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Abstract
Large language models (LLMs) are becoming a
one-fits-many solution, but they sometimes hal-
lucinate or produce unreliable output. In this pa-
per, we investigate how hypothesis ensembling
can improve the quality of the generated text for
the specific problem of LLM-based machine
translation. We experiment with several tech-
niques for ensembling hypotheses produced by
LLMs such as ChatGPT, LLaMA, and Alpaca.
We provide a comprehensive study along multi-
ple dimensions, including the method to gener-
ate hypotheses (multiple prompts, temperature-
based sampling, and beam search) and the strat-
egy to produce the final translation (instruction-
based, quality-based reranking, and minimum
Bayes risk (MBR) decoding). Our results show
that MBR decoding is a very effective method,
that translation quality can be improved using
a small number of samples, and that instruc-
tion tuning has a strong impact on the relation
between the diversity of the hypotheses and
the sampling temperature. Our code is avail-
able at https://github.com/deep-spin/
translation-hypothesis-ensembling.

1 Introduction

Significant research effort has been devoted to task-
specific neural machine translation (NMT) models
trained in a fully supervised manner with large vol-
umes of parallel data. Their performance has been
enhanced through techniques such as fine-tuning
on in-domain data, model ensembling, and rerank-
ing during decoding (Kocmi et al., 2022). The
recent achievements of general-purpose large lan-
guage models (LLMs) such as GPT and LLaMA
(OpenAI, 2023; Touvron et al., 2023) offer a fresh
perspective on the problem, demonstrating the fea-
sibility of generating high-quality translations with-
out explicit training for the specific task, even in a
challenging zero-shot scenario (Hendy et al., 2023).

While techniques such as greedy decoding or
sampling from the distribution often prove inade-
quate for generating translations with task-specific

models, the same cannot be said for LLM-based
MT. There is, however, a lack of exploration in this
case. Our paper fills this gap by providing a com-
prehensive study on ensembling translation hy-
potheses (§2), encompassing multiple LLMs such
as ChatGPT, LLaMA, and the instruction-tuned
Alpaca (Taori et al., 2023). We consider different
strategies to generate hypotheses (prompt-based en-
sembling, temperature sampling, beam search), and
several techniques to produce the final translation,
including ChooseBest, GenerateBest, reranking
based on quality estimation, and minimum Bayes
risk decoding. The last two approaches have been
successful at improving translation quality with
task-specific models (Fernandes et al., 2022; Fre-
itag et al., 2022a), but it is unclear whether the
findings hold for LLM-based MT.

Our main findings can be summarized as fol-
lows. First, we demonstrate that translation qual-
ity can be enhanced with a small number of
samples (e.g., 20), especially when translating out
of English (Fig. 1). In the case of ChatGPT, the
cost in terms of paid tokens grows sublinearly with
the number of samples (§3.2). Second, we show
that similar findings apply to LLaMA and Alpaca
(§3.3). We discuss in which conditions beam search
remains a reliable baseline for single-hypothesis
translation (§3.3.1) and how to ensemble transla-
tions (§3.3.2). Moreover, we find that there exists
a significant gap in the quality of ensembles of un-
biased samples from LLaMA and Alpaca (§3.3.3).
We attribute this disparity to how instruction tun-
ing affects the relationship between the diversity
of the hypotheses and the sampling tempera-
ture, which ultimately impacts translation quality.
Lastly, we show that hypothesis ensembling re-
duces the number of generated hallucinations,
thereby improving the model’s robustness to source
perturbations (§3.3.4). Ensembling predictions and
increasing the model size narrows the quality gap
between these models and ChatGPT.
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Figure 1: COMET and BLEURT scores for translations
produced by ChatGPT. The greedy search output is indi-
cated by a blue bold line, and a single sample baseline
by a red bold line. Ensembles of multiple (20) predic-
tions are marked with dashed lines: orange for ranking
with COMETKIWI and green for MBR decoding with
COMET. Top: EN-X. Bottom: X-EN.

2 Ensembling Hypotheses

Ensembling has a long history in machine learn-
ing, being well known for leveraging multiple com-
plementary systems to improve performance on
a given task and provide good/robust generaliza-
tion (Hansen and Salamon, 1990; Ting and Witten,
1997; Breiman, 2001; Zhou et al., 2002). While
there have been efforts in prompt ensembling and
multi-prompt learning within the context of LLMs,
this area is largely unexplored for text generation
tasks, where the output is a string rather than just a
single token (Liu et al., 2023). See §4 for further
details. In this section, we delve into the process of
generating multiple translation hypotheses (§2.1)
and explore different methods for ensembling them
to produce a single translation (§2.2).1

2.1 Generating multiple hypotheses
There are several ways of generating multiple pre-
dictions from a single language model. In zero-

1Ensembling predictions in this context should not be con-
fused with the practice of model ensembling, which involves
using multiple models (e.g., with different initializations) and
combining their outputs. In this paper, we focus on combining
hypotheses generated from a single model. The framework re-
mains valid if the hypotheses originate from different models.

shot scenarios where no examples are provided in
the prompt, we can consider (1) choosing a sin-
gle prompt and sampling with a temperature such
that the resulting predictions are diverse, (2) fixing
the sampling temperature and considering multiple
prompt templates, or (3) choosing a single prompt
that makes the model generate multiple predictions.
Refer to App. A.1 for specific prompt templates.
While this paper does not cover in-context learning,
these strategies can also be applied in few-shot sce-
narios where in-context examples are provided in
the prompt. In such cases, multiple prompts can be
created by providing different in-context examples.

