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Abstract

Aspect Sentiment Triplet Extraction (ASTE) is
an important task in sentiment analysis, aiming
to extract aspect-level opinions and sentiments
from user-generated reviews. The fine-grained
nature of ASTE incurs a high annotation cost,
while the scarcity of annotated data limits the
performance of existing methods. This paper
exploits data augmentation to address this is-
sue. Traditional augmentation methods typi-
cally modify the input sentences of existing
samples via heuristic rules or language models,
which have shown success in text classifica-
tion tasks. However, applying these methods to
fine-grained tasks like ASTE poses challenges
in generating diverse augmented samples while
maintaining alignment between modified sen-
tences and origin labels. Therefore, this paper
proposes a target-to-source augmentation ap-
proach for ASTE. Our approach focuses on
learning a generator that can directly generate
new sentences based on labels and syntactic
templates. With this generator, we can generate
a substantial number of diverse augmented sam-
ples by mixing labels and syntactic templates
from different samples. Besides, to ensure the
quality of the generated sentence, we introduce
fluency and alignment discriminators to pro-
vide feedback on the generated sentence and
then use this feedback to optimize the gener-
ator via a reinforcement learning framework.
Experiments demonstrate that our approach sig-
nificantly enhances the performance of existing
ASTE models.1

1 Introduction

Aspect Sentiment Triplet Extraction (ASTE) is an
important task in sentiment analysis (Peng et al.,
2020), which is receiving increasing attention in

∗ Corresponding Authors
1We release our code and data at https://github.

com/HITSZ-HLT/T2S-Augmentation.

Original Sentence and Label

Traditional Augmentation modifies the original sentence and 
combines it with the original label to form an augmented sample.

Target-to-Source Augmentation generates sentences based on 
labels and syntactic templates.

 label + syntactic-template1

 label + syntactic-template2

The price is reasonable, but the service is poor.

The price was reasonable although the service was poor.

The price is reasonable although the service is poor.

{(price, reasonable, positive), (service, poor, negative)}

The price was reasonable but the service we received was
poor ( at least this time ).

If you go in because the price is reasonable ( $11 ), you will
be met with poor service.

Figure 1: Samples synthesized by traditional augmenta-
tion method and the proposed target-to-source method.

natural language processing (Xu et al., 2020; Chen
et al., 2021; Yan et al., 2021; Zhang et al., 2021;
Xu et al., 2021; Chen et al., 2022; Zhang et al.,
2022). The goal of ASTE is to extract aspect-level
opinions and sentiments from user-generated re-
views. For example, given the review sentence “the
price is reasonable although the service is poor”,
the output of ASTE would be {(price, reasonable,
positive), (service, poor, negative)}.

The ASTE task faces the challenge of data
scarcity, and data augmentation has emerged as
a potential solution to this issue. Annotating ASTE
data is time-consuming and labor-intensive due
to its fine-grained nature, leading to small exist-
ing public ASTE datasets. Despite some few-shot
attempts (Hosseini-Asl et al., 2022; Liang et al.,
2023), mainstream methods still require a signifi-
cant amount of annotated data to achieve satisfac-
tory performance. Data augmentation is the tech-
nique that synthesizes new training samples based
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on existing datasets, and researchers have explored
data augmentation methods to alleviate the prob-
lem of data scarcity (Li et al., 2020; Wang et al.,
2021; Hsu et al., 2021; Liang et al., 2021; Wang
et al., 2022; Hu et al., 2022; Li et al., 2022).

Traditional augmentation methods typically
modify the input sentence of the existing sample
and then combine the modified sentence with the
original label to form an augmented sample (Zhang
et al., 2015; Wei and Zou, 2019; Kobayashi, 2018;
Wu et al., 2019). While such methods have shown
improvements in text classification tasks, ensuring
alignment between the modified sentence and the
original label in fine-grained tasks like ASTE is
challenging. Existing efforts often limit the range
or extent of modifications to ensure alignment (Li
et al., 2020; Hsu et al., 2021; Gao et al., 2022),
but these approaches restrict the diversity of the
augmented samples and thereby weaken the effec-
tiveness of data augmentation. Furthermore, for
the ASTE task, labels and syntactic structures are
two primary sources of diversity. For example, con-
sider the sentences “the price is reasonable” and
“it provides an intimate setting”. Firstly, their corre-
sponding labels, (price, reasonable, positive) and
(setting, intimate, positive), differ. Secondly, the
syntactic relations also vary: reasonable and price
exhibit an adjective complement (acomp) relation,
whereas intimate and setting display an adjective
modifier (amod) relation.

