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Abstract

Toeplitz Neural Networks (TNNs) have exhib-
ited outstanding performance in various se-
quence modeling tasks. They outperform com-
monly used Transformer-based models while
benefiting from log-linear space-time complex-
ities. On the other hand, State Space Mod-
els (SSMs) achieve lower performance than
TNNs in language modeling but offer the ad-
vantage of constant inference complexity. In
this paper, we aim to combine the strengths
of TNNs and SSMs by converting TNNs to
SSMs during inference, thereby enabling TNNs
to achieve the same constant inference com-
plexities as SSMs. To accomplish this, we
formulate the conversion process as an opti-
mization problem and provide a closed-form
solution. We demonstrate how to transform
the target equation into a Vandermonde lin-
ear system problem, which can be efficiently
solved using the Discrete Fourier Transform
(DFT). Notably, our method requires no train-
ing and maintains numerical stability. It can
be also applied to any LongConv-based model.
To assess its effectiveness, we conduct exten-
sive experiments on language modeling tasks
across various settings. Additionally, we com-
pare our method to other gradient-descent solu-
tions, highlighting the superior numerical sta-
bility of our approach. The source code is avail-
able at https://github.com/OpenNLPLab/ETSC-
Exact-Toeplitz-to-SSM-Conversion.

1 Introduction

Transformer has dominated the fields of computer
vision (CV) (Dosovitskiy et al., 2020; Liu et al.,
2021; Sun et al., 2022b), natural language process-
ing (NLP) (Radford et al., 2018; Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020; Liu et al.,
2022), and speech processing (Karita et al., 2019;

� Indicates the corresponding author (Email address:
zhongyiran@gmail.com).

Zhang et al., 2020; Gulati et al., 2020; Sun et al.,
2022a), becoming one of the best-performing ap-
proaches across different benchmarks. The core
component of the Transformer, the attention mecha-
nism, has a quadratic time complexity with respect
to sequence length, making it challenging to scale
to long sequences and large model sizes. Vari-
ous methods have been proposed to address this
issue, including Linear Attention (Katharopoulos
et al., 2020; Choromanski et al., 2020; Qin et al.,
2022b, 2023b), State Space Model (SSM) (Gu
et al., 2022; Gupta et al., 2022), Toeplitz Neural
Network (TNN) (Qin et al., 2023a) and other Long-
Conv methods (Li et al., 2023).

Linear Attention reduces the space-time com-
plexity of attention to linear by using a kernel trick
to decompose the Softmax function (Choromanski
et al., 2020; Qin et al., 2023c), but its poor per-
formance (Qin et al., 2022a) prohibits it from be-
ing used to build Large Language Models (LLMs).
SSM replaces the attention operation with state
space equations, resulting in log-linear training
space-time complexities (Gu et al., 2022). How-
ever, the performance of this method in casual lan-
guage modeling is often inferior (Qin et al., 2023a)
and initialization-sensitive (Gu et al., 2022), mak-
ing it unsuitable for building LLMs.

TNN is a new class of sequence modeling meth-
ods that belongs to LongConv-based methods (Li
et al., 2023; Qin et al., 2023a). It models long se-
quences using Toeplitz matrices to encode relative
positional relationships. This key component al-
lows them to effectively capture the dependencies
within the sequence and make accurate predictions.
It has a log-linear space-time complexity and out-
performs Transformers in NLP and long sequence
modeling tasks (Qin et al., 2023a). Additionally,
its stable training capability and insensitivity to
initialization make it feasible for LLMs.

Note that the above analysis has only taken into
account the training complexities for the afore-
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mentioned methods. However, when considering
the deployment of LLMs, the inference complexi-
ties are also important. In decoder scenarios, i.e.,
casual language modeling, the time complexity
of inferring the nth token in the Transformer is
O(n2d+ nd2), where n, d are the sequence length
and the feature dimension respectively. By using
the KV cache technique (Pope et al., 2022), the
complexity can be reduced to O(nd2). For Linear
Attention, the complexity is O(dh)(h is the hidden
dimension), which makes it constant with respect
to the sequence length (Katharopoulos et al., 2020).
SSM also has a constant space-time complexity of
O(dh), where h is the hidden space dimension (Gu
et al., 2022). TNN, on the other hand, has a log-
linear space-time complexity of O(nd log n) in in-
ference, which may make it challenging to handle
long sequences.