2.2 Generating a final translation
Let Ȳ ⊆ Y be a set of N hypotheses, possibly
generated with one of the methods discussed in
§2.1. When it comes to providing a final output, a
commonly used approach involves aggregating the
hypotheses in Ȳ by selecting the most frequent one
with majority voting (Wang et al., 2023a). How-
ever, this approach is not well suited for generation
tasks such as MT given that the output consists of a
sequence of multiple tokens. Therefore, we explore
alternative methods that incorporate both external
models (§2.2.1) and the LLM itself (§2.2.2).

2.2.1 Using external models
Assuming access to an external model f that pro-
vides an estimated quality score for a hypothe-
sis y ∈ Ȳ without requiring a ground truth (e.g.,
COMETKIWI (Rei et al., 2022b)), a simple ap-
proach consists of choosing the hypothesis that
maximizes this score (Fernandes et al., 2022),

ŷranking := argmax
y∈Ȳ

f(y). (1)

Another alternative is minimum Bayes risk
(MBR) decoding, which aims to find the output
that maximizes an expected utility function u(y∗, y)
that measures the similarity between a hypothesis
y ∈ Y and a reference y∗ ∈ Ȳ (Kumar and Byrne,
2002; Eikema and Aziz, 2020). For MT, this can
be an automatic evaluation metric such as COMET

(Rei et al., 2020). MBR decoding seeks for

ŷmbr := argmax
y∈Ȳ

EY∼pθ(y|x)[u(Y, y)], (2)

where the expectation in Eq. 2 is typically approxi-
mated as a Monte Carlo (MC) sum,

EY∼pθ(y|x)[u(Y, y)] ≈
1

M

M∑

j=1

u(y(j), y), (3)
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using M model samples y(1), . . . , y(M) ∼ pθ(y|x),
yielding an unbiased MC estimate of the expected
utility. Alternatively, we may obtain y(1), . . . , y(M)

from temperature/nucleus sampling (Holtzman
et al., 2020), resulting in a biased estimate. While
the number of samples used to approximate the
expected utility of each hypothesis can be smaller
(Eikema and Aziz, 2022), we set M = N .

2.2.2 Using the LLM
While the techniques above rely on external mod-
els for assessing quality, we also propose alterna-
tive methods which do not need any external (task-
specific) model. We consider two scenarios:2

• using the LLM to select the most appropriate
hypothesis from Ȳ (formulated as a multiple
choice question), which we call ChooseBest;

• asking the LLM to generate a final prediction
based on the hypotheses in Ȳ (i.e., a less re-
strictive scenario where the model has the free-
dom to either generate a new prediction or to
choose one hypothesis from Ȳ), which we call
GenerateBest.

The prompt templates for these methods are pro-
vided in App. A.2.

2.3 Measuring hypothesis diversity
Inspired by the work of Fomicheva et al. (2020)
on quantifying model uncertainty, we measure the
semantic diversity between different translations
for the same source sentence by computing

1− 1

N(N − 1)

N∑

i,j=1
j ̸=i

u(y(j), y(i)). (4)

It is worth noting that when u is the same utility
function used in Eq. 2, this quantity can be com-
puted without any additional cost during inference
with MBR decoding, as it already provides scores
for all the necessary pairwise comparisons.

3 Experiments

3.1 Setup
We study different methods for generating transla-
tions in two regimes:

2Another possibility, which we leave for future work, in-
volves a sequential architecture that samples predictions non-
independently by providing in the prompt the answers gen-
erated in previous steps and taking the last prediction as the
final output. This is known in statistics as stacking (Breiman,
1996) and is related to the work of Madaan et al. (2023).

• A closed-source setting using ChatGPT3, an
LLM developed by OpenAI, which has been
shown to provide high quality translation (Hendy
et al., 2023; Peng et al., 2023a). The system
is restricted behind API walls, with undisclosed
training data/regime and limited documentation.
According to their documentation, it is an In-
structGPT model (Ouyang et al., 2022), trained
to follow instructions with reinforcement learn-
ing from human feedback (Christiano et al., 2017;
Stiennon et al., 2020) using proximal policy opti-
mization algorithms (Schulman et al., 2017).4

• An open-source scenario using LLaMA (Tou-
vron et al., 2023) and Alpaca (Taori et al., 2023).
The latter was finetuned from a LLaMA model
on an instruction-following dataset with 52K ex-
amples generated with text-davinci-003, fol-
lowing Wang et al. (2023b). We use the versions
with 7B parameters unless otherwise stated.

As our translation baseline, we employ greedy
decoding since it generally produces higher-quality
outputs, in line with the findings of Peng et al.
(2023a), who demonstrate that using a lower sam-
pling temperature leads to improved performance.5

In this work, we use COMETKIWI (Rei et al.,
2022b) for ranking according to Eq. 1 and COMET(-
22) (Rei et al., 2022a) as the utility function in
MBR decoding, following Eq. 2. We consider
8 different translation directions, including lan-
guages such as English (EN), German (DE), Rus-
sian (RU), Czech (CS), and Ukrainian (UK). We
use the WMT22 test sets (Kocmi et al., 2022),
which are recent, and thus less likely to have been
part of ChatGPT’s training (see footnote 4). Fol-
lowing Freitag et al. (2022b), we evaluate each
system with COMET(-22) (Rei et al., 2022a) and
BLEURT (Sellam et al., 2020).