Based on the above observations, this paper pro-
poses a target-to-source augmentation approach
for ASTE. The main idea is to learn a generator
that can directly generate new sentences based on
both labels and syntactic templates. Compared to
traditional augmentation methods, our approach
enables the generation of more diverse contexts
for a given label by leveraging various syntactic
templates. More importantly, we can produce a
substantial number of augmented samples by com-
bining labels and syntactic templates from differ-
ent samples. This allows us to further select high-
quality ones from these augmented samples to con-
struct the augmented dataset.

In addition to diversity, augmented samples must
also meet two requirements: fluency and alignment.
Fluency refers to the ability of the generator to pro-
duce natural and coherent sentences. Alignment re-
quires consistency between the given labels and the
generated sentences. To satisfy these two require-
ments, we introduce two discriminators, namely

the fluency discriminator and the alignment dis-
criminator, to assess the quality of the generated
sentences. Next, we employ a reinforcement learn-
ing framework to optimize the generator based on
the feedback from these two discriminators. Fi-
nally, in the inference phase, we use these two
discriminators to further filter out low-quality aug-
mented samples. Experiments demonstrate that our
augmentation approach outperforms previous aug-
mentation methods and significantly improves the
performance of existing ASTE models.

2 Related Work

2.1 Data Augmentation
Data augmentation aims at synthesizing new train-
ing samples based on existing datasets. Most data
augmentation methods typically modify sentences
through heuristic rules (Zhang et al., 2015; Wei
and Zou, 2019) or language models (Kobayashi,
2018; Wu et al., 2019). The most representative
rule-based method is EDA (Wei and Zou, 2019),
which involves four operations: synonym replace-
ment, random insertion, random swap, and ran-
dom deletion. The language model-based methods
generally follow the corrupt-and-reconstruct frame-
work, which first randomly masks words or spans
in the sentence and then uses a language model to
fill the masked parts.

For fine-grained tasks, these methods can easily
lead to misalignment between the modified sen-
tences and the original labels. There have been two
main attempts to solve this problem:

1. Label-unrelated Modification: this method
first identifies label-unrelated parts of the sen-
tences through rules or selective perturbed
masking and then only modifies these parts to
avoid misalignment (Li et al., 2020; Hsu et al.,
2021; Gao et al., 2022).

2. Conditional Language Modeling: this
method inputs both the label sequence and the
sentence into the language model (Li et al.,
2020) or linearizes the label into the sentence
and inputs it into the language model (Ding
et al., 2020; Zhou et al., 2022).

Although these attempts can appropriately alleviate
the problem of misalignment, the issue still per-
sists due to a lack of supervision over the modified
content.

In addition, there are other data augmentation
methods such as back-translation (Sennrich et al.,

12166



2016), MixUp (Zhang et al., 2018), and reinforce-
ment learning-guided generation (Liu et al., 2020),
but few works apply them to fine-grained tasks.

2.2 Data Augmentation for Aspect-Based
Sentiment Analysis

Unlike sentence-level sentiment analysis, Aspect-
Based Sentiment Analysis (ABSA) focuses on
opinions and sentiments expressed on specific as-
pects within a sentence (Pontiki et al., 2014). As-
pect Sentiment Triplet Extraction (ASTE) is a rep-
resentative task in the current research of ABSA,
proposed by Peng et al. (2020).

As fine-grained tasks, ABSA faces the problem
of data scarcity, and researchers have developed
various data augmentation methods to alleviate this
issue. Dai and Song (2019) apply rules to label
auxiliary data. Li et al. (2020) propose a condi-
tional data augmentation method for Aspect Term
Extraction (ATE). Hsu et al. (2021) adopt selective
perturbed masking to select label-unrelated parts
of sentences and then use language models to re-
place these parts. Wang et al. (2021) propose a pro-
gressive self-training framework to infer pseudo-
labels on the unlabeled data. Liang et al. (2021)
design aspect-invariant/-dependent data augmenta-
tion and deploy a supervised contrastive learning
objective. Wang et al. (2022) conduct both aspect
augmentation and polarity augmentation. Hu et al.
(2022) propose a template-order data augmentation
method for generative ABSA.

3 Problem Definition

Target-to-source augmentation aims to learn a gen-
erator that can generate corresponding sentences
based on given labels and syntactic templates. In
this paper, we use the dependency tree as the syn-
tactic template. Formally, the generator is defined
as follows:

G : L×D −→ S, (1)

where l ∈ L denotes the given label, i.e., a set
of aspect-sentiment triplets, d ∈ D denotes a de-
pendency tree, and s ∈ S denotes the generated
sentence. The generated sentence and the given
label together form an augmented sample (s, l).

We have three requirements for the augmented
sample:

1. Fluency: the generated sentence should be
close to real-world sentences in terms of form
and structure, without logical or grammatical
errors.

is (ROOT)

the (det) although (mark) service (nsubj) poor (acomp)

price (nsubj) reasonable (acomp) is (advcl) . (punct)

the (det)

ROOT [nsubj [det] acomp advcl [mark nsubj [det] acomp] punct]

Tree

Seq

Figure 2: Prefix notation for a dependency tree.