In this paper, we aim to accelerate the inference
of TNN to constant-time complexity. We find that
SSM can be thought of as a particular variation of
TNN. TNN can benefit from the same inference
complexity as SSM if we can convert it to SSM in
inference. We show that such conversion can be
viewed as an optimization problem and can be ef-
ficiently solved by a closed-form solution. Specif-
ically, given a Toeplitz matrix, we first convert
it to Vandermoode Linear System with Inclusive
Equation Reformulation (IER) and then employ
the Discrete Fourier Transform (DFT) to obtain a
numerical stable result. Compared with gradient-
based algorithms, our method is fast, training-free,
and numerically stable. Note that our method can
be applied to other LongConv-based methods (Li
et al., 2023) as well.

We conduct extensive experiments to validate
the effectiveness of our method. We compare our
method with gradient-based methods in terms of
efficiency and errors. Our method outperformed
gradient-based methods significantly in efficiency
while enjoying much lower error rates. We also ap-
ply our method to TNN language models and test it
in real scenarios. Our method has equivalent extrap-
olation capabilities and perplexity to the original
implementation of TNN. For the number of layers,
sequence length, and feature dimensions, an in-
depth assessment of speed and memory utilization
is performed. Our method clearly outperforms the
original TNN inference algorithm implementation.
Furthermore, we demonstrate the applicability of
our strategy beyond TNN by extending it to other

LongConv-based models.

2 Background and Preliminary

In this section, we first define sequence model in-
ference mathematically and then briefly discuss the
inference complexities of Transformer and some
closely related efficient sequence modeling meth-
ods such as Linear Transformer (Katharopoulos
et al., 2020), SSM (Gu et al., 2022), and TNN (Qin
et al., 2023a).

2.1 Inference

Inference refers to the process of predicting the
next token given a language model F and a token
sequence x ∈ Rn. It can be represented as follows:

logits = F(x) ∈ Rn×V

xn+1 = Sample(logits[−1]),
(1)

where V represents the size of the vocabulary,
logits represents the output logits from the lan-
guage model, and xn+1 is the sampled token. The
inference process continues until xn+1 is the end-
of-sequence token (eos), indicating the completion
of inference. The time and space complexity of
inference is determined by the underlying language
model F .

2.2 Inference Complexity

Transformer The Transformer’s core component
is self-attention, which operates on queries Q, keys
K, and values V. Each component is a linear map-
ping of the input X ∈ Rn×d, given by:

Q = XWQ, K = XWK , V = XWV ∈ Rn×d. (2)

The output of attention is computed as follows:

O = Softmax
(

QK⊤
√
d

)
V. (3)

Due to the need to compute QK⊤, the time com-
plexity of Transformer is O(n2d + nd2). During
the inference phase, when predicting the n-th to-
ken, the naive time complexity is O(n2d + nd2),
with space complexity of O(nd). By caching the
previous time steps’ K and V, known as KV cache,
the complexity can be reduced to O(nd2).

Linear Transformer The core component of
the Linear Transformer is the Linear Attention,
which uses the mapping ϕ(·) to map the Query
and Key to their implicit representations, where
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ϕ(Q), ϕ(K) ∈ Rn×h and h is the hidden dimen-
sion. The output is then given by:

O = ∆−1ϕ(Q)[ϕ(K)⊤V],

∆ = diag(ϕ(Q))[ϕ(K)⊤1n].
(4)

By first computing ϕ(K)⊤V, the computational
complexity can be reduced to O(ndh). During the
inference phase, according to (Katharopoulos et al.,
2020), we can transform the Linear Attention into
the form of an RNN:

a0 = 0,b0 = 0,

an = an−1 + ϕ (kn)v
⊤
n ,

bn = bn−1 + ϕ (kn) ,

on =
ϕ (qn)

⊤ an

ϕ (qn)
⊤ bn

.

(5)

This results in a time and space complexity of
O(hd) for the Linear Transformer.

