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Abstract

Parsing questions into executable logical forms
has showed impressive results for knowledge-
base question answering (KBQA). However,
complex KBQA is a more challenging task
that requires to perform complex multi-step
reasoning. Recently, a new semantic parser
called KoPL (Cao et al., 2022a) has been pro-
posed to explicitly model the reasoning pro-
cesses, which achieved the state-of-the-art on
complex KBQA. In this paper, we further ex-
plore how to unlock the reasoning ability of
semantic parsers by a simple proposed parse-
execute-refine paradigm. We refine and im-
prove the KoPL parser by demonstrating the
executed intermediate reasoning steps to the
KBQA model. We show that such simple strat-
egy can significantly improve the ability of
complex reasoning. Specifically, we propose
three components: a parsing stage, an execu-
tion stage and a refinement stage, to enhance
the ability of complex reasoning. The parser
uses the KoPL to generate the transparent log-
ical forms. Then, the execution stage aligns
and executes the logical forms over knowledge
base to obtain intermediate reasoning processes.
Finally, the intermediate step-by-step reason-
ing processes are demonstrated to the KBQA
model in the refinement stage. With the ex-
plicit reasoning processes, it is much easier to
answer the complex questions. Experiments
on benchmark dataset shows that the proposed
PER-KBQA performs significantly better than
the stage-of-the-art baselines on the complex
KBQA.

1 Introduction

Knowledge-base question answering (KBQA) (Lan
et al., 2022) is a task that answers natural language
questions over a given knowledge graph. KBQA
has become a hot research topic since it can lead
to a large number of applications, e.g., intelligent
assistants.

∗*Corresponding Author

Many algorithms (Zhang et al., 2018; Yih et al.,
2016; Schlichtkrull et al., 2018; Das et al., 2021;
Cao et al., 2022a) have been proposed for KBQA.
A notable research line for KBQA is semantic
parsing (Yih et al., 2016; Cao et al., 2022a). It
encodes the questions into formal meaning repre-
sentations/logical forms (Lan et al., 2022), then
the logical forms are executed over the knowledge
base to give the final answers, which is called
parse-execute paradigm. KaFSP (Li and Xiong,
2022) is a knowledge-aware fuzzy semantic pars-
ing framework for KBQA. RnG-KBQA (Ye et al.,
2021) is a rank-and-generate approach for solving
generalization problem in KBQA. Several bench-
marks KBQA datasets have also been proposed
to promote research in this field. For example,
MetaQA (Zhang et al., 2018), WebQSP (Yih et al.,
2016) and LC-QuAD (Dubey et al., 2019) are the
datasets for KBQA.

Recently, due to the complexities of users’ in-
formation requirements, the more challenging task
called complex KBQA (Lan et al., 2022) has been
studied, which requires multi-step/compositional
reasoning. For complex KBQA, it is important that
the QA models can be learnt to explicitly model the
reasoning processes, which can provide better inter-
pretation of compositional reasoning. Hence, Cao
et al. (2022a) had proposed a benchmark dataset
KQA Pro and a knowledge-oriented programming
language (KoPL). KQA Pro is a large-scale dataset
for complex KBQA and provides explicit reasoing
process for each QA pair. KoPL (Cao et al., 2022a)
is a compositional and interpretable programming
language for complex reasoning. The KoPL parser
provides human understandable descriptions of log-
ical forms. Based on the large-scale pretrained
language model BART (Lewis et al., 2019), the
BART-based KoPL has shown impressive results
on KQA Pro dataset.

Although KoPL can explicitly describe the rea-
soning processes, the logical forms generated from
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semantic parser are the intermediate results but not
the final answer, which may result in sub-optimized
solutions. For example, the slight generation devia-
tion (Das et al., 2021) may cause the logical forms
to run incorrectly. Thus a natural question arises:
Can we use these intermediate results to further
improve the complex reasoning ability?