3.2 Closed-source setting

We generate a set of translation hypotheses for each
source sentence by sampling from the model with

3https://openai.com/blog/chatgpt. Our experi-
ments were conducted with the gpt-3.5-turbo model be-
tween April and June 2023.

4For more information, see https://platform.openai.
com/docs/model-index-for-researchers. According
to this, ChatGPT was trained on data from before Q4 2021.

5We encountered some API/server errors when prompting
ChatGPT for translation with a temperature of 0, as reported
by Guerreiro et al. (2023). Using a temperature of 0.1 helps
alleviate these issues, which we use as a proxy for greedy
decoding. This is not done when using LLaMA/Alpaca.
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N METHOD
EN-DE EN-RU EN-CS EN-UK

COMET BLEURT Cost COMET BLEURT Cost COMET BLEURT Cost COMET BLEURT Cost

1 Greedy 87.01 77.15 1 87.77 75.61 1 90.04 80.98 1 87.66 76.08 1
Sampling 86.56 76.67 1 87.15 74.62 1 89.20 79.81 1 86.63 74.13 1

using ChatGPT

5 ChooseBest 87.15 77.38 6 87.77 75.47 7 90.21 81.07 6 87.56 75.60 7
GenerateBest 87.16 77.69 5 87.30 75.17 6 90.05 80.89 6 87.54 75.59 7

using external models

5
Ranking 87.58 77.70 3 88.72 76.70 3 91.02 82.14 3 88.82 76.86 3
MBR decoding 87.77 77.71 3 88.88 76.37 3 91.37 81.78 3 89.23 76.87 3
COMET oracle 88.85 78.91 3 89.98 77.96 3 92.18 83.07 3 89.23 78.39 3

20
Ranking 87.64 77.86 8 88.96 76.89 10 91.40 82.64 10 89.29 77.47 11
MBR decoding 88.09 78.09 8 89.41 76.73 10 91.97 82.45 10 90.03 77.77 11
COMET oracle 89.88 80.22 8 90.61 79.41 10 92.26 84.55 10 91.54 80.29 11

50
Ranking 87.74 78.06 19 89.17 77.17 24 91.52 82.80 23 89.48 77.69 27
MBR decoding 88.25 78.14 19 89.64 77.04 24 92.21 82.66 23 90.31 78.03 27
COMET oracle 90.39 80.89 19 91.74 80.66 24 93.75 85.29 23 92.10 81.22 27

DE-EN RU-EN CS-EN UK-EN

COMET BLEURT Cost COMET BLEURT Cost COMET BLEURT Cost COMET BLEURT Cost

1 Greedy 85.45 74.50 1 85.99 77.92 1 87.13 77.42 1 85.63 76.50 1
Sampling 85.18 74.06 1 85.68 77.48 1 86.72 76.88 1 85.23 75.88 1

using ChatGPT

5 ChooseBest 85.37 74.43 5 85.90 77.82 4 87.09 77.33 4 85.51 76.30 4
GenerateBest 85.46 74.54 4 85.66 77.56 4 87.08 77.48 4 85.46 76.40 4

using external models

5
Ranking 85.62 74.61 2 86.22 78.08 2 87.34 77.48 2 85.85 76.72 2
MBR decoding 85.73 74.58 2 86.27 78.05 2 87.49 77.51 2 85.97 76.55 2
COMET oracle 86.83 75.73 2 87.46 79.57 2 88.65 79.12 2 87.27 78.27 2

20
Ranking 85.79 74.81 6 86.36 78.22 5 87.46 77.79 6 85.99 76.86 5
MBR decoding 85.95 74.69 6 86.49 78.27 5 87.70 77.71 6 86.22 76.77 5
COMET oracle 87.75 76.88 6 88.42 81.03 5 89.57 80.74 6 88.27 79.66 5

50
Ranking 85.79 74.78 13 86.32 78.13 12 87.47 77.67 13 85.94 76.81 11
MBR decoding 86.03 74.80 13 86.60 78.39 12 87.79 77.73 13 86.28 76.87 11
COMET oracle 88.18 77.49 13 88.95 81.86 12 90.02 81.58 13 88.80 80.41 11

Table 1: Automatic evaluation metrics for ChatGPT and total cost in terms of relative number of tokens normalized
within each translation direction, rounded to the nearest unit. Sampling multiple predictions does not increase the
prompt’s cost, hence the total cost does not increase (approximately) linearly with the number of samples. Ranking
uses COMETKIWI and MBR decoding uses COMET. Best overall values are bolded.

a temperature of 1 (unbiased sampling) using the
prompt of Hendy et al. (2023):

Translate this sentence from [source
language] to [target language].

Source: [source sentence].

Target:

We observe that using multiple samples results
in at least one significantly higher-quality transla-
tion compared to a single prediction, as indicated
by automatic evaluation metrics (see oracles for
COMET in Table 1). Increasing the number of hy-
potheses in the set consistently leads to an oracle
translation of superior quality, thus highlighting the
potential of ensembling predictions.

Using different prompts. Based on preliminary
experiments conducted on a subset of the language
directions mentioned in §3.1, we observed that

generating translations using different prompt tem-
plates (see App. A.1) yields translations of compa-
rable quality. Furthermore, ensembling predictions
from different prompts does not lead to improved
results compared to ensembles generated using the
same prompt. Therefore, we use only one prompt
in our further analysis.

