
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 12338–12358
December 6-10, 2023 ©2023 Association for Computational Linguistics

KRLS: Improving End-to-End Response Generation in Task Oriented
Dialog with Reinforced Keywords Learning

Xiao Yu, Qingyang Wu, Kun Qian, Zhou Yu
Columbia University

{xy2437,qw2345,kq2157,zy2416}@columbia.edu

Abstract

In task-oriented dialogs (TOD), reinforcement
learning (RL) algorithms train a model to di-
rectly optimize response for task-related met-
rics. However, RL needs to perform explo-
ration, which can be time-consuming due to
the slow auto-regressive sequence generation
process. We investigate an approach to create a
more efficient RL-based algorithm to improve
TOD performance in an offline setting. First,
we use a faster generation procedure that sam-
ples from independent next-word distributions
after training the language model (LM) with
supervised learning. We then introduce a fine-
grained reward function to help the model fo-
cus on learning key information in a dialog, by
measuring the importance and semantic close-
ness of each generated token. Experiments on
the MultiWoZ dataset show our new training
algorithm, Keywords Reinforcement Learning
with Next-word Sampling (KRLS), achieves
state-of-the-art performance on the end-to-end
response generation task, with a 15% training
time reduction compared to a standard RL al-
gorithm using auto-regressive generation1.

1 Introduction

Task-oriented dialog systems help users complete
pre-defined tasks such as booking a hotel or re-
serving a table in a restaurant. With advances in
large-scale pre-trained generative models (Brown
et al., 2020; Raffel et al., 2020; Zhang et al., 2020c;
Peng et al., 2022), many recent approaches (Wu
et al., 2019; Hosseini-Asl et al., 2020; Yang et al.,
2021a; Lee, 2021; He et al., 2022) handle TOD as
a holistic task of end-to-end (E2E) generation, as
opposed to the traditional modular approach.

In this E2E setting, the dialog history is often
used as input, and reinforcement learning (RL)
algorithms can train a model to generate a re-
sponse that directly optimizes for task-related met-
rics, such as the task success rate (Budzianowski

1Code availale at https://github.com/jasonyux/KRLS

TerminalDSTUser

DSTUser Sys Resp. DST Sys Resp.User

Sys Resp.

Gen. Resp.

SS

S

R
Supervised Learning

Reinforcement Learning

TerminalDSTUser Sys Resp. DST
Sys Resp.

User

Gen. Resp.
R

S
S

R

y
x Gold Demonstration

Generated

Figure 1: Overview of episodic training in KRLS. Each
turn is treated as a separate episode, and the RL task is
to only generate/explore a response at the end. The gold
system resp. are also used in our reward computations.

et al., 2018). However, training RL-based dialog
models often requires a good user simulator (Shi
et al., 2019), and the training process could be
time-consuming as RL often needs to explore and
auto-regressively generate many new responses per
given input (Ramamurthy et al., 2022). For exam-
ple, in our experiment, we found that this genera-
tion process alone takes 172 minutes/epoch out of
the total 362 minutes/epoch during training.

In this work, we aim to create a more effi-
cient RL procedure for TOD, which does not need
a user simulator nor use auto-regressive genera-
tion during exploration. We propose a new train-
ing algorithm, Keywords Reinforcement Learning
with Next-word Sampling (KRLS), which com-
bines a faster sequence generation procedure and a
fine-grained per-token reward in an offline setting
(Jaques et al., 2019; Pang and He, 2021). First, we
treat each turn in a dialog as a separate episode and
consider an offline RL task to generate a response
only at the end of each episode (see Figure 1).
Since this procedure only explores/generates sys-
tem responses at the last turn, no interactive envi-
ronment (e.g., a user simulator) is needed. During
this RL process, KRLS generates new sequences
by directly sampling from independent next-word

12338

https://github.com/jasonyux/KRLS

Reward Reward

Decoder

[value_car][PAD] booked car type :Gold

[value_car]booked car type :

Finetuned Decoder

[value_car][PAD] booked car type :Gold

planebooked plane type :sampled

Reward Reward Reward

NLL loss NLL loss NLL loss NLL loss NLL loss

Offline RL

Supervised Learning

[value_car]normal token: car key token:

Per-token Reward
Function

Figure 2: Overview of the KRLS algorithm. During traditional supervised training, the language model
learns/imitates the gold response. During offline RL training, the fine-tuned model generates sequences by
sampling from next-word distributions conditioned on the gold response and receives a per-token reward.

distributions, after training a language model with
the traditional supervised learning (SL) technique
(see Figure 2). This generation procedure is much
faster than the traditional auto-regressive approach,
as it only requires a single forward pass. Next,
KRLS uses a fine-grained per-token reward to help
the model focus on learning key information in a
dialog, by measuring the importance and semantic
closeness of each generated token. Experiments on
the MultiWoZ dataset show that KRLS achieves
state-of-the-art performance on the E2E response
generation task, with a 15% training time reduc-
tion compared to the standard RL approach using
auto-regressive generation.