2. Alignment: the generated sentence should
contain the given aspect-sentiment triplets and
not introduce new aspect-level sentiment and
opinion.

3. Diversity: the augmented sample should have
significant differences from existing samples.

4 Proposed Framework

4.1 Model Architectures
To assist in the training of the generator, our frame-
work includes two additional models: a fluency
discriminator and an alignment discriminator. The
fluency discriminator assesses the fluency of the
generated sentence, and the alignment discrimina-
tor evaluates whether the generated sentence aligns
with aspect-sentiment triplets. These two models
can be formulated as follows:

Dflu : S −→ {0, 1}, (2)

Dali : S × L −→ {0, 1}. (3)

Our generator is a complete transformer structure,
consisting of an encoder and a decoder. The two
discriminators consist of a transformer encoder and
a binary classifier.

To fit the transformer model, we need to convert
the aspect-sentiment triplets and dependency trees
into flattened sequences. For the aspect-sentiment
triplets, we use a template to convert each triplet
into a sequence and then concatenate multiple se-
quences to form the label sequence (Zhang et al.,
2021), which can be formulated as follows:

seqlabel = a1 | o1 | p1 ; · · · ; an | on | pn, (4)

where (ai, oi, pi) denotes an aspect-sentiment
triplet. For the dependency tree, we use prefix
notation to represent a tree as a sequence (Lample
and Charton, 2020), which is illustrated in Figure
2.
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4.2 Supervised Learning

Before applying reinforcement learning, it is im-
portant to provide the generator with a good ini-
tialization. In addition, our reinforcement learning
framework also requires two discriminators to pro-
vide feedback on the generated sentences. There-
fore, prior to reinforcement learning, we train these
three models using supervised learning.

Pseudo-labeled Dataset. The existing labeled
dataset is too small to train a usable generator and
reliable discriminators. To overcome this limita-
tion, we construct a pseudo-labeled dataset and
train models on it. First, we train an ASTE model
(Zhang et al., 2021) on the existing labeled dataset.
Then, we use this model to generate pseudo-labels
for the unlabeled data and select samples with high-
confidence predictions2 to construct the pseudo-
labeled dataset D̃ = {(s1, d1, l1), · · · }.

Training Generator. We optimize the generator
on the pseudo-labeled dataset through the following
loss function:

LG =
1

N

∑

si,li,di∈D̃
CrossEntropy(G(li, di), si), (5)

where N denotes the size of D̃ .

Training Fluency Discriminator. We input both
fluent and non-fluent sentences to the fluency dis-
criminator and use the cross-entropy loss to opti-
mize it:

LDflu
=− 1

N1

∑

sf

logDflu(sf) (6)

− 1

N2

∑

snf

log(1− Dflu(snf)),

where sf and snf represent a fluent sentence and a
non-fluent sentence, respectively, and N1 and N2

are the total number of two categories.
We use the existing review sentences as fluent

sentences, i.e., sf ∈ D̃. For non-fluent sentences,
we generate them by mixing labels and dependency
trees from different samples, inputting them into
the trained generator to generate sentences, and
then considering the ones with low fluency as non-

2Specifically, we exclude pseudo-labels with a confidence
level below 0.75, i.e., those satisfying ∃tP (yt|y<t,x) <
0.75. Refer to Appendix B.1 for the effect of the confidence
threshold.

Generator

Label  service | Great | positive ; food | tasty | positive

Dep  ROOT [amod cc conj [amod] punct]

Sentence  Great service and tasty food!

Generated Sentence: The service was 
Great and with some very tasty food.

Label: service | Great | positive ; food 
| tasty | positive

Label  place | horrible | positive ; area | unsafe | negative

Dep  ROOT [nsubj [det] acomp [cc conj [pobj [det amod [advmod]]]] punct]

Sentence  The place was horrible & in a very unsafe area.

Reinforcement 

Learning Update

Reward Model

Fluency Discriminator

Alignment Discriminator
Label: service | Great | positive ; food 
| tasty | positive

Figure 3: The reinforcement learning framework for
tuning a target-to-source generator.

fluent sentences:

sij =G(li, dj), li, dj ∈ D̃. (7)

Dnf ={sij |flu(sij) < flu(sjj)− θflu, (8)

i, j ∈ [1, N ], i ̸= j},
where flu(·) is a fluency scorer3 that gives a score
from 0 to 1 for the fluency of a sentence, and θflu is
a fluency threshold, which we set to 0.1 based on
empirical observations.