3.2.1 How should we ensemble translations?

We compare the methods introduced in §2.2,
which include approaches that provide a final
answer using only the LLM (ChooseBest and
GenerateBest) or that require access to an ex-
ternal model (ranking with COMETKIWI and MBR
decoding with COMET as the utility function). Ta-
ble 1 shows the results for the automatic evaluation
with COMET and BLEURT, along with the relative
cost of each method compared to greedy decoding.
We normalize the values within each translation di-
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N METHOD
EN-DE EN-RU EN-CS EN-UK

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

1

LLaMA greedy 77.33 62.86 71.57 50.80 71.56 52.33 69.06 44.47
Alpaca greedy 76.67 64.06 75.59 59.52 71.40 56.61 72.76 53.40
LLaMA beam 77.30 59.99 62.25 34.95 71.32 45.14 61.30 29.16
Alpaca beam 78.59 65.95 77.71 61.62 76.34 60.81 76.68 55.09
LLaMA unbiased sampling 51.98 36.02 42.79 21.91 42.11 21.36 42.39 20.66
Alpaca unbiased sampling 68.15 54.86 61.50 44.15 54.90 37.45 56.80 36.44
LLaMA biased sampling 69.78 55.68 63.41 42.41 60.26 39.78 59.59 36.28
Alpaca biased sampling 73.42 60.65 70.25 53.19 63.97 47.70 66.45 45.91

unbiased sampling

50

LLaMA ranking 77.68 65.25 75.29 57.71 69.45 52.08 71.19 50.78
LLaMA MBR decoding 79.45 63.78 76.85 54.70 72.02 49.11 73.18 48.25
Alpaca ranking 82.70 71.35 81.63 65.33 78.24 62.36 78.72 56.43
Alpaca MBR decoding 84.23 70.58 83.94 65.97 81.09 62.53 81.70 59.33

biased sampling
LLaMA ranking 83.04 71.91 82.93 67.41 81.07 66.88 81.12 62.24
LLaMA MBR decoding 84.06 69.84 83.72 64.75 82.87 63.61 82.01 60.14
Alpaca ranking 83.58 72.30 84.12 68.75 82.42 68.50 82.22 61.09
Alpaca MBR decoding 84.54 71.18 85.44 68.32 84.82 68.16 84.30 63.42

DE-EN RU-EN CS-EN UK-EN

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

1

LLaMA greedy 82.36 70.19 81.58 71.62 81.26 69.90 81.37 71.13
Alpaca greedy 82.31 70.14 81.65 71.89 81.14 69.69 81.34 70.90
LLaMA beam 82.56 70.49 82.19 72.50 82.08 70.83 81.97 71.99
Alpaca beam 82.53 70.40 82.08 72.29 81.69 70.26 81.55 71.09
LLaMA unbiased sampling 73.26 60.23 70.63 58.62 70.19 57.20 70.72 59.13
Alpaca unbiased sampling 81.04 68.66 79.92 69.62 79.03 67.20 79.52 68.85
LLaMA biased sampling 79.82 67.60 78.75 68.14 78.10 66.07 78.71 67.84
Alpaca biased sampling 81.86 69.71 81.09 71.02 80.44 68.81 80.72 70.33

unbiased sampling

50

LLaMA ranking 82.90 70.64 82.12 71.74 81.85 69.97 82.17 71.70
LLaMA MBR decoding 84.25 70.75 83.22 71.61 82.92 69.62 83.40 71.51
Alpaca ranking 83.97 72.22 83.62 74.07 83.75 72.79 83.40 73.47
Alpaca MBR decoding 84.47 71.78 83.95 73.50 84.00 71.78 83.58 72.46

biased sampling
LLaMA ranking 84.03 72.15 83.44 73.73 83.58 72.32 83.50 73.47
LLaMA MBR decoding 85.03 72.17 84.22 73.30 84.4 71.87 84.23 72.82
Alpaca ranking 84.10 72.43 83.70 74.32 83.92 72.97 83.56 73.67
Alpaca MBR decoding 84.02 71.31 83.56 73.33 83.61 71.47 83.08 72.22

Table 2: Automatic evaluation metrics for LLaMA (7B) and Alpaca (7B). Ranking uses COMETKIWI and MBR
decoding uses COMET. Best overall values are bolded and best within each group are underlined.

rection by dividing by the cost of greedy decoding.

Using ChatGPT. Although the performance of
ChooseBest and GenerateBest with 5 samples
is slightly better than the single sample baseline,
these approaches still fall short of both the greedy
decoding output and the methods that use external
models for selecting the final translation, according
to both COMET and BLEURT. Furthermore, the
incorporation of all translation hypotheses in the
prompt (see App. A.2) significantly increases the
cost, making these approaches less scalable. For
that reason, we chose not to pursue this direction
further and instead focused our efforts on exploring
the methods described in §2.2.1.

Using external models. Table 1 shows that the
two methods that use external models for ensem-
bling predictions are effective at increasing the fi-
nal translation quality over the baselines. Notably,
these methods achieve significant improvements
without requiring an extensive number of unbiased
samples from the model’s distribution, especially
when translating out of English. Fig. 1 provides a
visual representation of the gains achievable with
20 samples. This differs from the findings of previ-
ous research using task-specific NMT models (Fer-
nandes et al., 2022; Freitag et al., 2022a), where
it is typically necessary to bias the model’s dis-
tribution using techniques like nucleus sampling
(Holtzman et al., 2020) or to train models without
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label smoothing (Eikema and Aziz, 2020; Freitag
et al., 2022a), which often leads to an impractical
increase in cost due to the need for more translation
hypotheses. MBR decoding consistently achieves
the best results according to COMET across all
translation directions. Although the differences in
quality are small, this pattern does not hold when
evaluating with BLEURT for EN-RU and EN-CS,
for which ranking with COMETKIWI appears to
have an edge.