In this paper, we further explore how to un-
lock KoPL and KBQA model for improving its
capability of complex reasoning. We find that
the complex reasoning ability can benefit from
demonstrating the KoPL’s intermediate results to
the KBQA model. That is, with the intermedi-
ate step-by-step reasoning processes from KoPL,
we can elicit the multi-step reasoning for complex
KBQA and achieve better performances compared
to KoPL. Observed from that, we propose a novel
parse-execute-refine paradigm for complex KBQA.

Figure 1 shows an overview of the proposed ap-
proach called PER-KBQA, which includes a pars-
ing stage, an execution stage, and a refinement
stage for complex KBQA. Given a question, the
parser first utilizes a sequence-to-sequence model
to generate the logical forms. Since KoPL can
explicitly describe the reasoning process, we use
KoPL as the logical forms in the parsing stage.
Then, the execution stage aligns and executes the
generated logical forms over the knowledge base.
With that, we can obtain the intermediate step-by-
step reasoning processes. Finally, in the refinement
stage, the intermediate reasoning results are used
as execution contexts. We combine the question
and the execution contexts as inputs to the KBQA
model. The main idea of this paradigm is that the
answer may benefit from the intermediate step-by-
step reasoning processes.

We evaluate the PER-KBQA on KQA Pro
dataset and the extensive experimental results show
that 1) the proposed PER-KBQA performs signifi-
cantly better than the existing state-of-the-art base-
lines, and 2) PER-KBQA is a simple method that
can further unlock the KBQA model for improving
its complex reasoning ability. Besides, PER-KBQA
provides insight into a novel way to combine the
intermediate results into the final answer.

2 Related Work

KBQA. Complex Knowledge Base Question An-
swering aims to answer complex questions over
knowledge bases, which always involves multi-
hop reasoning, constrained relations and numer-

ical operations (Lan et al., 2022). The existing
solutions for Complex KBQA can be divided into
two mainstream approaches, known as semantic
parsing-based (SP-based) methods and informa-
tion retrieval-based (IR-based) methods.

SP-based methods (Yih et al., 2016; Das et al.,
2021) follow a parse-then-execute paradigm: parse
a question into a logical form such as SPARQL
or KoPL, and execute it against the KB to obtain
the answer. IR-based methods (Miller et al., 2016;
Saxena et al., 2020) follow a retrieve-and-generate
paradigm: retrieve a question-specific graph and
directly generate answer with text encoder-decoder.
SP-based methods rely heavily on the parser to
generate a logical form for each question, while
they enjoy the advantage of powerful sequence-to-
sequence pretrained language models. IR-based
methods apply the answer generation module to
make accurate prediction conditioned on the ques-
tion and the retrieved context. IR-based methods
require the retrieved context to be helpful.

Recently, the KoPL parser is proposed from
KQA Pro (Cao et al., 2022a), and it is transpar-
ent about the execution process and can provide
luxuriant information of the intermediate process,
which makes it possible for our proposed method to
combine both of the mainstream methods to make
full use of their strengths.

ODQA. Open domain question answering aims
to answer factoid questions based on a large col-
lection of documents. The mainstream solution for
open domain QA is that firstly use a retriever to se-
lect a small subset of passages where some of them
might contain the answer to the question, and then
utilize an extractive or generative reader to identify
the answer. The retriever can be sparse vector space
models such as TF-IDF (Chen et al., 2017) and
BM25 (Robertson et al., 2009), or trainable dense
vector space models such as DPR (Karpukhin et al.,
2020) and MDR (Xiong et al., 2020). The extrac-
tive reader predicts a span from the retrieved con-
text to answer an open domain question in pre-
vious works such as DrQA (Chen et al., 2017),
HGN (Fang et al., 2019) and DPR (Karpukhin
et al., 2020). Recently, the generative reader
achieved further improvements in multiple open
domain QA benchmarks, such as FiD (Izacard and
Grave, 2020), KG-FiD (Yu et al., 2021) and PATH-
FiD (Yavuz et al., 2022). In our work, we can
view the proposed refinement stage as the genera-
tive reader, and the proposed parsing and execution
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Question 1: What country is associated with Quincy, known as Gem City, where Mary Astor was born?

