 2019). This makes it challeng-
ing for users of low-resource languages to benefit
from the recent IR progress.

To address this issue, researchers have explored
leveraging pre-trained multilingual transformers,
such as mBERT (Devlin et al., 2019) and XLM-
R (Conneau et al., 2020), which exhibit promising
language transferability even when fine-tuned on
∗Work done during Sheng-Chieh’s internship at Vectara.

English datasets alone (Zhang et al., 2023b). How-
ever, Izacard et al. (2022) emphasize the impor-
tance of contrastive pre-training on multilingual
corpora to achieve improved language transferabil-
ity in IR. Other approaches utilize multilingual par-
allel corpora or translation pairs for contrastive pre-
training (Feng et al., 2022) or fine-tuning (Reimers
and Gurevych, 2020; Bonifacio et al., 2021). How-
ever, these solutions are viable only when signifi-
cant computational resources or multilingual paral-
lel data are available.

Recently, Lin et al. (2023b) demonstrate that the
existing DR models solely using [CLS] (or aver-
aged pooling) do not fully exploit the capability
from pre-trained transformers for retrieval. Lin
et al. (2023b) propose Aggretriever by combining
the semantic and lexical features from the respec-
tive two components, [CLS] and masked language
modeling (MLM) prediction, which shows supe-
rior effectiveness on diverse English retrieval tasks.
This inspires us to ask the question: Can Aggre-
triever benefit multilingual retrieval?1

Extending Aggretriever to support multilingual
retrieval poses challenges due to increased com-
putation costs for extracting lexical features from
the MLM component as the vocabulary size of the
pre-trained model grows, making fine-tuning with
limited resources challenging. In this work, we pro-
pose two simple approaches to approximate MLM
prediction to extract lexical features from multi-
lingual pre-trained transformers, making the train-
ing of mAggretriever possible in one GPU within
40 GBs of memory. Remarkably, mAggretriever
exhibits strong retrieval capability across multiple
languages despite being fine-tuned on English data.

The paper is structured as follows: we begin by
providing background information on standard DR
and Aggretriever. We then present our proposed
approaches to tackle the computational challenges

1In this paper, we refer multilingual retrieval to monolingual
retrieval across multiple languages.
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involved in extending Aggretriever to support mul-
tilingual retrieval. Subsequently, we compare mAg-
gretriever with other state-of-the-art multilingual
DR models and explore the potential for extending
mAggretriever to enable cross-lingual retrieval.

2 Background

Dense Retrieval. Given a query with sequential
tokens q = ([CLS], q1, · · · qn), our task is to re-
trieve a list of passages to maximize some ranking
metric such as nDCG or MRR. Standard dense re-
trieval (DR) models (Reimers and Gurevych, 2019;
Karpukhin et al., 2020) based on pre-trained lan-
guage models encode queries and passages as low
dimensional [CLS] vectors with a bi-encoder ar-
chitecture and use the dot product between the en-
coded vectors as the similarity score:

simCLS(q, p) ≜ eq[CLS] · ep[CLS] , (1)

where eq[CLS] and respective query and passage
ep[CLS] are the [CLS] vectors at the last layer of a
pre-trained language model (e.g., BERT).

Aggretriever. In addition to using [CLS] vec-
tors to capture semantic textual features, Lin et al.
(2023b) further propose to capture lexical textual
features from the pre-trained MLM prediction head
by projecting each contextualized token embedding
eqi into a high-dimensional vector in the wordpiece
lexical space:

pqi = softmax(eqi ·Wmlm + bmlm), (2)

where eqi ∈ Rd, Wmlm ∈ Rd×|Vwp|, and bmlm ∈
R|Vwp| are the weights of the pre-trained MLM lin-
ear projector, and pqi ∈ R|Vwp| is the i-th contex-
tualized token represented by a probability distri-
bution over the BERT wordpiece vocabulary, Vwp.
Weighted max pooling is then performed over the
sequential representations (pq1 ,pq2 , · · · ,pql) to
obtain a single-vector lexical representation:

vq[v] = max
i∈(1,2,··· ,l)

wi · pqi [v], (3)

where wi = |eqi · W + b| ∈ R1 is a positive
scalar and v ∈ {1, 2, · · · , |Vwp|}; W ∈ Rd×1 and
b ∈ R1 are trainable weights. Note that the scalar
wi for each token qi is essential to capture term
importance, which pqi alone cannot capture since
it is normalized by softmax. Note that the [CLS]
token embedding is excluded since it is used for