3.3 Open-source setting
We obtain sets of both biased and unbiased trans-
lation hypotheses for each source sentence from
LLaMA and Alpaca. The former is obtained by
sampling with a temperature of 1, while the lat-
ter uses temperature and nucleus sampling (with
t = 0.8 and p = 0.95), which are the defaults
for LLaMA.6 We use a variation of the prompt
of Hendy et al. (2023) which stresses the transla-
tion direction (crucial for the non instruction-tuned
LLaMA to understand the task) as follows,

Translate this sentence from [source
language] to [target language].

[source language] Source: [source
sentence].

[target language] Translation:

While most works on translation with general-
purpose LLMs typically present results using unbi-
ased sampling or greedy decoding, as it has been
observed that reducing the sampling temperature
generally enhances translation quality (Peng et al.,
2023a), it is worth exploring the impact of using
beam search (Reddy, 1977), the go-to search strat-
egy for decoding with task-specific models. Thus,
in addition to greedy decoding, we employ beam
search (with a beam size of 5) as a single hypothe-
sis baseline. Notably, this is not possible for Chat-
GPT (§3.2) because its API does not include beam
search. We report results in Table 2, and use them
to answer specific research questions next.

3.3.1 Greedy vs. beam search baseline
Fig. 2 compares greedy search and beam search
for both LLaMA and Alpaca for X-EN (right) and
EN-X (left) translation tasks. For X-EN, beam
search outperforms greedy search, with LLaMA
achieving the highest overall quality. However, the

6We use the implementation in https://github.com/
facebookresearch/llama/tree/llama_v1.

Figure 2: COMET scores for LLaMA and Alpaca with
greedy (blue) and beam search (orange). We represent
LLaMA with solid lines and Alpaca with dashed lines.
Left: EN-X. Right: X-EN.

EN-DE EN-RU EN-CS EN-UK

LLaMA
Greedy 11.2 25.0 21.5 31.6
Beam 25.2 43.4 46.4 41.2
Ranking 1.3 2.5 3.6 11.3
MBR 6.4 6.4 8.8 12.1

Alpaca
Greedy 2.1 2.7 4.5 13.6
Beam 4.0 6.4 10.6 21.3
Ranking 0.4 1.8 3.1 17.1
MBR 1.4 0.8 2.6 10.7

Table 3: Percentage of translations in the wrong tar-
get language when translating from EN. Ranking with
COMETKIWI and MBR decoding with COMET use bi-
ased samples. We do not show the values for X-EN
given that only a few translations (<1% for all lan-
guages) are not in EN. Best overall values are bolded
and best for each model are underlined.

results are not as favorable when applying beam
search to the non instruction-tuned LLaMA for
EN-X (particularly for EN-RU and EN-UK). In
contrast, for Alpaca, beam search is consistently
better in both language directions.

We hypothesize that this discrepancy is related
to LLaMA’s relative inability to generate text in
languages other than English. To validate this hy-
pothesis, we automatically identify the language of
the provided translations using the language iden-
tification model of Joulin et al. (2016a,b). While
both LLaMA and Alpaca, with both greedy and
beam search, correctly provide translations in En-
glish when requested (X-EN), the same cannot be
said for other languages (see Table 3). In particu-
lar, LLaMA frequently provides translations in the
wrong target language (mostly in English), espe-
cially with beam search. Interestingly, ensembling
predictions (e.g., with ranking or MBR decoding)
effectively mitigates this issue. Providing a few
in-context examples, which we leave for future
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work, is another alternative that may help improve
LLaMA’s performance, alleviating the impact of
decoding with alternative methods.

3.3.2 How should we ensemble translations?
Table 2 shows that, for all models and translation
directions, a single sample baseline is not competi-
tive at all with the greedy and beam search outputs,
with the latter achieving the best overall quality, as
discussed in §3.3.1. Sampling’s poor performance
is, however, more noticeable when translating from
English. Given that the overall quality scores are
lower than that of ChatGPT (Table 1), in App. B
we report results for a larger version of LLaMA
(with 30B parameters), for which we also observe
performance gains from ensembling translations.
Besides, App. C contains additional results consid-
ering a few-shot learning scenario where in-context
examples are provided in the prompt.

For EN-X, ensembles of unbiased samples from
LLaMA do not perform well, a topic we will further
study in §3.3.3. Overall, Alpaca performs better,
and the final quality of the ensemble can be boosted
by biasing the samples (although the difference is
not very significant for EN-DE). MBR decoding
with COMET attains the best results in terms of
COMET, while ranking with COMETKIWI is better
in terms of BLEURT for most language pairs.

For X-EN, while biased sampling is still advan-
tageous and the best results in terms of BLEURT
are still obtained with Alpaca (ranking with
COMETKIWI), the best COMET scores are attained
using LLaMA (MBR decoding).

3.3.3 Biasedness, diversity, and quality
There exists a significant gap in the final quality
of an ensemble of unbiased samples from LLaMA
and Alpaca, especially in the case of EN-X transla-
tions, where LLaMA’s performance is notably poor.
For example, as shown in Table 2, the disparity
in COMET and BLEURT scores for EN-DE is 5
and 7 points, respectively. In this section, we study
how instruction tuning influences the relationship
between candidate diversity and sampling tempera-
ture, and its impact on final translation quality. We
consider translations from English to German (see
App. D for the reversed direction) as a case study
and measure translation diversity using the method
described in §2.3, with COMET as the similarity
function u in Eq. 4.