Find
Quincy

Find
Mary AstorFilterStr

official name
Gem City

QueryRelationQualifier
location of birth

country

Quincy
nick name: Gem City

…

Mary Astor
data of birth: 1906/5/3

… 

place 
of birth

country: United States of America

Knowledge Base: alignment

Predicted KoPL:

Execution Context: Find <arg> Quincy <return> Quincy <func> FilterStr … … <func> QueryRelationQualifier <arg> location 
of birth <arg> country <return> United States of America       <mask>

Question Execution Context The answer is:
Bart 

Encoder
Bart 

Decoder United States of America

Parsing

Execution

Refinement

Figure 1: An overview of PER-KBQA approach. It consists of three stages: Parsing, Execution and Refinement.
Parsing stage generated the logical form based on the question, and then execution stage aligned the knowledge base
and obtained the execution context, and finally refinement stage generated the answer conditioned on the question
and the execution context.

stages as the retrieval in ODQA.

3 PER-KBQA

In this section, we formulate the complex KBQA
task and describe the implementation of three
stages of PER-KBQA. In this paper, we consider
the KoPL language that explicitly describes the
reasoning process as our logical form. Since only
the KQA Pro (Cao et al., 2022a) dataset provides
the KoPL, we follow the KQA Pro setting. That
is, each natural language question is paired with
executable logical forms (i.e., KoPL). The logical
forms can be executed against the KB to obtain the
answer.

Task Definition: Let q be a natural
language query, K be a symbolic knowl-
edge base and the training dataset be
D = {(q1, l1, A1), (q2, l2, A2), ..., (qN , lN , AN )},
where li represents the KoPL that can be executed
against the K to obtain the ground truth answer Ai

corresponding to the query qi. Given the knowl-
edge base K and a question q, the semantic-parsing
based QA methods are to generate the KoPL l̄ and
execute it to predict the answer Ā. In this paper,
we explore how to use these logical forms that
describes the reasoning process from KoPL to
further unlock the KBQA model.

3.1 Parsing

The parsing stage models the logical form (i.e.,
KoPL) in a structured way. A sequence-to-
sequence model is widely utilized to generate the
logical form token by token conditioned on the
question. Since the pretrained encoder-decoder lan-
guage models (e.g., BART (Lewis et al., 2019))
have achieved considerable success on the ques-
tion answering task, we leverage BART to generate
KoPL following KQA Pro (Cao et al., 2022a).

Given the KoPL li, we convert its functions and
arguments into the structured textual sequence:

li := P1 <func> P2 ... <func> Pn,

Pk := fk(argk1 <arg> argk2),

where li consists of n programs and the k-th pro-
gram Pk includes a function fk with its arguments
argk1/k2. The function fk can have 27 forms as
described in KQA Pro (Cao et al., 2022a). We in-
sert special tokens <func>,<arg> as indicators
to separate the functions and their corresponding
arguments respectively.

We train BART to autoregressively generate the
li per token at each step conditioned on the question
qi. Thus the conditional generation is to minimize
cross-entropy loss as

L(θG)=− 1

N

N∑

i=1

|li|∑

j=1

log pθP(yj |y<j , qi), (1)
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where θP is the parameters of BART. The parsing
stage is basically similar to the BART-based KoPL
method proposed by KQA Pro (Cao et al., 2022a).
Only the question is used to generate the logical
form and the information in the knowledge base
corresponding to the question is not utilized.

3.2 Execution
In the execution stage, we execute the generated
logical forms over knowledge base to obtain the
corresponding intermediate results. However, it
is not guaranteed that the generated functional ar-
guments will be consistent with the relations and
attributes (edges) of the entities in knowledge base
K. For example, in Figure 1, the generated text
official name and location of birth mismatch the
attribute nick name and relation place of birth re-
spectively. Although they are semantically similar,
the logical forms can not be executed successfully
in this knowledge base K.