0.10.7 0.2 0.0.

eq1 eq2 eq3 eq4 eq5
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Figure 1: Illustration of MLM prediction for the input
token q1. (1) Whole-vocabulary prediction considers all
languages while target-language prediction only consid-
ers the tokens in one language; e.g., (2) source language
(Spanish) or (3) English. (4) Self prediction assigns
probability of one to itself. 0. denotes less than 0.1.

next-sentence prediction during pre-training; thus,
does not carry much lexical information.

The wordpiece lexical representation vq is
then compressed, without supervision, into low-
dimensional vector agg⋆

q and concatenated with
the [CLS] vector. The similarity score between a
given q–p pair is computed with their dot product:

sim(q, p) ≜ (eq[CLS] ⊕ vq) · (ep[CLS] ⊕ vp) (4)

≈ (ϵq[CLS] ⊕ agg⋆
q) · (ϵp[CLS] ⊕ agg⋆

p),

where eq[CLS] and vq capture semantic and lexical
textual features from BERT, respectively. Follow-
ing Lin et al. (2023b), we linearly project eq[CLS]
into 128 dimension and compress vq into 640 di-
mension; i.e., ϵq[CLS] ∈ R128 and agg⋆

q ∈ R640.
We refer readers to Lin et al. (2023b) for the details
of compressing vq into agg⋆

q .

3 Our Approach

In this work, we extend Aggretriever to multilin-
gual retrieval, mAggretriever. However, directly
applying Eq. (2) to multilingual pre-trained MLM
heads over the whole vocabulary increases com-
putation cost for both training and inference due
to large vocabulary size |Vwp| in MLM projector,
Wmlm (Nair et al., 2022; Lassance, 2023). For ex-
ample, the mBERT and XLM-R have respective vo-
cabulary size of 120K and 250K (vs BERT’s 35K)
in the MLM projector. To address the issue, we
propose two computationally efficient approaches
to approximate MLM prediction in Eq. (2).
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Table 1: Training and inference cost comparisons on MS MARCO with XLM-R base backbone.

vector components training cost query encoding latency

Models [CLS] agg⋆ MLM prediction GPU memory total time CPU GPU
(1) XLM-RCLS 768 dim. 0 dim. - 21 GBs 5.5 hrs 105 ms/q 9.1 ms/q
(2) XLM-RAGG

128 dim. 640 dim.
whole vocabulary OOM (140 GBs) - 400 ms/q 15.1 ms/q

(3) XLM-Rtg
AGG target language 39 GBs 9.5 hrs 248 ms/q 11.4 ms/q

(4) XLM-Rself
AGG self 21 GBs 5.5 hrs 123 ms/q 9.1 ms/q

Target-language prediction. One intuitive ap-
proach is to compute the probability distribution
over the target-language token set of interest, de-
noted as Vtg

wp, by replacing Wmlm and bmlm in
Eq. (2) with W

tg
mlm and b

tg
mlm, respectively.





W
tg
mlm[:, v] = Wmlm[:, v];

b
tg
mlm[v] = bmlm[v], if v ∈ Vtg

wp

W
tg
mlm[:, v] =

−→
0 ;b

tg
mlm[v] = 0, otherwise.

From the above equation, we only have to compute
the matrix multiplication and softmax among |Vtg

wp|
instead of |Vwp| tokens. This approach assumes
that only the tokens corresponding to the target
language have responses when conducting MLM
prediction; i.e., pqi [v] = 0 if v /∈ Vtg

wp.