State Space Model The State Space Model
(SSM) (Gu et al., 2022) is to use state space equa-
tions for sequence modeling:

un = Aun−1 +Bxn, yn = Cun (6)

where:

A ∈ Rh×h,B ∈ Rh×1,C ∈ R1×h,

xn, yn ∈ R,un ∈ Rh×1.
(7)

Here, h represents the hidden dimension of the
state space model. Note that we have swapped
the positions of xi and ui compared to (Gu et al.,
2022) for notational consistency. By expanding the
Eq. 6, we can write the SSM as:

yi =
i∑

j=0

CAi−jBxj , i = 0, . . . , n− 1. (8)

This allows for parallel training and has a com-
plexity of O(nd log n). SSM has demonstrated
its effectiveness in many long sequence modeling
tasks (Gu et al., 2022).

As a variance of SSM, DSS (Gupta et al., 2022)
suggests that assuming A to be a diagonal matrix Λ
can mitigate the initialization sensitivity (Gu et al.,
2022) while maintaining comparable model perfor-
mance. In this case, the equation can be simplified
as follows:

CΛiB =

h−1∑

k=0

ckbkλ
i
k. (9)

During the inference phase, due to the Eq. 6, the
computational complexity is O(hd).

Toeplitz Neural Network and LongConv-based
moethod The Toeplitz Neural Network (TNN)
introduces token mixing (Yu et al., 2021) using a
relative positional matrix or Toeplitz matrix. The
core computation can be expressed as follows:

y = Tx, x,y ∈ Rn. (10)

where:

T =




t0 t−1 · · · t−n+1

t1 t0
...

... t0 t−1

tn−1 . . . t1 t0



∈ Rn×n. (11)

Using the Fast Fourier Transform (FFT), the ma-
trix multiplication above can be computed in
O(nd log n) time complexity, which makes the
TNN’s time complexity O(nd log n). During the
inference phase, according to the Eq. 10, the com-
plexity for predicting the nth token is O(nd log n).
Since TNN can be viewed as a form of LongConv-
based methods (Li et al., 2023), other LongConv-
based methods have the same complexities.

3 Method

The inference of TNN exhibits a time complexity of
O(nd log n) and space complexity O(nd) for pre-
dicting the n-th token which poses challenges for
scaling TNN to handle extremely long sequences
in inference. In this section, we will present our
approach to converting TNN into the form of SSM,
aiming to improve generation speed and memory
to a constant.

3.1 Problem formulation

In this section, we show the connection between
TNN and SSM and formulate our problem mathe-
matically. Considering a language modeling sce-
nario, the token mixing process can be written as:

yi =
i∑

j=0

ti−jxj , i = 0, . . . , n− 1. (12)

On the other hand, SSM can be represented as:

yi =
i∑

j=0

CAi−jBxj , i = 0, . . . , n− 1. (13)

Let t̄i = CAiB, the equation can be rewritten as:

yi =
i∑

j=0

t̄i−jxj , i = 0, . . . , n− 1. (14)
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Figure 1: The conversion between Toeplitz representation and SSM representation. Unrolling the recursion can
tranform SSM representation to Toeplitz representation. To obtain the inverse conversion, we use the Inclusive
Equation Reformulation to express the problem as a Vandermonde Linear System. Then, we apply the Discrete
Fourier Transform (DFT) to compute the SSM representation.

Since DSS is as effective as SSM (Gupta et al.,
2022), but DSS has a simpler form, we choose
DSS as our desired simplified structure. In this
case, we have:

t̄i = CAiB =

h−1∑

k=0

ckbkλ
i
k. (15)

Notably, cibi can be combined, so without loss of
generality, we assume C = 1h:

t̄i = CAiB =

h−1∑

k=0

bkλ
i
k. (16)

By comparing the equations, it is evident that SSM
is a special case of TNN. Since TNN inference
encounters performance bottlenecks while SSM
does not, the natural question arises: can we "con-
vert" TNN to SSM in inference? This question is
equivalent to find matrices Λ and B such that:

ti =

h−1∑

k=0

λi
kbk, i = 0, . . . , n− 1. (17)

By determining suitable values for Λ and B, we
can achieve an equivalent representation between
TNN and SSM.