Fig. 3 shows how the final translation quality,
represented by the green and orange lines, and

Figure 3: Values for BLEURT (bottom) and COMET
(middle) for MBR decoding with COMET (green) and
ranking with COMETKIWI (orange), and diversity be-
tween hypotheses (top; blue) as we increase the sam-
pling temperature for EN-DE. We represent LLaMA
with solid lines and Alpaca with dashed lines. The dot-
ted black lines (top) mark the increasing diversity gap.

the diversity between hypotheses, depicted by the
blue lines, vary with the sampling temperature
for LLaMA (solid lines) and for Alpaca (dashed
lines). As expected, the diversity between hy-
potheses increases as the sampling temperature in-
creases. However, this occurs at a different rate
for LLaMA and Alpaca, indicating that instruction
tuning changes the relationship between hypothe-
sis diversity and sampling temperature. Ultimately,
this affects the final quality of the ensemble, which
may help explain the aforementioned quality gap
for ensembles of unbiased samples.

An interesting observation is the noticeable in-
crease in the diversity gap (i.e., the length of the dot-
ted black lines increases for temperatures ranging
from 0.6 to 1.0 in Fig. 3), which coincides with a di-
vergence in the translation quality between LLaMA
and Alpaca ensembles (the solid and dashed lines
begin to separate). Additionally, it is worth not-
ing that the optimal COMET scores are attained
at a candidate diversity of approximately 0.25 for
both models; however, this optimum corresponds
to different sampling temperatures for each model.

Overall, we conclude that instruction tuning has
a notable impact on the relation between hypothe-
ses diversity and sampling temperature, influencing
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EN-CS EN-UK

LLaMA
Greedy 10.2 21.2
Ranking 2.3 5.2
MBR decoding 6.9 7.4

Alpaca
Greedy 2.3 5.8
Ranking 0.8 4.1
MBR decoding 1.2 2.2

Table 4: Rate of hallucinations (the percentage is
over the number of sentences that passed the quality
threshold for non-perturbed sources). Ranking with
COMETKIWI and MBR decoding with COMET use bi-
ased samples. Best overall values are bolded and best
for each model are underlined.

the final translation quality. Notably, it is simpler to
set an appropriate temperature for the instruction-
tuned Alpaca, as it is less sensitive to such varia-
tions. We observe that this effect is less pronounced
when translating into English (refer to App. D),
likely due to the higher inherent similarity between
hypotheses—potentially attributable to the exten-
sive English training data used for these models.

3.3.4 Hallucinations under perturbation
In this section, we study how robust LLaMA and
Alpaca are to perturbations in the source text by
searching for hallucinations under perturbation,
which correspond to situations where a model pro-
duces drastically different translations for unper-
turbed and slightly perturbed inputs (Lee et al.,
2019; Raunak et al., 2021). We focus on EN-CS
and EN-UK translations, given that hallucinations
are typically more frequent when translating out
of English and for lower resource languages. We
follow Guerreiro et al. (2023) and apply the min-
imal perturbations of Xu et al. (2023), including
misspelling and title-casing words, and inserting
frequent tokens at the beginning of the source sen-
tence. See App. E for further details.

Table 4 shows that the hallucination rates de-
crease with instruction tuning for both EN-CS and
EN-UK. Ensembling translation hypotheses further
decreases the number of hallucinations, suggesting
that considering multiple hypotheses is a promising
method for alleviating this issue.

4 Related Work

Ensembling. Recently, Peng et al. (2023b) com-
pare the effectiveness of different model ensemble
strategies but focus on trained soft prompts and do
not explore generation tasks. There is also work on
ensembling predictions (produced by either sam-

pling multiple times or by using different prompts)
with majority voting (Wang et al., 2023a; Liévin
et al., 2023; Diao et al., 2023), which is not really
suited for MT as argued before, or along with other
complementary approaches (Wang et al., 2022; Li
et al., 2022; Sun et al., 2023). There are several
works on ensembling for NMT, where a decoder
uses multiple models (e.g., with different initializa-
tions) and predicts an output by averaging token-
level predictions from each model (Sutskever et al.,
2014; Chung et al., 2016), whereas our approach
considers full translations from a single model.

Ranking/rescoring hypotheses. Garcia et al.
(2023) train their own language models, sample
multiple hypotheses and choose a final translation
using MBR decoding, which has been shown to
improve the translation capabilities of task-specific
models (Fernandes et al., 2022; Freitag et al.,
2022a). Their work is significantly different from
ours, since their models exclusively support two or
three languages at a time. Similarly, the approach
of Yang et al. (2022) includes a reranking stage
(including two trained dedicated rerankers) and an
edit stage, while Kadavath et al. (2022) ask mod-
els to directly evaluate the probability that their
self-generated answers are correct.

Editing/refining hypotheses. Raunak et al.
(2023) explore translation editing with LLMs but
they do not study how to use external models (e.g.
COMET and COMETKIWI) to improve translation
quality. Similarly, Chen et al. (2023) propose to
iteratively refine translations using LLMs, attaining
comparable translation quality with the baseline,
according to automatic translation metrics, and re-
ducing translationese, according to a human study.