Self prediction. Since BERT MLM pre-training
task includes recovering the unmasked token itself,
to further save computation cost, we may approxi-
mate MLM prediction by assigning a value of one
to the token qi itself, and zero to the others:

pqi = xj ∈ {0, 1}|Vwp| for j ∈ {tok_id(qi)}. (5)

The operation removes the computationally expen-
sive matrix multiplication and softmax operation
in Eq. (2). Note that, combining Eq. (3) and (5),
the lexical representations, vq, from self predic-
tion can be considered bag-of-word vectors with
learned term weights.

Figure 1 illustrates whole-vocabulary, our pro-
posed target-language and self MLM predictions.
Table 1 compares the training and inference cost
of the standard DR (row 1) and mAggretriever
with different MLM prediction strategies on MS
MARCO dataset using the backbone of XLM-R
base. The training and query encoding settings
are detailed in Section 4.2. We observe training
with target-language (English in our case) MLM
prediction reduces the GPU memory requirement
compared to whole vocabulary (row 3 vs 2) while
self prediction yields training and inference effi-
ciency on par with standard DR (row 4 vs 1).

4 Experimental Setups

4.1 Datasets and Metrics

We use the MS MARCO passage ranking dataset
introduced by Bajaj et al. (2016), comprising a cor-
pus with 8.8M passages and 500K training queries.
Model supervised language (English) retrieval ef-
fectiveness is evaluated on the 6980 (MARCO dev)
queries from the development set with one rele-
vant passage per query on average. Following the
established procedure, we report MRR@10 and
R@1000 as the metrics.

We evaluate model zero-shot retrieval effective-
ness in other languages using MIRACL dataset
introduced by Zhang et al., comprising around 77k
queries over Wikipedia in 18 languages with over
700k high-quality relevance judgments by native
speakers. We use the publicly available develop-
ment queries and their relevance judgements in
15 languages (two surprise languages and English
are excluded).2 Following Zhang et al., we re-
port macro averaged nDCG10 and R@100 over
the 15 languages and list the full numbers in Ap-
pendix A.1.

Finally, we study how to conduct cross-
lingual retrieval using mAggretriever on XQuAD-
R dataset introduced by Roy et al. (2020), consist-
ing of parallel queries and corpora with 11 lan-
guages.2 We conduct retrieval using the queries
with XQ language against the corpus with XC lan-
guage and report the macro-averaged MAP@100
over all the cross-lingual combinations of the 110
language pairs (XQ ̸= XC), and the other 11 mono-
lingual combinations (XQ = XC).

Table 2 reports the data statistics of MIRACL
and XQuAD-R. Note that the candidates of MIR-
ACL are passages while the candidates of XQuAD-
R are chunked sentences from XQuAD corpora.
Note that although XQuAD corpora is the manu-
ally rewritten multilingual parallel corpora (Artetxe
et al., 2020), the numbers of chunked sentences are

2 Datasets: MIRACL, XQuAD-R
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Table 2: MIRACL and XQuAD-R data statistics.

MIRACL Dev XQuAD-R

language ISO # queries # candidates # queries # candidates
Arabic ar 2,869 2,061,414 1,190 1,222
Bengali bn 411 297,265 - -
German de - - 1,190 1,276
Greek el - - 1,190 1,234
English en 648 32,893,221 1,190 1,180
Spanish es 799 10,373,953 1,190 1,215
Persian fa 632 2,207,172 - -
Finnish fi 1,271 1,883,509 - -
French fr 343 14,636,953 - -
Hindi hi 350 506,264 1,190 1,244
Indonesian id 960 1,446,315 - -
Japanese ja 860 6,953,614 - -
Korean ko 213 1,486,752 - -
Russian ru 1,252 9,543,918 1,190 1,219
Swahili sw 482 131,924 - -
Telugu te 828 518,079 - -
Thai th 733 542,166 1,190 852
Turkish tr - - 1,190 1,167
Vietnamese vi - - 1,190 1,209
Chinese zh 393 4,934,368 1,190 1,196

different between languages. Also note that for
each query, MIRACL has multiple relevant candi-
dates while XQuAD only has one.