3.2 Gradient-based method
One solution to solve Eq. 17 is to use gradient-
based methods to solve the following optimization
problem:

min
bk,λk

n−1∑

i=0

L
(
ti,

h−1∑

k=0

λi
kbk

)
, (18)

where L is the loss function, which can be ℓ1 or ℓ2.
However, this approach has two issues:
• It cannot exactly satisfy Eq. 17, resulting in

information loss during the conversion.
• The presence of exponential terms λi

k makes
the optimization challenging to converge. (Gu
et al., 2022)

The above issues make the gradient-based method
less effective in achieving an accurate and efficient
conversion from TNN to SSM. We adopt this al-
gorithm as our baseline method and present it in
Figure 2. The algorithm is summarized in Algo-
rithm 2.

3.3 Our closed-form solution
In this section, we show that Eq. 17 can be directly
solved with a closed-form solution, i.e., find the
exact values of λk and bk that result in the desired
Toeplitz matrix representation. With the closed-
form solution, we can avoid the issues associated
with the gradient-based approach and achieve a
more accurate conversion from TNN to SSM.

To do this, we first add a variable b = 0 to both
sides of the equation, yielding:

ti = ti + b = b+

h−1∑

k=0

λi
kbk, i = 0, . . . , n− 1. (19)

Expanding this equation into matrix form, we have:




t0
t1
...

tn−1


 =




1 1 . . . 1
1 λ0 . . . λh−1

1
...

. . .
...

1 λn−1
0 . . . λn−1

h−1







b
b0
b1
...

bh−1



,

t = Vb,

t ∈ Rn,V ∈ Rn×(h+1),b ∈ R(h+1).

(20)

Now, let’s set h = n− 1, we have:




t0
t1
...

tn−1


 =




1 1 . . . 1
1 λ0 . . . λn−2

1
...

. . .
...

1 λn−1
0 . . . λn−1

n−2







b
b0
b1
...

bn−2



,

t = Vb,

t ∈ Rn,V ∈ Rn×n,b ∈ Rn.

(21)

At this point, V is a Vandermonde matrix. Al-
though the Vandermonde linear system is un-
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stable in general due to numerical precision is-
sues (Gautschi, 2020), if the λk’s are pairwise dis-
tinct, the equation will have a solution. To improve
stability, we can choose λs = exp

(
−2iπs

n

)
, which

results in V =
√
nWn, where Wn is the Discrete

Fourier Transform (DFT) matrix. The above equa-
tion can be expressed as:

t =
√
nWb,WHt =

√
nb, (22)

where WH represents the conjugate transpose of
the matrix W. By comparing the first row, we
have:

n−1∑

i=0

ti = 0. (23)

However, the coefficients ti from TNN are not guar-
anteed to satisfy this equation. To ensure that this
equation is satisfied, we introduce another variable
tn = −∑n−1

i=0 ti, which we call an inclusive equa-
tion reformulation process. Therefore, we have:




t0
t1
...

tn−1

tn



=




1 1 . . . 1
1 λ0 . . . λn−1

1
...

. . .
...

1 λn
0 . . . λn

n−1







b
b0
b1
...

bn−2



,

t =
√
n+ 1Wn+1b,

t ∈ Rn+1,V ∈ R(n+1)×(n+1),b ∈ Rn+1.

(24)

Based on the above equation, we can determine the
coefficients bi using the expression:

bi =
1√

n+ 1

[
W⊤

n+1t
]
[i]. (25)

By utilizing this formula, we can obtain the coef-
ficients bi. We name this method as ETSC (Exact
Toeplitz-to-SSM Conversion) and provide a sum-
mary of the algorithm in Algorithm 1.

3.4 The inference of TNN
In this section, we briefly introduce three inference
strategies of language modeling for TNN: the Orig-
inal implementation, i.e., FFT, Cache, and SSM. In
the subsequent discussion, let us assume we have
an L-layer TNN with the superscript (l) indicating
the result at the l-th layer. The computation of TNN
can be represented as follows:

x0 = Embedding(i) ∈ Rn×d,

xl+1 = Tlxl ∈ Rn×d, l = 0, . . . , L− 1

Logits = xLW ∈ Rn×V

(26)

Here, i ∈ Rn represents the input tokens and V
represents the vocabulary size.