To alleviate this problem, we propose two steps:
1) Alignment. We first explicitly align the gener-
ated functional arguments li with the relations and
attributes in K based on their overlap; 2) Execution.
We then execute the aligned logical form li over the
knowledge base K, which obtains a list of entities
as intermediate results for all programs in li.

More specially, in the alignment step, for each
program Pk in KoPL li, we define a candidate pool
PPk

that contains the entity-specific relations or
attributes in the knowledge base. For example, in
Figure 1, the candidate pool PFilterStr contains the
attributes’ key-value pairs from the entity Quincy.
For each generated functional arguments in Pk, we
utilize the Jaccard similarity to find the most similar
relations or attributes that exists in knowledge base
K:

argalignedk = argmax
a∈PPk

{|a ∩ argk|
|a ∪ argk|

},

where argk is the generated functional argument,
a ∈ PPk

is the relation or attribute in the knowl-
edge base, and argalignedk is the aligned functional
argument. Then the generated functional argument
argk is replaced by the most similar relation or
attribute argalignedk in the knowledge base to make
the logical form executable. If the generated argu-
ment exists in the knowledge base, it always aligns
with itself. Otherwise, it aligns with the most simi-
lar edge in the knowledge base.

Previous work (Das et al., 2021) have studied the
alignment methods such as using the cosine simi-

larity of the words embeddings encoded by the pre-
trained language model BERT (Devlin et al., 2018)
or encoded by the pretrained EmbedKG model
TransE (Bordes et al., 2013). However, it is noted
that we perform the alignment operation during the
execution process and the candidate pool is always
large, so we use the Jaccard similarity which is
more efficient.

3.3 Refinement

After the parsing and execution stages, we obtain
the execution contexts that consist of the logical
forms and the corresponding intermediate results
from the knowledge base, which describe the step-
by-step reasoning process. The refinement stage
utilizes the execution contexts to improve the com-
plex reasoning ability.

Specifically, our proposed refinement stage or-
ganizes the predicted KoPL l̄i and the intermediate
results obtained from the execution stage in the
form of the step-by-step reasoning path:

Ci := P̄1 <func> P̄2 ... <func> P̄n,

P̄k := fk <arg> argk1 ... <return> rk,

rk := e1 | e2 | ... | em,

(2)

where Ci is the execution context of logical form l̄i
and rk denotes the intermediate result of the k-th
function that consists of a list of returned entities
{ei}. And the <return> is a special token in-
serted as an indicator of the returned results. In our
experiments, m, which is the number of entities
that the k-th function P̄k returns, ranges from 0 to
5. If there are more than 5 entities returned, we
randomly sample 5 entities to reduce the expensive
quadratic computation complexity about the input
length.

Then we concatenate the question qi and the
execution context Ci as following:

Xi := Question : qi

Context : Ci

The answer is : ,

and obtain the transformed training set {(Xi, Ai)}
based on the original training set.

The goal of the refinement stage is to train an-
other BART model to autoregressively generate the
answer Ai conditioned on Xi. Thus the answer
generation is to minimize cross-entropy loss over
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the transformed training set {(Xi, Ai)} as

L(θR)=− 1

N

N∑

i=1

|Ai|∑

j=1

logpθR(yj |y<j , Xi), (3)

where θR is the parameters of the answer refine-
ment model.

It is noted that the last function P̄n returns the
answer rn (may be correct or incorrect) when exe-
cuting the predicted logical form l̄i. We mask the
returned answer rn of the P̄n in the context Ci with
a certain probability p when training the answer
generation model. So we can avoid learning the
spurious correlation between the returned answer
rn and the gold answer Ai, and make the model
attend to the question and reasoning path to predict
the answer. We further explore the mask strategy
in the ablation study.