4.2 Implementation Details

Models. We apply mAggretriever to two 12-layer
pre-trained multilingual models: (1) mBERT; (2)
XLM-R.3 We compare models fine-tuned solely
using [CLS] vector and based on mAggretriever
using whole-vocabulary MLM prediction with the
subscripts “CLS” and “AGG”, respectively, e.g.,
mBERTCLS and mBERTAGG. We report the two
variants of mAggretriever with target-language and
self prediction; e.g., mBERTtg

AGG and mBERTself
AGG.

For target-language prediction, we train mAggre-
triever using English token prediction and run infer-
ence using the corresponding language of each cor-
pus, and for whole-vocabulary prediction, we fine-
tune with half of the batch size. In addition, we re-
port the numbers of BM25 and mDPR from Zhang
et al. as reference points, and the two state-of-the-
art multilingual retrievers: (1) mContriever (Izac-
ard et al., 2022), pre-trained on multilingual cor-
pora with 29 languages and further fine-tuned on
MS MARCO dataset;3 (2) Cohere (API), whose
numbers are copied from Kamalloo et al. (2023).4

Training and Inference. We train our models
on a single A100 GPU with 80 GB memory for
6 epochs (around 100k steps) with learning rate

3 Model checkpoints: mBERT, XLM-R, mContriever
4Cohere multilingual retrieval model

7e-6. Each batch includes 24 queries, and for each
query, we randomly sample one positive and seven
negative passages. All the negatives are sampled
from the MS MARCO “small” triples training set,
which is created using BM25. During training, we
minimize the negative log likelihood as the stan-
dard contrastive loss and following Karpukhin et al.
(2020), for each query, we consider all the (positive
and negative) passages from the other triplets in the
batch as in-batch negative samples. We set the max-
imum input length for the query and the passage
to 32 and 128, respectively, at both training and in-
ference stages for MS MARCO. For MIRACL and
XQUAD-R, we use the maximum input length of
128 and 256 for the query and passage, respectively.
Note that we lowercase all the queries and passages
for mAggretriever.5 We measure query encoding
latency on the 6980 MS MARCO development
queries with the batch size of 1 and single thread
on a Linux machine with 12 Intel(R) Xeon(R) Gold
5317 CPU @ 3.00GHz and 88G of RAM.

Target Token Set Construction. For each lan-
guage of corpus in MIRACL and XQuAD-R, we
tokenize and lowercase all the passages and col-
lect the unique tokens in the corpus as the target
token set. For example, when fine-tuning on MS
MARCO dataset, we use the token set built from
MS MARCO corpus. While conducting target-
language MLM prediction on MIRACL Arabic
queries and corpus, we use the token set collected
from Arabic corpus as our target token set. Note
that self MLM prediction does not require collect-
ing the token set for the target language.

5 Results

5.1 Results on MIRACL
Table 3 reports models’ retrieval effectiveness on
MS MARCO and MIRACL development queries.
We first observe that mAggretriever, incorporat-
ing lexical features, not only outperforms its
CLS counterpart in supervised English retrieval
(MARCO), but also exhibits superior transferabil-
ity to other languages (MIRACL) regardless of
backbone. In addition, mBERTAGG, without in-
troducing contrastive pre-training on multilingual
corpora, outperforms mContriever in MIRACL in
terms of nDCG@10. Note that mBERTAGG and
mContriever are both initialized from mBERT. We
5Our preliminary experiments on MS MARCO show that
lowercase improves mAggretriever while degrades its CLS
counterpart.
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Table 3: Supervised (MARCO) English and zero-shot
(MIRACL) multilingual retrieval effectiveness compar-
isons. Full numbers are listed in Appendix A.1.

MARCO Dev MIRACL Dev

Models English 15 lang. macro avg.
MRR@10 R@1K nDCG@10 R@100

(a) BM25 18.8 85.8 39.6 78.5
(b) mDPR 29.6 94.6 41.7 78.9
(c) mContriever 27.4 97.1 43.8 85.9
(d) Cohere (API) - - 50.1 -
(1) mBERTCLS 29.1 93.6 36.1 71.6
(2) mBERTAGG 34.3 95.8 44.4 79.5
(3) mBERTtg

AGG 34.5 96.1 44.4 80.1
(4) mBERTself

AGG 34.2 95.6 46.9 82.3
(5) XLM-RCLS 31.1 93.8 39.3 73.9
(6) XLM-RAGG 34.7 96.1 52.9 86.4
(7) XLM-Rtg

AGG 35.0 96.2 53.3 86.0
(8) XLM-Rself

AGG 35.0 96.0 53.3 86.3

hypothesize that mContriever’s high recall (i.e.,
R@1K) comes from its pre-training on multilin-
gual corpora with 29 languages.