Training Alignment Discriminator. Like the flu-
ency discriminator, we input both aligned and non-
aligned samples into the alignment discriminator
and use the cross-entropy loss to optimize it:

LDali
=− 1

N

∑

s,la∈D̃
logDali(s, la) (9)

− 1

N

∑

s,lna∈D̃′

log(1− Dali(s, lna)),

where (s, la) and (s, lna) represent an aligned sam-
ple and a non-aligned sample, respectively. To con-
struct non-aligned samples, we use beam search
to generate four prediction results on the trained
ASTE model (Zhang et al., 2021) and then sample
one of two predictions with lower confidence as
the non-aligned labels lna.

4.3 Reinforcement Learning
Supervised learning enables the generator to gen-
erate sentences based on labels and dependency

3This fluency scorer is from https://github.com/
PrithivirajDamodaran/Parrot_Paraphraser.
We don’t directly use the result of this scorer to determine
whether a sentence is fluent or not because real review
sentences also have a probability of being scored low by the
scorer.
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trees. However, when the label and dependency
tree come from different samples, the generator
tends to generate a non-fluent or non-aligned sen-
tence. To address this problem, we use a reinforce-
ment learning framework to train the generator. As
shown in Figure 3, we employ two discriminators
to provide feedback on the generated sentence and
then optimize the generator based on this feedback.

Reward Calculation. Given the label li and de-
pendency tree dj , we denote the sentence generated
by the generator as sij :

sij =GRL(li, dj), i ̸= j. (10)

We input the generated sentence sij into the fluency
discriminator to obtain its fluency score fDflu

(sij)
and input both the generated sentence sij and the
given label li into the alignment discriminator to ob-
tain its alignment score fDali

(sij , li). In addition, to
prevent the model from generating short and simple
sentences without considering the dependency tree,
we also introduce a length penalty pelen(sij , dj).
The reward is a combination of these three parts:

r(sij , li, dj) =fDflu
(sij) + fDali

(sij , li) (11)

− pelen(sij , dj),

where the length penalty is calculated by:

pelen(s, d) =
max(len(d)− len(s), 0)2

len(d)
. (12)

Reinforcement Learning Update. Inspired by
Ouyang et al. (2022), we use the Proximal Policy
Optimization (PPO) algorithm (Schulman et al.,
2017) to perform reinforcement learning updates.
We update the generator by maximizing the follow-
ing objective function:

J = E(s,l,d)∼DGRL
[r(s, l, d)− λKLKL(s, l, d)],

where λKL is a hyper-parameter which we empiri-
cally set to 0.01, and the KL(s, l, d) is a per-token
KL penalty from the SL (supervised learning) gen-
erator GSL at each token which is used to mitigate
over-optimization from the discriminators (Ouyang
et al., 2022):

KL(s, l, d) = log(GRL(s|l, d)/GSL(s|l, d)).

4.4 Data Synthesis and Filtering
We randomly select two samples from the pseudo-
labeled dataset D̃. To guarantee the quality of the

Dataset #Sent #Triplet #Pos #Neu #Neg
Rest-14-train 1266 2338 1692 166 480
Rest-14-dev 310 577 404 54 119
Rest-14-test 492 994 773 66 155
Lap-14-train 906 1460 817 126 517
Lap-14-dev 219 346 169 36 141
Lap-14-test 328 543 364 63 116
Yelp 427300 602394 400858 65388 136148
Amazon 188796 230265 129324 18573 82368

Table 1: Statistics of four ASTE datasets (Xu et al.,
2020). #Sent and #Triplet represent the number of sen-
tences and triplets, respectively. Besides, #Pos, #Neu,
and #Neg represent the numbers of positive, neutral, and
negative triplets, respectively.

generated sentence, we require them to contain
an equal number of triplets. Next, we input the
label of the first sample and the dependency tree
of the second sample into the generator GRL to
generate the corresponding sentence. This process
is repeated n1 times, resulting in n1 augmented
samples.

Subsequently, we employ the fluency discrimi-
nator and the alignment discriminator to filter out
non-fluent or non-aligned samples. The remaining
n2 samples will be used to build the augmented
dataset.

5 Experiment

5.1 Datasets

We evaluate the proposed augmentation method
on Restaurant-14 and Laptop-14 of ASTE-
Data-V2 (Xu et al., 2020). Accordingly, we uti-
lize the Yelp Dataset4 for Restaurant-14 and
Amazon Review Dataset5 (Ni et al., 2019) for
Laptop-14 to construct pseudo-labeled datasets.
For each domain, we utilize a total of 10,000 re-
views. We infer the aspect-sentiment triplets for
each sentence of the reviews using a pre-trained
ASTE model (Zhang et al., 2021) and retain only
those sentences that contained triplets. The data
statistics for these datasets are shown in Table 1.