Algorithm 1 ETSC: Exact Toeplitz-to-SSM Con-
version

Input: t ∈ Rn.
Output: λ ∈ Cn,b ∈ Cn.
Notation:Use Wk to represent the k-th order
DFT matrix.
Initialize:
t = concat([t,−∑n−1

i=0 ti]) ∈ Rn+1,
λs = exp(−2π(s+1)/n+ 1), s = 0, . . . , n−1,
tdft = Wn+1t̄ ∈ Rn+1,
b = 0n. ∈ Rn.
for i in 0, . . . , n− 1 do:

bi = tdft[i+ 1]/
√
n+ 1;

end for

Algorithm 2 Gradient-Based Method
Input: t ∈ Rn;
Output: λ ∈ Cn,b ∈ Cn;
Initialize:
r, θ,breal,bimg,∼ N (0, In).
Minimize:

∑

i

∥∥∥∥∥ti −
h−1∑

k=0

λi
kbk

∥∥∥∥∥

2

,

where

λ = Sigmoid(r) exp(iθ),

b = breal + ibimg.

Origin In the inference phase, our core operation
remains the computation of Tixi. One approach
for inference is to continue using the Fast Fourier
Transform (FFT), which results in a time complex-
ity of O(nd log n).

Cache This method is to directly compute Eq. 12,
which requires matrix multiplication and has a
time complexity of O(n2d + nd2). However, by
employing a caching mechanism similar to the
key-value (KV) cache in transformer (Pope et al.,
2022), we can store the output of each layer as
cachel = xl+1 ∈ Rn×d. In this way, when per-
forming a new inference, we only need to compute:

xl+1
n =

n∑

k=0

tl+1
n−kx

l
k. (27)

Then, we update as follows:

cachel = concat([cachel, xl+1
n ]),

xl+1 = cachel.
(28)
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Table 1: Extrapolation Evaluation on TNN. We trained a TNN LM and, upon completion of training, utilized
ETSC to convert the coefficients of the Toeplitz matrix into SSM representation. We then evaluated the model’s
extrapolation capability, comparing the results for different hidden states. It can be observed that our model exhibits
extrapolation abilities similar to TNN. Moreover, for hidden states of 768 and 1024, ETSC achieves average
perplexity (ppl) comparable to TNN.

Dataset
h

Seqlen 512 1024 2048 4096 8192 9216 10240 12288 14336 AVG

w
ik

ite
xt

-
10

3

TNN 24.67 24.05 23.73 23.58 23.51 23.49 23.48 23.48 23.46 23.72
512 24.65 24.47 24.37 24.32 24.29 24.29 24.28 24.28 24.28 24.36
768 24.65 24.04 23.74 23.59 23.52 23.51 23.49 23.49 23.48 23.72

1024 24.65 24.03 23.72 23.57 23.50 23.49 23.47 23.47 23.46 23.71

w
ik

i-
bo

ok

TNN 23.87 23.28 23.00 22.80 22.73 22.70 22.69 22.55 22.62 22.92
512 23.87 23.28 23.00 22.80 22.73 22.70 22.69 22.55 22.62 22.91
768 23.87 23.30 23.04 22.85 22.78 22.75 22.74 22.55 22.67 22.95

1024 23.87 23.28 23.00 22.80 22.74 22.70 22.69 22.56 22.62 22.92

Table 2: Evaluation of ETSC on Other LongConv Methods. We conducted experiments to assess the performance
of ETSC on other LongConv methods, specifically focusing on SGConv. We trained an SGConv LM and applied
ETSC to convert the Toeplitz representation into SSM representation. We then evaluated the extrapolation
capabilities of the converted model. This demonstrates that ETSC exhibits extrapolation abilities similar to SGConv,
with even lower average perplexity (ppl) values.

Seqlen 512 1024 2048 4096 8192 9216 10240 12288 14336 AVG
SGConv 33.39 32.77 32.46 32.31 32.24 33.61 33.59 32.22 34.54 33.01
Ours 33.39 32.77 32.46 32.31 32.24 32.24 32.22 32.22 32.20 32.45

With this approach, the time complexity can be
reduced to O(nd2).