Switching to XLM-R backbone, mAggretriever
even outperforms Cohere (API). Furthermore, we
notice that mAggretriever with XLM-R backbone
improves over mBERT more than its CLS coun-
terpart does. For example, in the case of MIR-
ACL, XLM-Rtg

AGG exhibits a significant improve-
ment over mBERTtg

AGG from an nDCG@10 score
of 44.4 to 53.3, whereas XLM-RCLS only sees a
modest improvement over mBERTCLS from 36.1
to 39.3. This notable enhancement highlights mAg-
gretriever’s ability to effectively utilize a superior
pre-trained language model.

Finally, compared to whole-vocabulary and pro-
posed approximate MLM predictions, we observe
that self prediction shows comparable and even
strong language transferability. We hypothesize
that MLM prediction learned from English data
cannot transfer well to other languages. It is worth
mentioning that compared to whole-vocabulary
MLM prediction, the proposed approximate MLM
prediction, target-language and self prediction, are
advantageous for real-world deployment since they
show almost no effectiveness drop (sometimes even
better) but require far less training and inference
cost as shown in Table 1.

5.2 Results on XQuAD-R

In Table 4, we directly apply XLM-R based models
fine-tuned on MS MARCO to XQuAD-R dataset.
In the experiment, we try different MLM prediction
settings for XLM-Rtg

AGG. For example, instead of

Table 4: Zero-shot retrieval effectiveness on XQuAD-R.
XQ (XC) denotes the language of queries (corpus).

MLM target lang. XQuAD-R

Models query corpus XQ = XC XQ ̸= XC

MAP@100
(1) XLM-RCLS - - 73.1 57.5
(2) XLM-RAGG - - 77.4 41.8
(3) XQ XC 77.4 36.0
(4) XLM-Rtg

AGG XC XC 77.4 44.9
(5) English English 73.5 51.7
(6) XLM-Rself

AGG - - 77.3 36.2

using respective query and corpus source language
as the target language (row 3), we use the language
corresponding to each corpus (row 4) or English
(row 5) as target language for both queries and
corpus. Note that rows 3 and 4 are the same when
both queries and corpus are in the same language
(XQ = XC).

We observe that mAggretriever shows relatively
poor cross-lingual retrieval effectiveness (XQ ̸=
XC) compared to its CLS counterpart (rows 2,3,6
vs 1). When aligning the MLM prediction target
language for queries and corpus, the cross-lingual
retrieval effectiveness sees improvement (rows 3
vs 4,5). These results show that MLM prediction
head potentially can be used as a translation layer
to project query and corpus into the same language,
which is also reported by Nair et al. (2022). It is
possible to leverage the transformers pre-trained
with translation language modeling (Chi et al.,
2021; Feng et al., 2022) and the established parallel
training data (Bonifacio et al., 2021) to improve
mAggretriever’s cross-lingual retrieval capability,
which we leave for future work.

6 Conclusion

In this paper, we introduce mAggretriever, an ex-
tension of Aggretriever for multilingual retrieval,
by combining lexical and semantic features in pre-
trained language models for dense retrieval. We
propose target-language and self MLM predictions
to enhance the efficiency of mAggretriever. Our
study highlights the efficiency advantage of self
MLM prediction in multilingual retrieval, while
target-language MLM prediction offers flexibility
for cross-lingual retrieval. Importantly, mAggre-
triever, solely fine-tuned on English data, demon-
strates competitive multilingual retrieval capability
compared to other state-of-the-art dense retrievers.
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Limitations