5.2 Implementation Details

We obtain the dependency tree for each sentence
using spaCy6. Both the generator and the two dis-

4https://www.yelp.com/dataset
5https://nijianmo.github.io/amazon/

index.html
6The trained pipeline we use is en_core_web_sm

3.3.0.
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ASTE Model Data Augmentation Method
Restaurant-14 Laptop-14

P. R. F1 ∆-F1 P. R. F1 ∆-F1

BARTABSA
(Yan et al., 2021)

No Augmentation 68.73 67.15 67.92 - 61.67 55.30 58.31 -
EDA(Wei and Zou, 2019) 67.71 66.72 67.20 -0.72 55.10 50.69 52.79 -5.52
Mask-then-Fill(Gao et al., 2022) 65.48 63.58 64.50 -3.42 55.12 49.28 52.03 -6.28
Conditional-Augmentation-1(Li et al., 2020) 70.20 67.98 69.06 +1.14 59.11 52.75 55.74 -2.57
Conditional-Augmentation-2(Li et al., 2020) 71.23 68.30 69.72 +1.80 59.41 54.53 56.84 -1.47
Target-to-Source Augmentation (Ours) 74.08 72.65 73.35 +5.43 63.84 59.15 61.39 +3.08

GAS
(Zhang et al., 2021)

No Augmentation 73.50 71.41 72.44 - 65.57 60.22 62.78 -
EDA(Wei and Zou, 2019) 70.70 70.24 70.47 -1.97 62.86 57.05 59.81 -2.97
Mask-then-Fill(Gao et al., 2022) 68.70 66.88 67.77 -4.67 60.43 53.33 56.65 -6.13
Conditional-Augmentation-1(Li et al., 2020) 72.50 70.81 71.64 -0.80 64.26 58.93 61.47 -1.31
Conditional-Augmentation-2(Li et al., 2020) 73.58 70.65 72.08 -0.36 64.06 58.82 61.33 -1.45
Target-to-Source Augmentation (Ours) 75.65 74.57 75.11 +2.67 66.17 61.95 63.99 +1.21

Span-ASTE
(Xu et al., 2021)

No Augmentation 71.50 71.22 71.36 - 62.63 54.09 58.03 -
EDA(Wei and Zou, 2019) 71.02 66.50 68.63 -2.73 65.50 49.38 56.04 -1.99
Mask-then-Fill(Gao et al., 2022) 66.90 63.04 64.90 -6.46 53.77 46.36 49.78 -8.25
Conditional-Augmentation-1(Li et al., 2020) 70.60 70.85 70.71 -0.65 60.20 53.09 56.36 -1.67
Conditional-Augmentation-2(Li et al., 2020) 69.96 69.87 69.90 -1.46 60.56 53.94 57.04 -0.99
Target-to-Source Augmentation (Ours) 72.77 74.18 73.45 +2.09 62.99 60.04 61.46 +3.43

BDTF
(Zhang et al., 2022)

No Augmentation 76.29 72.43 74.30 - 65.72 56.41 60.66 -
EDA(Wei and Zou, 2019) 78.05 68.11 72.66 -1.64 70.85 51.13 59.29 -1.37
Mask-then-Fill(Gao et al., 2022) 73.73 61.55 67.02 -7.28 62.25 45.58 52.43 -8.23
Conditional-Augmentation-1(Li et al., 2020) 78.57 68.53 73.20 -1.10 71.39 54.13 60.23 -0.43
Conditional-Augmentation-2(Li et al., 2020) 77.29 70.22 73.53 -0.77 69.59 52.35 59.62 -1.04
Target-to-Source Augmentation (Ours) 78.15 74.97 76.52 +2.22 67.48 58.11 62.43 +1.77

Table 2: Experimental results on ASTE-Data-v2 (Xu et al., 2020) (%).

criminators are initialized using T5-large (Raf-
fel et al., 2020). In the PPO algorithm, we set
λ = 0.95 and γ = 0.99. To harness its effec-
tiveness, we employ several training strategies, in-
cluding reward clipping, reward scaling, advan-
tage normalization, and learning rate decay. For
each domain, we generate 100,000 augmented sam-
ples and select 5,000 samples based on alignment
and fluency scores. These selected samples are
then merged with the previous dataset to create an
augmented dataset. We evaluate these augmented
datasets using the existing ASTE models. To mini-
mize the impact of randomness, we run each model
5 times with different random seeds and then report
the average results.

5.3 Baselines

Currently, there are no data augmentation methods
specifically designed for the ASTE task. Therefore,
we select three data augmentation methods from
similar tasks as baselines for comparison.

EDA (Wei and Zou, 2019) is a classic rule-based
augmentation method, which involves four oper-
ations: synonym replacement, random insertion,
random swap, and random deletion.

Mask-then-Fill (Gao et al., 2022) first randomly
masks out a sentence fragment and then infills a
variable-length text span with a fine-tuned infilling
model. To preserve the sentence label, this method
only masks label-unrelated sentence fragments.