SSM With our method, we can transform the
Toeplitz representation into a State Space Model
(SSM) representation. Therefore, we can perform
inference using Eq. 6, resulting in both time and
space complexities of O(hd).

4 Experiments

In this section, we present extensive experiments
to validate our method. We first analyze the nu-
merical stability and efficiency of our method with
a comparison to a gradient-based approach. Then
we evaluate our method for language modeling
tasks with real-world scenarios. In our inference
efficiency study, we conduct an in-depth analysis
of the impact of the number of layers, sequence
length, and feature dimensions on the speed and
memory utilization of our method. We also extend
the scope of our method to other long convolution-
based methods, showcasing its versatility and gen-
eralizability.

4.1 Numerical Stability and Efficiency

Figure 2 presents the comparison in terms of time
complexity and relative error ∥t−tpred∥

∥t∥ , where
t = [t0, . . . , tn−1] represents the coefficients of the
Toeplitz matrix. We first fix the feature dimension

to 64 and vary the sequence length from 64 to 8192.
Our method is 3 to 6 orders of magnitude faster
than the gradient-based method. Regarding the
relative error, our method achieves an error close
to zero, while the relative error of gradient-based
methods exceeds 30%.

We then fix the sequence length to 2048 and
vary the feature dimension from 64 to 16384.
The gradient-based methods encounter OOM at
d = 512 while our method successfully completes
all tests. Our method is 4 orders of magnitude faster.
In terms of relative error, our method achieves an er-
ror close to zero, while the relative error of gradient-
based methods is around 35%.

Our method demonstrates superior numerical sta-
bility and efficiency compared to gradient-based
methods. It significantly reduces the computation
time while maintaining a low relative error. Fur-
thermore, our method exhibits excellent scalability,
as it can handle larger sequence lengths and higher
feature dimensions without encountering OOM.

4.2 Evaluation on TNN LM

Following the configuration used in (Qin et al.,
2023a), we trained a 6-layer TNN LM on the
Wikitext-103 and Wiki-book (Wettig et al., 2023)
dataset with a feature dimension of 512, maximum
sequence length of 512, and 50k update steps. Af-
ter training, we utilize ETSC to convert the coeffi-
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Figure 2: Comparison of ETSC and Gradient-Based Methods. We compare the time overhead and relative error
∥t−tpred∥

∥t∥ of ETSC and gradient-based methods, where the unit of time overhead is seconds and the unit of relative
error is percent. Here, t = [t0, . . . , tn−1] represents the coefficients of the Toeplitz matrix. It can be observed that
ETSC exhibits significantly lower time overhead compared to gradient-based methods, while also achieving smaller
errors.

cients of the Toeplitz matrix to SSM and vary the
sequence length from 512 to 14336 to verify the
model’s extrapolation capabilities. We test with
three hidden state dimensions: 512, 768, and 1024.

Table 1 shows the results of our evaluation. It
can be observed that ETSC exhibits the same ex-
trapolation capabilities as TNN, enabling it to han-
dle sequences of arbitrary length. Moreover, when
the hidden state dimensions are larger than 512,
ETSC achieves comparable average perplexity to
TNN, demonstrating ETSC preserves the model-
ing capacity of TNN while providing the benefits
of numerical stability and efficiency.

Our evaluation on the TNN LM demonstrates
that ETSC not only possesses extrapolation capa-
bilities but also achieves comparable performance
to TNN in terms of average perplexity. This fur-
ther confirms the effectiveness and practicality of
ETSC in long sequence modeling tasks.

4.3 Inference Efficiency Analysis

In this section, we discuss the impact of hyper-
parameters on inference time and memory utiliza-
tion. We compare ETSC with the Origin (FFT)

and Cache methods in terms of their practical in-
ference time and memory usage. All methods are
evaluated on the same A100 GPU. Specifically, we
select a TNN LM and vary the sequence length,
feature dimension, and number of layers to assess
the effectiveness of the methods.