Our research primarily focuses on enhancing mul-
tilingual retrieval, specifically targeting monolin-
gual retrieval zero-shot transfer to non-English
languages. We plan to extend our study to im-
prove cross-lingual retrieval by leveraging trans-
formers pre-trained with translation language mod-
eling (Chi et al., 2021; Feng et al., 2022). In ad-
dition, we only discuss how to improve zero-shot
language transferability of dense retrieval. It is
possible to further improve model effectiveness by
leveraging existing multilingual training data (Boni-
facio et al., 2021; Zhang et al., 2021) and better
negative mining strategies (Shen et al., 2022). Fi-
nally, due to space limitation, we compare mAggre-
triever with previous state-of-the-art multilingual
retrievers on Mr. TyDi (Zhang et al., 2021) in Ap-
pendix A.2.
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A Appendix

A.1 Full Results on MIRACL
Table 5 reports the detailed nDCG@10 and R@100
numbers on MIRACL 15 languages for all the com-
pared models. Note that we do not use English
dataset when evaluating on MIRACL.

A.2 Comparisons on Mr. TyDi
Some previous state-of-the-art multilingual re-
trievers are evaluated on the test queries of Mr.
TyDi (Zhang et al., 2021), the multilingual retrieval
dataset similar to MIRACL but with sparse rele-
vance judgements and less languages. In order to
compare with the previous models, following the
model inference settings in MIRACL, we evaluate
our mAggretriever with the backbone of XLM-R.
The full results are tabulated in Table 6. We still
observe that all the variants of mAggretriever out-
perform previous state of the art in 6 out of 10
languages. Note that most of the previous retriev-
ers undergo multilingual contrastive learning. For
example, mContriever are pre-trained on the corpus
with 29 languages while mColBERT are fine-tuned
on multilingual MS MARCO dataset introduced by
Bonifacio et al. (2021).
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Table 5: MIRACL multilingual retrieval comparisons. Bold denotes the best effectiveness.

MIRACL Dev

Models ar bn es fa fi fr hi id ja ko ru sw te th zh avg.
nDCG@10

(a) BM25 48.1 50.8 31.9 33.3 55.1 18.3 45.3 44.9 36.9 41.9 33.4 38.3 49.4 48.4 18.0 39.6
(b) mDPR 49.9 44.3 47.8 48.0 47.2 43.5 38.3 27.2 43.9 41.9 40.7 29.9 35.6 35.8 51.2 41.7
(c) mContriever 52.5 50.0 41.8 21.5 60.2 31.4 28.6 39.2 42.4 48.3 39.1 56.0 52.8 51.7 41.0 43.8
(d) Cohere (API) 61.7 59.4 23.3 47.1 63.4 46.2 49.3 44.6 46.0 49.6 46.9 61.1 61.3 54.6 36.5 50.1
(1) mBERTCLS 50.9 45.2 31.7 30.5 48.5 30.5 37.7 19.8 43.4 40.0 27.0 21.2 36.4 37.7 43.9 36.1
(2) mBERTAGG 56.9 48.5 44.0 43.1 63.4 40.8 34.1 40.3 49.3 43.9 44.9 44.6 44.7 27.2 40.2 44.4
(3) mBERTtg

AGG 55.7 45.5 45.4 42.4 62.3 42.9 34.3 38.7 47.7 43.4 45.2 45.5 43.9 32.5 41.5 44.4
(4) mBERTself

AGG 59.4 51.0 44.6 44.5 65.3 43.6 37.4 42.1 50.2 47.8 46.3 48.5 48.0 31.1 44.3 46.9
(5) XLM-RCLS 46.6 46.6 29.9 43.5 44.4 28.5 41.7 31.7 40.7 45.6 27.5 22.5 50.5 53.9 35.9 39.3
(6) XLM-RAGG 60.6 60.4 42.5 46.2 66.2 43.0 44.8 47.8 53.3 58.2 44.6 46.6 72.1 66.0 41.4 52.9
(7) XLM-Rtg

AGG 60.2 60.9 44.3 46.7 65.0 43.8 48.0 47.2 53.3 59.1 45.8 45.2 70.2 67.1 42.9 53.3
(8) XLM-Rself