Conditional Augmentation (Li et al., 2020) is sim-
ilar to mask-then-fill but with one key difference.
Conditional augmentation additionally includes the
label as a sequence input to the infilling model.
This method is proposed specifically for Aspect
Term Extraction, where the label can be easily con-
verted into a sequence of the same length as the
input sentence. However, this method cannot be
directly applied to the ASTE task, as its label is
more fine-grained. We devise two solutions to ad-
dress this issue: (1) conditional-augmentation-1
only takes the aspect and opinion label as the condi-
tion; (2) conditional-augmentation-2 concatenates
the triplets and the sentence together as input to the
infilling model.

Moreover, we select four representative ASTE
models to evaluate the augmented datasets.

BARTABSA (Yan et al., 2021) and GAS (Zhang
et al., 2021) are two generative approaches.
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BARTABSA transforms ASTE into an index gener-
ation problem and utilizes the BART (Lewis et al.,
2020) model to address it. GAS transforms ASTE
into a text generation problem and employs the T5
(Raffel et al., 2020) model to solve it.

Span-ASTE (Xu et al., 2021) performs term extrac-
tion and relation classification through the shared
span representations. Additionally, this approach
introduces a dual-channel span pruning strategy
to mitigate the high computational cost caused by
span enumeration.

BDTF (Zhang et al., 2022) represents each triplet
as a relation region in the 2D table and transforms
the ASTE task into the detection and classification
of these relation regions.

5.4 Main Results

Table 2 lists the comparison results between the
proposed augmentation approach and the previous
augmentation methods. It can be observed that the
previous methods have failed on the ASTE task.
Instead of improving performance, they have re-
sulted in varying degrees of performance degrada-
tion. Particularly, the mask-then-fill method has led
to a performance drop of over 3%. Despite incor-
porating labels as conditions, the conditional aug-
mentation method still fails to achieve performance
improvements in most cases. These observations
indicate that ensuring alignment between the modi-
fied sentences and the original labels is challenging
for fine-grained tasks like ASTE. Without explicit
supervision of alignment, models are prone to gen-
erating misaligned augmented samples, which will
ultimately harm the model’s performance.

In contrast, our approach consistently achieves
improvements on both datasets, demonstrating the
effectiveness of our approach. Compared to hav-
ing no augmentation, our approach yields per-
formance improvements ranging from 1.21% to
5.43%. These improvements are particularly evi-
dent for models that initially have poorer perfor-
mance.

5.5 Evaluation of Discriminators

We conduct human evaluations on small data
batches to evaluate the fluency and alignment dis-
criminators. We choose 100 samples from the aug-
mented samples synthesized by the generator. Of
these, 50 are classified as fluent by the fluency dis-
criminator, and the remaining 50 are classified as
non-fluent. These samples are then shuffled, and a

Discriminator Score Restaurant-14 Laptop-14

Fluency
high 90.00 86.67
medium 65.00 52.50
low 83.33 73.33

Alignment
high 86.67 80.00
medium 65.00 62.50
low 100.00 86.67

Table 3: Human evaluation of discriminators (accuracy,
%).

Figure 4: Performance of GAS on the augmented
dataset under different alignment and fluency scores
(F1-score, %)

human annotator labels each sentence as fluent or
non-fluent. We exploit the same method to evalu-
ate the alignment discriminator. As shown in Table
3, these two discriminators generally align with
human judgment.

5.6 Further Analysis

Effect of Alignment and Fluency. We conduct
further experiments to analyze the impact of align-
ment and fluency on the performance of the aug-
mented dataset. From the generated large pool
of augmented samples, we perform sample selec-
tion based on alignment and fluency scores, rang-
ing from low to high. Subsequently, we evaluate
the performance of the corresponding augmented
datasets and present the results in Figure 4.

These results indicate that both alignment scores
and fluency scores have a positive impact on the
performance of the augmented dataset, with higher
scores generally leading to better performance.
Among these two scores, the alignment scores have
a particularly significant influence, while the im-
pact of fluency scores is relatively mild. This find-
ing is somewhat unexpected, suggesting that al-
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Figure 5: Performance of GAS on the augmented
datasets under different numbers of augmented sam-
ples (F1-score, %).

Dataset Restaurant-14 Laptop-14
No Augmentation 72.44 62.78
Self-training 74.47 62.69
Target-to-Source 75.11 63.99

w/o reinforcement learning 74.24 60.70
w/o new label&syn 73.39 62.31

Table 4: Ablation study (F1-score, %). Self-training
refers to using pseudo-labeled data as augmented sam-
ples.

though non-fluent sentences may be unfriendly to
human readers, their influence on model training is
limited.