In the sequence length test, we fix the number of
layers at 2 and the feature dimension at 64. In the
feature dimension test, we fix the number of layers
at 2 and the sequence length at 2048. In the layer
test, we fix the sequence length at 2048 and the fea-
ture dimension at 64. Figure 3 (a) and (b) illustrate
the results of the sequence length test. It can be ob-
served that the Origin and Cache methods exhibit
significantly higher inference times and memory
utilization, ranging from several times to tens of
times longer than ETSC. Additionally, the memory
utilization of Origin and Cache is almost 2 orders
of magnitude higher when the sequence length ex-
ceeds 1k. In the feature dimension test, as shown
in Figure 3 (c) (d), both the Origin and Cache meth-
ods exhibit inference times several times to tens
of times longer than ETSC, with memory utiliza-
tion approximately 100 times higher. The layer test
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Figure 3: Impact of Hyperparameters on Inference Time and Memory. We compared the actual inference
time and memory usage of ETSC, Origin (FFT), and Cache methods under different sequence lengths, feature
dimensions, and model depths. Our method consistently outperformed the other methods, significantly reducing
both the inference time and memory usage in all scenarios.

results are shown in Figure 3 (e) (f). The Origin
and Cache methods again exhibit inference times
several times to tens of times longer than ETSC,
with memory utilization approximately 100 times
higher or more.

These results demonstrate the superior efficiency
of ETSC compared to the Origin and Cache meth-
ods across different configurations. ETSC consis-
tently outperforms the other methods in terms of
both inference time and memory utilization. This
highlights the advantage of ETSC for efficient and
scalable inference in long sequence modeling.

4.4 Application to Other LongConv-based
Methods

Our method is applicable to all LongConv methods,
as they all rely on Toeplitz matrices. To validate

this claim, we selected SGConv (Li et al., 2023) and
trained an SGConv language model. After training,
we used ETSC to convert the Toeplitz representa-
tion to the SSM representation. We then varied the
sequence length in the range from 512 to 14336 to
evaluate the model’s extrapolation capabilities.

From Table 2, it can be observed that ETSC
exhibits the same extrapolation capabilities as SG-
Conv and achieves lower average perplexities. This
indicates that our method can be effectively ap-
plied to other LongConv methods as well, further
demonstrating its versatility and effectiveness in
long sequence modeling tasks.

5 Conclusion

In this paper, we have analyzed and addressed the
efficiency issue in TNN inference. We propose
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a solution by converting the Toeplitz representa-
tion to the SSM representation, which reduces the
time and space complexity of TNN inference to
be independent of the sequence length. Our con-
version algorithm, named ETSC, is fast, training-
free, and numerically stable, outperforming other
gradient-based methods significantly while keeping
the same extrapolation capabilities and perplexity
to the original TNN. We conducted a comprehen-
sive assessment of the performance of our method
in terms of the number of layers, sequence length,
and feature dimensions. Our results clearly demon-
strate that our method surpasses the original TNN
in terms of both speed and memory utilization.
Additionally, we extended the applicability of our
strategy beyond TNN by successfully applying it
to other LongConv-based models, showcasing the
versatility and effectiveness of our approach.
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Limitations

While our proposed method for converting Toeplitz
representations to State Space Models (SSM) has
shown promising results in our experiments, there
are certain limitations that should be acknowl-
edged.

1. Trade-off between Accuracy and Efficiency:
Although our method achieves significant improve-
ments in efficiency, it is important to note that there
may be a trade-off between accuracy and efficiency.
The conversion from Toeplitz representations to
SSM involves approximations and simplifications,
which can introduce some level of error compared
to the original representation. While our experi-
ments have demonstrated comparable performance
to the original Toeplitz Neural Network (TNN),
there may be scenarios where the transformed SSM
does not fully capture the intricate patterns present
in the original model.

2. Application Scope: Our method has been
extensively evaluated in language modeling tasks
and demonstrated superior performance compared
to gradient-based methods and the original TNN
implementation. However, the applicability of our
method may be limited to sequence modeling tasks
and long convolution-based models. Further re-
search is needed to explore its effectiveness in other

domains and model architectures.
While our proposed method offers a compelling

approach for converting Toeplitz representations to
State Space Models, it is important to consider the
limitations mentioned above. Addressing these lim-
itations and further exploring the potential of our
method in diverse domains and model architectures
will be valuable directions for future research.
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