There are some motivations to introduce the re-
finement stage. 1) The logical forms are the in-
termediate outputs but not the final answer. Thus
the logical forms may not be executed successfully
against the knowledge base K to obtain a reason-
able answer because of the slight generation devia-
tion (Das et al., 2021), even though the alignment
operation is performed. Fortunately, the intermedi-
ate reasoning processes from KoPL are transparent
and explainable, which can provide abundant in-
termediate results as clue information to improve
the capability of complex reasoning. 2) Recently,
fusion-in-decoder (FID) (Izacard and Grave, 2020)
and its extension work, e.g., KG-FiD (Yu et al.,
2021) and PATHFiD (Yavuz et al., 2022), have
shown impressive performances. These QA meth-
ods leverage the passage retrieval with generative
reader for open domain QA, and have shown that
the QA models can benefit from the context from
the retrieval module. Inspired by that, our pro-
posed method also takes advantage of the execu-
tion context for improving performances. In this
paper, we use the intermediate step-by-step reason-
ing processes as the execution contexts instead of
the passage retrieval. From this perspective, we can
view the parsing and execution stages as retriever
and consider the refinement stage as a generative
reader in FID (Izacard and Grave, 2020). 3) In-
spired by the chain-of-thoughts prompting meth-
ods (Wei et al., 2022; Kojima et al., 2022; Li et al.,
2022), which have shown that the intermediate rea-
soning steps can improve the ability of pre-training
language models to complex reasoning, we thus
use the intermediate reasoning steps from KoPL

to further refine the language model for complex
reasoning. This is also why we choose KoPL as the
semantic parser since it can provide transparent and
human understandable reasoning processes, which
are more similar to natural languages.

4 Experiments

In this section, we conduct the experiments to com-
pare our proposed approach with various baselines,
and provide detailed analysis and ablation study on
the results.

Dataset: Since KoPL is a recently proposed
parser that explicitly describes the reasoning pro-
cess and only the KQA Pro (Cao et al., 2022a)
dataset provides KoPL, we use KQA Pro, a chal-
lenging dataset for complex question answering
over knowledge base for evaluation.

In KQA Pro training set, each instance consists
of the textual question, the corresponding KoPL,
ten candidate choices, and the golden answer. And
there are two settings: open-ended setting and
multiple-choice setting. We conduct our experi-
ments in the open-ended setting where the ten can-
didate choices are not used. Besides, it provides a
high-quality knowledge base which has rich literal
knowledge (attributes and relations about entities)
as well as qualifier knowledge (qualifier about at-
tributes and relations). We can execute KoPL over
the knowledge base to obtain the answer.

Metrics: We evaluate the QA models based on
the accuracy of the test set in KQA Pro dataset. Fol-
lowing the KQA Pro (Cao et al., 2022a), we provide
in-depth analysis of models’ fine-grained reason-
ing abilities for Complex KBQA including Multi-
hop, Qualifier, Comparison, Logical, Count, Verify,
and Zero-shot, where Multi-hop denotes multi-hop
questions, Qualifier and Comparison measure the
ability to query the literal knowledge or qualifier
knowledge of the relations or attributes, Count and
Verify rely on the intermediate results of entities
list, Zero-shot requires the QA models to answer
the questions related to unseen relations.

Baselines and Implementation Details: We
reproduce the strong baseline BART based KoPL
parser proposed in KQA Pro (Cao et al., 2022a).
Based on this baseline, we implement three stages
of our approach. We also report the published meth-
ods in the leaderboard including KVMNet (Miller
et al., 2016), SRN (Qiu et al., 2020), EmbedKGQA
(Saxena et al., 2020), RGCN (Schlichtkrull et al.,
2018), GraphQ IR (Nie et al., 2022). Following
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Model Overall Multi-
hop