AGG 61.4 61.4 42.9 46.5 66.2 41.3 46.2 48.4 53.9 57.9 46.5 47.5 71.2 66.8 41.0 53.3
R@100

(a) BM25 88.9 90.9 70.2 73.1 89.1 65.3 86.8 90.4 80.5 78.3 66.1 70.1 83.1 88.7 56.0 78.5
(b) mDPR 84.1 81.9 86.4 89.8 78.8 91.5 77.6 57.3 82.5 73.7 79.7 61.6 76.2 67.8 94.4 78.9
(c) mContriever 92.5 92.1 84.1 65.4 95.3 82.4 64.6 80.2 87.8 87.5 85.0 91.1 96.1 93.6 90.3 85.9
(d) Cohere (API) - - - - - - - - - - - - - - - -
(1) mBERTCLS 84.3 81.9 67.1 84.1 61.2 72.9 76.3 47.7 80.7 71.9 61.1 50.4 75.5 69.7 90.0 71.6
(2) mBERTAGG 86.9 83.8 81.0 81.0 90.2 83.2 70.9 76.6 84.1 71.7 80.8 79.4 82.4 60.0 81.3 79.5
(3) mBERTtg

AGG 86.2 82.2 82.1 79.9 89.7 82.9 72.6 75.7 84.3 76.3 80.5 80.9 81.7 63.8 82.6 80.1
(4) mBERTself

AGG 88.7 85.1 80.1 82.4 92.1 86.5 77.6 80.2 85.5 78.4 82.0 81.5 83.4 65.9 84.5 82.3
(5) XLM-RCLS 79.2 82.6 63.6 79.9 75.2 66.8 76.9 62.7 77.2 77.6 62.5 48.8 87.0 89.2 78.9 73.9
(6) XLM-RAGG 89.8 92.5 78.8 85.4 92.6 81.8 85.1 83.5 89.0 88.5 78.9 79.1 95.4 95.1 80.6 86.4
(7) XLM-Rtg

AGG 89.3 93.1 80.4 84.6 91.8 81.4 84.5 82.6 88.9 86.6 79.5 77.7 94.8 95.1 79.9 86.0
(8) XLM-Rself

AGG 90.2 92.8 78.2 84.5 93.1 81.2 82.5 84.6 89.8 88.3 80.8 79.4 95.5 94.5 79.0 86.3

Table 6: Mr. TyDi multilingual retrieval comparisons with state-of-the-art multilingual retrievers. Bold denotes the
best effectiveness. multi CL denotes multilingual contrastive learning.

Mr. TyDi Test

Models multi CL ar bn fi id ja ko ru sw te th avg.
MRR@100

(a) BM25 (Zhang et al., 2021) ✗ 36.7 41.3 28.8 38.2 21.7 28.1 32.9 39.6 42.4 41.7 35.1
(b) mColBERT (Bonifacio et al., 2021) ✓ 55.3 48.8 41.3 55.5 36.6 36.7 48.2 44.8 61.6 - -
(c) mContriever (Izacard et al., 2022) ✓ 43.4 42.3 35.1 42.6 32.4 34.2 36.1 51.2 37.4 40.2 39.5
(d) CCP (Wu et al., 2022) ✗ 42.6 45.7 37.2 46.2 37.7 34.6 36.0 39.2 47.0 48.9 41.5
(e) MSM (Zhang et al., 2023a) ✗ 51.6 53.0 39.4 50.5 32.0 36.8 37.2 43.4 62.6 53.5 44.7
(1) XLM-RCLS ✗ 41.9 40.8 27.8 39.9 32.5 33.0 27.7 23.7 54.2 46.1 36.8
(2) XLM-RAGG ✗ 52.3 55.8 43.2 55.0 40.4 40.5 41.5 45.1 77.5 57.3 50.8
(3) XLM-Rtg

AGG ✗ 52.3 55.2 43.0 54.8 41.1 40.4 44.9 46.0 76.2 58.7 51.2
(4) XLM-Rself

AGG ✗ 52.0 58.5 42.6 54.8 39.2 41.6 44.3 47.3 74.7 58.3 51.3
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