5 Conclusions and Future Work

We have conducted a thorough empirical analy-
sis on various techniques for generating transla-
tions using LLMs. Our study encompasses eight
datasets and three model classes, including closed-
source and open-source models, the latter with and
without instruction tuning. We have demonstrated
that ensembling predictions significantly enhances
translation quality and reduces hallucinations under
source perturbations. Additionally, we have discov-
ered that instruction tuning affects the relationship
between the diversity of sampled hypotheses and
the sampling temperature, which in turn influences
the final translation quality.
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There are several avenues for future research in
addition to the ones that have already been men-
tioned in previous sections. While ensembling pre-
dictions produced by LLMs is effective at improv-
ing translation quality, it also presents opportunities
for developing improved methods of uncertainty
quantification and calibration (Fomicheva et al.,
2020; Tian et al., 2023), crucial for addressing the
inherent opacity of black-box LLMs.

Limitations

We highlight three main limitations of our work.
First, we primarily focus on versions of LLaMA
and Alpaca with 7B parameters, even though we
have included additional results using a model with
30B parameters in App. B. It remains unclear how
our findings, such as the effects of employing beam
search (§3.3.1), or how instruction tuning influ-
ences the relationship between sampling tempera-
ture and hypothesis diversity (§3.3.3), generalize
to even larger models.

Second, we have included results from ChatGPT
due to its proven ability to provide high-quality
translation. Notably, ChatGPT is a restricted sys-
tem accessible only through APIs, and its training
data/regime are undisclosed. Since there is limited
documentation, it is difficult to ensure that Chat-
GPT did not encounter our evaluation benchmarks
during training, even though they are recent (§3.1).

Lastly, due to the high cost and time required
for conducting a final human assessment of the
translation quality, we have not included it in our
evaluation. Instead, we try to address this issue by
reporting results based on multiple state-of-the-art
automatic evaluation metrics for machine transla-
tion, such as COMET and BLEURT. Despite these
limitations, we believe that our findings hold sig-
nificance for the ML/NLP community.

Ethics Statement

ChatGPT and Alpaca have been finetuned using
instructions and/or human feedback, which may
be low-quality, contradictory, or adversarial, pos-
sibly resulting in inherent biases (Fernandes et al.,
2023). For example, instructions may lack speci-
ficity, leading annotators to inadvertently evalu-
ate a slightly different task (Parmar et al., 2023).
Another concern arises from using quality estima-
tion/evaluation models such as COMETKIWI and
COMET, which have been finetuned on human pref-
erences. In such cases, annotators may fail to

consider better alternatives when presented with
a given text, resulting in the misclassification of
isolated text as high quality (Bansal et al., 2021).
Additionally, all evaluation benchmarks used in
this study are openly accessible, and annotators
were allowed to label sensitive information when
necessary. Lastly, it is important to note that all
LLMs exhibit a shared concern regarding their en-
ergy consumption, particularly during the training
phase (Strubell et al., 2019).
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A Prompt Templates

A.1 Translation

In addition to the prompt of Hendy et al. (2023),
used in the reported experiments with ChatGPT,

Translate this sentence from [source
language] to [target language].

Source: [source sentence].

Target:

we also tried the prompt of Peng et al. (2023a),

Please provide the [target
language] translation for this sen-
tence: [source sentence]

the prompt of Gao et al. (2023), which provides
additional information on the translation task and
the language pairs involved,

This is a [source language] to
[target language] translation task,
please provide the [target language]
translation for this sentence: [source
sentence]

and the prompt of Zhang et al. (2023), which is
simpler but concise,

[source language]: [source
sentence]

[target language]:

In a preliminary stage of this work, we observed
that the results according to automatic evaluation
metrics were similar for all the prompts above. In
addition, ensembling translations generated with
multiple prompts was not better than sampling hy-
potheses using a single prompt template. We also
attempted to generate multiple translations (N) with
the following prompt,

Translate this sentence from [source
language] to [target language] in
[N] different ways.

Source: [source sentence]

[N] translations:

However, we observed a decline in translation qual-
ity as the model generated subsequent translations,
with the first one exhibiting lower quality compared
to the ones generated using the prompts mentioned

above. For example, in the case of EN-DE trans-
lation, there was an approximate gap of 3 COMET

points between the first and last translation. For
that reason, we decided to discard this approach.

For LLaMA and Alpaca, we use a variation
of the prompt of Hendy et al. (2023) which
stresses the translation direction (crucial for the
non instruction-tuned LLaMA to understand the
task) as follows,

Translate this sentence from [source
language] to [target language].

[source language] Source: [source
sentence].

[target language] Translation:

A.2 Generation of the final translation

We formulate the task of choosing the most ap-
propriate hypothesis (ChooseBest) as a multiple
choice question using the following prompt,

This is a multiple choice question,
choose a single answer. What is the
best [target language] translation
for this [source language] sentence?

Source: [source]

Option A. [hypothesis 1]

Option B. [hypothesis 2]

...

Correct answer: Option

Besides, we ask the LLM to generate a final
prediction based on the provided hypotheses
(GenerateBest) using the following prompt,

Use the following translation hypotheses
to generate the best possible [target
language] translation for this [source
language] sentence.

Source: [source]

Translation hypotheses:

[hypothesis 1]

[hypothesis 2]

...