Effect of Quantity of Augmented Samples. The
quantity of augmented samples is also a crucial
factor in the effectiveness of data augmentation.
Increasing the number of augmented samples pro-
vides the model with a more diverse range of con-
texts, thereby enhancing the model’s generalization
ability. The results depicted in Figure 5 confirm
the above statement. As the data quantity increases,
the model’s performance gradually improves. How-
ever, once the data quantity exceeds 3000, the ad-
ditional improvements become marginal. This ob-
servation suggests that the diversity introduced by
augmented samples is still limited. Samples with
high alignment scores often exhibit a relatively nar-
row dependency between aspect and opinion, while
more complex dependencies can result in looser
alignment. Further exploration of this challenge is
warranted in further research.

Ablation Study. We conduct ablation experiments
to analyze the effectiveness of each module. As
shown in Table 4, removing reinforcement learn-
ing results in a significant performance decrease.
Furthermore, when generating augmented samples
using only the labels and syntactic templates from
the original training set, we observe a performance

drop as well. This highlights the indispensability
of these components in the augmentation process.

In addition, we explore the possibility of using
the pseudo-labeled dataset as a substitute for the
generated augmented samples. The experimental
results in Table 4 demonstrate the potential of this
approach. Clearly, the pseudo-labeled dataset itself
can bring greater diversity. However, the quality of
pseudo-labels remains a major concern.

5.7 Case Study

Table 5 presents several representative examples to
provide an intuitive understanding of the proposed
augmentation approach. Observe that the mask-
then-fill method easily introduces additional aspect
terms or opinion terms, leading to misaligned sam-
ples. In comparison, this issue is less severe in con-
ditional augmentation. Furthermore, both methods
exhibit limited modifications to the original sen-
tences, resulting in a lack of diversity in the mod-
ified sentences. Compared to these methods, our
approach generally generates sentences with higher
alignment and diversity. Moreover, as our approach
can generate numerous sentences by introducing
different syntactic templates, even if low-aligned
samples are generated, we can easily filter them out
using alignment scores. Such an advantage ensures
the quality of the augmented dataset.

6 Conclusion

In this paper, we propose a target-to-source aug-
mentation approach to alleviate the issue of data
scarcity in Aspect Sentiment Triplet Extraction
(ASTE). Unlike traditional augmentation methods
that modify input sentences, the target-to-source
approach focuses on learning a generator to di-
rectly generate new sentences based on labels and
syntactic templates. By combining the labels and
syntactic templates from different samples, this
generator can generate a substantial number of di-
verse augmented samples. To train the generator,
we employ a reinforcement learning framework.
Specifically, we introduce a fluency discriminator
and an alignment discriminator to provide feed-
back for the generated sentences. Then, we utilize
the Proximal Policy Optimization (PPO) algorithm
to optimize the generator based on this feedback.
We apply the proposed augmentation approach to
public ASTE datasets and evaluate the augmented
datasets using four representative ASTE models.
The experimental results show that the proposed
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Augmentation Methods Review Sentence Alignment Scores
Original Sentence The place is so cool and the service is prompt and curtious. -
Mask-then-Fill The place is clean and cool and the service is prompt and curtious. -2.36
Conditional Augmentation The place is very cool and the service is prompt and curtious. 4.63
Target-to-Source Augmentation (1) In the end we chose a cool place w/ prompt and curtious service. 3.73

Target-to-Source Augmentation (2)
The place is very cool, the service staff was prompt, and the service was
curtious, we looked forward to ordering our food after our meal.

-0.31

Original Sentence The menu is very limited - i think we counted 4 or 5 entrees. -
Mask-then-Fill The menu is very limited and expensive. -2.59
Conditional Augmentation The menu is very limited - you can only get a couple of the main entrees. 4.25

Target-to-Source Augmentation (1)
I arrived at 7:30 and found myself, with such a limited menu in the corner,
I had to do a double take.

4.34

Target-to-Source Augmentation (2)
First off, if you have a craving for scotch eggs, this is the place for you -
but be aware that the menu is limited.

1.72

Original Sentence
Unfortunately, the food is outstanding, but everything else about this
restaurant is the pits.

-

Mask-then-Fill Unfortunately, the food is outstanding and delicious... -2.59
Conditional Augmentation Unfortunately, the food is outstanding, but the service is a bit of pits. -1.63
Target-to-Source Augmentation (1) The food at Elmer’s is outstanding. 3.84

Target-to-Source Augmentation (2)
We came for outstanding food so if you ever visit Portland, you should
consider heading to Sava.

5.44

Table 5: Case Study. The aspect terms and the opinion terms are marked with blue and red, respectively. In
Mask-then-Fill and Conditional Augmentation, the modified parts are marked using underlines.

augmentation approach significantly outperforms
the previous augmentation methods and greatly im-
proves the performance of existing ASTE models,
demonstrating its effectiveness.
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Limitations

Although our approach significantly improves the
performance of existing ASTE models, it also suf-
fers from the following limitations:

• Our approach relies on two discriminators to
evaluate the quality of the augmented sam-
ples. However, these two discriminators are
trained on pseudo-labeled datasets, which will

inevitably introduce noise. This noise can
have a negative impact on data augmentation.