Qualifier
Compari-

son
Logical Count Verify

Zero-
shot

KVMemNet 16.61 16.50 18.47 1.17 14.99 27.31 54.70 0.06
SRN - 12.33 - - - - - -
EmbedKGQA 28.36 26.41 25.20 11.93 23.95 32.88 61.05 0.06
RGCN 35.07 34.00 27.61 30.03 35.85 41.91 65.88 0.00
BART SPARQL 89.68 88.49 83.09 96.12 88.67 85.78 92.33 87.88
BART KoPL 90.55 89.46 84.76 95.51 89.30 86.68 93.30 89.59
GraphQ IR 91.70 90.38 84.90 97.15 92.64 89.39 94.20 94.20
PER-KBQA(ours) 93.82 92.93 89.83 97.57 92.99 89.01 95.30 91.69

Table 1: Accuracy of various baselines and our method on KQA Pro test set.

PE qi Ci recall
✓ 93.26

✓ ✓ 95.27

Table 2: The recall of the golden answer on KQA Pro
validation set. PE denotes that we utilize Parsing and
Execution stages to generate the answer. And qi, Ci rep-
resent the question and execution context respectively.

BART KoPL (Cao et al., 2022a), we utilize two in-
dependent bart-base models to instantiate the pars-
ing and refinement stages respectively. We set the
learning rate for BART parameters as 3e-5, the
learning rate for other parameters as 1e-3, and the
weight decay as 1e-5. We used the optimizer Adam
(Kingma and Ba, 2014) for all models. Please note
that our proposed execution stage is simple, effi-
cient and requires no learning.

4.1 Quantitative Results

Overall Results. In Table 1, we compare the ex-
perimental results of our proposed method with
the existing approaches for KQA Pro in the same
open-ended setting. We observe that our method
PER-KBQA outperforms the existing published
work on the KQA Pro benchmark. Compared to
the sota, our proposed method shows a significant
performance gain in terms of most evaluated mea-
sures. In particular, our method improves the var-
ious complex reasoning skills for the QA system,
e.g., multi-hop reasoning and qualifier knowledge
query.

Compared to the sota method BART KoPL (Cao
et al., 2022a) which follows parse-execute
paradigm, our proposed parse-execute-refine
paradigm performs significantly better and has sev-
eral advantages. 1) First, we can explicitly align the
knowledge base in the execution stage. Because of

the KoPL parser that provides the transparent rea-
soning steps, our execution stage can make align-
ment efficiently from the proposed candidate pool
instead of a huge comparison space. With the pro-
posed execution stage, we can successfully obtain
the intermediate results instead of failing to execute
the programs when there are slight generation devi-
ations. 2) Second, the intermediate reasoning steps
make it much easier to perform complex reasoning.
The refinement stage uses the intermediate results
to further generate a reasonable answer. Since the
execution context can provide abundant informa-
tion of the reasoning process including reasoning
steps and their intermediate results, they are impor-
tant clues to the answer. Therefore, our proposed
parse-execute-refine paradigm is beneficial to all
measures including Multi-hop, Qualifier, Compari-
son, Logical, Count, Verify, and Zero-shot.

Table 2 is an example that shows it is beneficial
to demonstrate the executed intermediate reason-
ing steps to the KBQA model. In this example, we
do experiments on the KQA Pro validation set as
the golden answers are available. PE denotes how
much percent of the golden answers are generated
from the parsing and execution stages, which is the
result of the parse-execute paradigm. After the two
stages, we can obtain the execution context Ci (see
Eq. 2), which is the intermediate step-by-step rea-
soning process. We also report the recall of [qi, Ci],
which represents what percent of the golden an-
swers are contained in the questions and execution
contexts. Please note that when we calculate the re-
call of [qi, Ci], we also include the Verify question
instances since the model can generate "yes/no"
answer only based on the question and context, and
the "yes/no" is not necessary to appear in the con-
text. From Table 2, we can observe that the percent
of the golden answers in the questions and contexts
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Model Overall Multi-
hop

Qualifier
Compari-

son
Logical Count Verify

Zero-
shot

Parsing 90.72 89.69 84.83 95.65 89.60 88.41 93.51 89.21
+Exe 92.66 91.54 86.78 96.82 91.49 89.01 94.41 92.20
+Exe+Ref 93.82 92.93 89.83 97.57 92.99 89.01 95.30 91.69