Best possible translation:
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N METHOD
EN-DE EN-RU EN-CS EN-UK

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

1 ChatGPT greedy 87.01 77.15 87.77 75.61 90.04 80.98 87.66 76.08

1 Greedy 81.54 69.39 82.35 67.27 82.17 69.27 81.32 66.00
Biased sampling 77.47 64.87 75.89 58.62 73.59 58.47 74.29 56.50

20
Ranking 84.87 73.91 86.02 72.11 87.02 75.48 85.64 71.36
MBR decoding 85.78 73.26 87.05 71.45 88.45 74.71 86.68 70.61
COMET oracle 87.74 75.83 88.85 74.13 89.70 76.39 88.51 73.41

50
Ranking 85.16 74.37 86.75 72.93 88.11 76.84 86.29 71.61
MBR decoding 86.48 73.97 87.79 72.37 89.61 76.33 87.62 71.52
COMET oracle 88.77 77.12 90.02 76.09 91.10 78.76 89.80 75.60

DE-EN RU-EN CS-EN UK-EN

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

1 ChatGPT greedy 85.45 74.50 85.99 77.92 87.13 77.42 85.63 76.50

1 Greedy 83.12 71.01 83.00 73.48 83.64 72.60 82.86 72.50
Biased sampling 81.29 69.03 80.83 70.56 81.23 69.50 80.67 69.89

20
Ranking 84.68 72.85 84.43 74.83 85.24 74.45 84.69 74.36
MBR decoding 85.18 72.64 85.06 75.00 85.74 73.91 84.91 73.87
COMET oracle 87.33 75.70 87.22 78.14 87.89 77.13 87.62 77.78

50
Ranking 84.76 72.96 84.53 75.05 85.45 74.46 84.70 74.77
MBR decoding 85.48 72.97 85.34 75.18 86.17 74.29 85.33 74.29
COMET oracle 88.13 76.93 88.08 79.45 88.76 78.60 88.65 79.36

Table 5: Automatic evaluation metrics for LLaMA (30B). We use temperature and nucleus sampling (with t = 0.8
and p = 0.95), which is the default (see §3.3). Ranking uses COMETKIWI and MBR decoding uses COMET. Best
overall values for LLaMA are bolded and best within each group are underlined. Values for ChatGPT with greedy
decoding are taken from Table 1 and highlighted in red.

FEW-SHOT METHOD
EN-DE EN-RU

COMET BLEURT COMET BLEURT

0

Greedy 77.33 62.86 71.57 50.80
Ranking 83.04 71.91 82.93 67.41
MBR decoding 84.06 69.84 83.72 64.75
COMET oracle 86.51 73.42 86.59 69.43

5

Greedy 79.82 68.02 80.20 65.01
Ranking 83.72 72.90 84.98 70.38
MBR decoding 85.42 72.66 86.64 70.37
COMET oracle 87.42 75.06 88.43 72.88

Table 6: Automatic evaluation metrics for LLaMA (7B) with and without few-shot learning. For ranking with
COMETKIWI and MBR decoding with COMET we use 50 samples obtained through temperature and nucleus
sampling (with t = 0.8 and p = 0.95), which is the default (see §3.3). Best overall values are bolded and best
within each group are underlined.

B Increasing Model Size

Table 5 shows COMET and BLEURT scores for
LLaMA (30B), along with the ChatGPT output
(§3.2). The main findings discussed in §3.2 still
hold: ensembling multiple translations is effective
at improving the overall translation quality. No-
tably, these quality scores are more competitive
with the ChatGPT baseline, suggesting that increas-

ing the number of model’s parameters is beneficial
even without instruction tuning.

C Few Shot Learning

As discussed in §2.1, the candidate generation
strategies described in our paper can also be ap-
plied in few-shot scenarios where in-context exam-
ples are provided in the prompt. While this paper
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does not focus on this case and covers other or-
thogonal dimensions in more detail (e.g., choice of
model, method to generate hypotheses, strategy to
generate the final translation), we include results
with few-shot examples on a subset of the language
pairs (EN-DE and EN-RU), in Table 6. We con-
sider 5-shot examples from the FLORES-200 dev
set (Guzmán et al., 2019; Goyal et al., 2022; Team
et al., 2022) and use LLaMA (7B). As expected, we
see that hypothesis ensembling still works well for
such a setting, with the overall scores being higher
than in a 0-shot scenario.

D Biasedness, Diversity, and Quality

Fig. 4 shows that the trends observed in Fig. 3 for
EN-DE translations are also observable in the re-
versed translation direction (DE-EN). Once again,
increasing the sampling temperature leads to an
increase in the diversity of the hypotheses, and this
trend varies at different rates for LLaMA and Al-
paca. As the diversity gap increases, the translation
quality between ensembles of samples from these
models diverges. However, it is worth noting that
this effect is less pronounced for DE-EN, likely
due to the extensive English training data used for
these models that results in lower absolute values
of translation diversity, as indicated by the blue
lines.

E Hallucinations

We follow the choices of Guerreiro et al. (2023)
and detect hallucinations under perturbations as fol-
lows. For each language pair, we start by obtaining
source sentences for which all methods (greedy,
ranking with COMETKIWI, and MBR decoding
with COMET) generate unperturbed translations
that meet a minimum quality threshold (BLEU
> 9). Then, we set a low maximum quality score
for perturbed translations (BLEU < 3). A model
generates a hallucination when both thresholds are
met. The metric for measuring lexical overlap and
the threshold values we used follow previous work.

Figure 4: Values for BLEURT (bottom) and COMET
(middle) for MBR decoding with COMET (green) and
ranking with COMETKIWI (orange), and diversity be-
tween hypotheses (top; blue) as we increase the sam-
pling temperature for DE-EN. We represent LLaMA
with solid lines and Alpaca with dashed lines. The dot-
ted black lines (top) mark the increasing diversity gap.
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