• Our approach achieves diversity by introduc-
ing different syntactic templates for each la-
bel. However, when the syntactic template
does not match the given label, the genera-
tor, even after reinforcement learning tuning,
tends to produce a significant proportion of
incoherent and hard-to-understand sentences.
Although we can filter these out, we still have
to generate a large number of samples for fil-
tering. Future work can explore how to better
introduce diversity.

• Augmented samples inevitably contain noises.
Therefore, to better utilize the augmented
samples, it is necessary to develop a noise-
insensitive training method, which is not ad-
dressed in this paper. This is an area that can
be explored in future research.

We believe that addressing the above limitations
can further enhance the development of data aug-
mentation techniques.
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A Discussion on Augmentation Using
ChatGPT

As shown in Table 7, utilizing ChatGPT to generate
sentences based on labels and dependency trees is
feasible, and GPT-4 has demonstrated promising
capabilities in this regard. For simpler syntactic
structures, GPT-4 can generate sentences that ad-
here to the requirements. However, when faced
with more complex syntactic structures, the out-
put from GPT-4 becomes less predictable and may
easily yield misalignment with the given labels.

B Discussion on Noise

Pseudo-labeling inevitably introduces noise, which
is indeed a noteworthy limitation of our approach.
To mitigate the potential influence of this noise, we
have devised the following strategies:

• We remove samples with invalid labels, in-
cluding aspect terms and opinion terms not
present in the sentence, along with label se-
quences that are structurally invalid.

• We implement further filtration based on the
model’s own confidence scores to exclude la-
bels with low confidence.

Based on our observations, these two steps collec-
tively contribute to a significant reduction in noise
levels.

Subsequently, we discuss the effects of noise on
the generator and alignment discriminator.

• Concerning the generator, it’s important to un-
derscore that supervised training with pseudo-
labels merely equips it with preliminary sen-
tence generation capabilities. We refine label-
sentence alignment through the subsequent
reinforcement learning tuning, which heavily
relies on the performance of the alignment
discriminator.

• Turning to the discriminator, we evaluate its
performance on the original training set and
find it achieves an impressive accuracy of

89%. While not perfect, the discriminator
can identify misalignment in the majority of
cases. Importantly, our observations indicate
that while borderline cases might exhibit some
misalignment, samples with higher alignment
scores rarely demonstrate such issues.

In summary, we employ filtering strategies to mit-
igate noise impact, effectively reducing noise to
an acceptable level. Furthermore, the influence of
noise on our framework remains limited.

B.1 Effect of Confidence Threshold

Confidence Threshold Alignment Accuracy
0.7 88.20
0.8 88.73
0.9 88.03

Table 6: Effect of confidence threshold on the perfor-
mance of the alignment discriminator on Restaurant-14
(accuracy, %). We evaluate the performance of the
alignment discriminator based on its performance on
the original training set.

We have discovered that variations in the confi-
dence threshold yield a relatively marginal impact
on the alignment discriminator, as evidenced by
Table 6. Furthermore, we can reasonably infer that
the influence of this confidence threshold on subse-
quent reinforcement learning tuning is also limited.
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Label dish | non-tasty | negative
Dependency Tree ROOT [det prep [pobj] cc conj [det prep [pobj]] prep [pobj [nmod]] punct]
GPT-4 The dish was non-tasty with bland flavors and lacked any appealing presentation.
Our Approach A non-tasty dish and a lot of it for $80.
Label server | jerk | negative
Dependency Tree ROOT [nsubj advmod dobj [det] cc conj [aux xcomp [advmod]] punct punct punct]
GPT-4 The server was a jerk, not even trying.
Our Approach I just had a jerk server and will be staying away!!!
Label staff | unprofessional | negative ; staff | shady | negative
Dependency Tree ROOT [prep [prep [pobj [det compound] cc conj [pobj [nmod [det nmod prep [pobj]] compound

[amod]]]]] nsubj [det] aux aux attr [neg amod quantmod quantmod] punct]
GPT-4 Amidst the unprofessional behavior of some staff members, the atmosphere turned shady and the

overall experience was not at all pleasant.
Our Approach Based on the unprofessional and shady staff at the Orlando Inn of Fashion high end resort this place

should have been no more than 4 stars.
Label service | bad | negative ; manager | unprofessional | negative
Dependency Tree ROOT [nsubj [det relcl [nsubj advmod prep [pobj]]] acomp [advmod] cc conj [nsubjpass [det com-

pound] auxpass] punct]
GPT-4 The service, whose manager was unprofessional, was bad and the staff, including the manager, were

criticized.
Our Approach The service we received here at teh restaurant was really bad and the manager I was assigned was

unprofessional.

Table 7: Several examples of using GPT-4 for target-to-source augmentation.
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