Table 3: Ablation study of three stages on KQA Pro test set. +Exe denotes that we combine Parsing stage and the
Execution stage. +Exe+Ref represents our full model with three stages.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
mask probability p

93.0

93.2

93.4

93.6

93.8

94.0

94.2

94.4

94.6

94.8

Ac
cu

ra
cy

93.26

94.21
94.30

94.22

94.50 94.52
94.62

94.50
94.41

94.30

Figure 2: Ablation study of mask strategy on KQA Pro
validation set.

is higher than those generated from the parsing
and execution stages. It indicates that some of the
golden answers in the intermediate results are not
sufficiently utilized in the parse-execute paradigm.
There is room for refinement stage to improve the
performance only based on the questions and the
proposed execution context. In summary, the re-
finement stage can further improve the ability of
complex reasoning by fully exploring the interme-
diate step-by-step reasoning processes.

4.2 Ablation Study

Three Stages: In this set of experiments, we ex-
plore the performance of three stages respectively.
Parsing denotes that we reproduce the BART KoPL
from KQA Pro (Cao et al., 2022a) as our first stage.

Table 3 shows the comparison results. It can be
observed that the execution stage is effective. Dur-
ing this stage, we can access the knowledge base
and explicitly reason over the structure of the KB,
which is significant to promote the generalization
ability in the Zero-shot setting, the multi-hop ca-
pability and other fine-grained reasoning abilities.
And we can further make improvement after we
take advantage of the execution context to generate
answer in the refinement stage.

Mask Strategy: In this set of experiments, we
aim to explore why we leverage mask strategy in

the refinement stage. Figure 2 shows that if we do
not mask the last returned answer during training,
the answer generation model is likely to predict the
answer based on the returned answer in the exe-
cution context and hardly obtain the performance
gain. This is because the model will learn the spuri-
ous correlation between the last returned result and
the golden answer.

To choose the mask ratio, we do experiments
on the validation set using different values (i.e.,
0.1, 0.2, · · · , 0.9). The accuracy increases as the
mask probability p of the returned result increases
until p reaches 0.6, and performance starts to drop
after that. We can also see that the mask ratio is
not sensitive. For example, the best performance
is 94.62% (p = 0.6) and the worst performance
is 94.21% (p = 0.1). The two results are close.
Intuitively, in the situation where the information
of the answer is almost provided, the model is less
likely to attend to the question and the reasoning
path in execution context, and hence lacks the gen-
eralization ability. Under the circumstance where
the answer basically do not appear in the context,
the model can still generate correct answers based
on the reasoning path. Thus we select a reasonable
value and set the mask probability as 0.6 to conduct
our experiments on KQA Pro test set.

4.3 Case Study

To further understand our proposed approach PER-
KBQA, we do case study to demonstrate how the
three stages work. Shown in Figure 3, the pre-
dicted KoPL and execution contexts are organized
in a structured text form to express the reasoning
processes. Our proposed method can generate cor-
rect answer in the situation where the answer is
contained in the execution context (the first case in
Figure 3), and can predict the correct answer in the
situation where the reasoning path is incomplete
and the answer do not appear in the question or the
execution context (the second case in Figure 3).

In the first case, the predicted KoPL, which is
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Q:  Who is shorter, David Brown (the point guard) or Stephen King (the one that was born in 86)?
Gold KoPL: Find(point guard) <func> Relate(position played on team / speciality <arg> backward) <func> Find(David Brown) <func> And() <func> 

Find(Stephen King) <func> FilterDate(date of birth <arg> 1986-03-06 <arg> =) <func> SelectBetween(height <arg> less)
Pred KoPL: Find(point guard) <func> Relate(position played on team / speciality <arg> backward) <func> Find(David Brown) <func> And() <func> 

Find(Stephen King) <func> FilterYear(date of birth <arg> 86 <arg> =) <func> SelectBetween(height <arg> less)

Parse pred ans: null
Parse+Exe pred ans : Stephen King

Execution Context: Find <arg> point guard <func> Relate <arg> position played on team / speciality <arg> backward <return> Robert Smith | Jason 

Kidd | Chris Paul | Jack Thompson | Chris Paul <func> Find <arg> David Brown <func> And <return> David Brown <func> 
Find <arg> Stephen King <func> FilterYear <arg> date of birth <arg> 86 <arg> = <return> Stephen King <func> SelectBetween

<arg> height <arg> less <return> Stephen King

Parse+Exe+Ref pred ans: Stephen King
Gold ans: Stephen King

Q：What is the ending date that small forward is the position of Michael Jordan whose nickname is His Airness?
Gold KoPL: Find(Michael Jordan) <func> FilterStr(nickname <arg> His Airness) <func> Find(small forward) <func> QueryRelationQualifier(position 

played on team / speciality <arg> end time)

Pred KoPL: Find(small forward) <func> Find(Michael Jordan) <func> FilterStr(nickname <arg> Her Airness) <func> QueryRelationQualifier(position 
played on team / speciality <arg> end time)

Parse pred ans: None

Parse+Exe pred ans: None
Execution context: Find <arg> small forward <func> Find <arg> Michael Jordan <func> FilterStr <arg> nickname <arg> Her Airness <return> 

Michael Jordan <func> QueryRelationQualifier <arg> position played on team / speciality <arg> end time 

Parse+Exe+Ref pred ans: 2003
Gold ans: 2003

Figure 3: Case analysis about our proposed method. We mark the error generations from the first stage and their
ground truths in red. And the intermediate results are marked in green.

generated by the first parsing stage only condi-
tioned on the given question, deviates slightly from
the golden KoPL because of the lacking the spe-
cific information of the knowledge base. And the
predicted KoPL can not be executed against the
knowledge base to obtain the right answer. How-
ever, with the execution stage, we simply align
the relations or attributes in the knowledge base to
make the logical forms executable and can get the
right answer. The refinement stage further utilizes
the execution context to generate correct answer
since the right answer is contained in the execution
context.

In the second case, the generated KoPL from
the first stage failed to give the right answer corre-
sponding to the knowledge base. Even though we
apply the alignment operation of the second stage,
it can still not give the right answer because of the
disturbance from other relations or attributes in the
knowledge base. So the information of the correct
answer is not contained in the execution context.
However, the refinement stage can generate the cor-
rect answer based on the question and the reasoning
path of the execution context. It indicates that utiliz-
ing the mask strategy to train the refinement model
is beneficial for the model to store some specific
information about the knowledge base. Thus the
refinement model can generate answer correctly
by attending to the question and the incomplete
reasoning path of the execution context.

5 Conclusion

In this work, we propose a novel approach called
PER-KBQA for complex question answering over
the knowledge base. Our method consists of three
stages: parsing, execution and refinement. The
parsing stage generates logical forms conditioned
on the question. The execution stage alleviates
the problem of slight generation deviation via the
alignment to the knowledge base and obtains the
intermediate results. The refinement stage com-
bines the logical forms and corresponding interme-
diate results as the reasoning process and regards
it as execution context to generate the answer. Ex-
periments on KQA Pro benchmark show that our
method can significantly improve the performance
in terms of most evaluated measures.

6 Limitations and Future Work

Our proposed method is skillful at answering com-
plex questions over knowledge base, but our work
also has limitations. Our approach relies on the log-
ical forms that can provide transparent intermediate
results and only the KoPL is transparent to the best
of our knowledge. However, Cao et al. (2022b)
had shown the promising results to transfer the
KoPL to other complex KBQA benchmarks such
as WebQSP (Yih et al., 2016), CWQ (Talmor and
Berant, 2018). So in the future, we plan to adapt
our method to other complex KBQA benchmarks.
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