This paper makes the following contributions:

• We propose an efficient offline RL algorithm
that approximates auto-regressive generation
by sampling from independent next-word dis-
tributions conditioned on the gold response.

• We introduce a per-token reward function,
which can be used in our offline RL algorithm
to promote keyword learning or to incorporate
domain knowledge.

• We show that our proposed KRLS algo-
rithm can achieve state-of-the-art performance
on E2E response generation on MultiWoZ
(Budzianowski et al., 2018; Eric et al., 2019;
Zang et al., 2020).

2 Background

To introduce RL in NLP tasks, we begin by formu-
lating the response generation process as an MDP.
Given a supervised dataset D = {(ci,xi)} where

c(i) is the context and x(i) is a response, the proba-
bility of generating x(i) can be modeled as:

p(x(i)|c(i)) =
T−1∏

t=1

p(x
(i)
t+1|x

(i)
1:t, c

(i)),

where x
(i)
t is the t-th token in the i-th response,

and T is the length of the response. As men-
tioned in Ramamurthy et al. (2022); Lubis et al.
(2020), this generation can be formulated as a
MDP problem ⟨S,A,R,P, γ⟩. The input context
c(i) would be the initial state s0 ∈ S, and the re-
sponse x(i) would represent the sequence of ac-
tions a(i) = {a(i)1 , a

(i)
2 , . . . , a

(i)
T−1} in an episode,

where a
(i)
t ∈ A is the t-th token in the i-th re-

sponse. The reward function R would represent
the “utility” of each action contributing towards the
overall performance, such as task success in TOD.
Typically, this is modeled by using R(s, a) = 0
for non-terminal states, and R(sT , a) for termi-
nal states which can be computed by combining
scores such as task success and BLEU (Rama-
murthy et al., 2022; Arora et al., 2022). The tran-
sition function P : S × A → S would determin-
istically append the action at to the current state
st so that st+1 = (c0, . . . , cm, a0, . . . , at). Finally,
γ ∈ [0, 1) is the discount factor.

3 Approach

In the MulitiWoZ dataset (Budzianowski et al.,
2018; Eric et al., 2019; Zang et al., 2020), we
observe that key information, such as restaurant
“phone number” and “address”, needs to be gen-
erated correctly in a response to achieve a high
task success/inform rate. However, traditional SL
uses a negative log-likelihood loss, which asks the

12339

[value_car][PAD] booked car typeGold

booked plane type planesampled

reward = -5.0
.....

importance x1

reward = -0.3

closeness -0.3

return return return return

booked plane type plane

[pad] booked car type [value_car]

[value_car]

 1.0 -0.3 1.0 -1.0closeness=

Gold

sampled

task score+0.0

importance x5
closeness -1.0

gen key quantities: None

 required key quantities: [value_car]

return

overall task score=0.0

gold important/key token!

KRLS Reward Function

.....

Figure 3: KRLS reward function. Immediate reward measures the semantic closeness of the generated token and the
gold token, scaled by its importance µ. Return for each sampled token is a combination of individual immediate
reward and future rewards. Future rewards will help propagate final overall scores, such as overall task performance.
Key tokens in a response are bolded and italicized.

language model to uniformly learn all correct to-
kens xgold given input context c, without explicitly
focusing on achieving task-related objectives:

LSL(θ) = −
∑

x

p(x|c) log pθ(x|c)

= − log pθ(x
gold|c)

(1)

where the probability of p(x|c) = 0 if x ̸= xgold.
We will refer to models fine-tuned with this objec-
tive as "LSL-finetuned".

We hypothesize that it can be beneficial to use
RL and a fine-grained per-token reward function
to help promote keyword learning and improve
TOD performance. First, in Section 3.1 we pro-
pose a fast sequence generation procedure that can
be used during RL training/exploration, and uti-
lize policy-gradient based methods (Sutton et al.,
1999; Williams, 1992; Schulman et al., 2017) to
optimize response generation for task-related met-
rics. Then, in Section 3.2 we design a fine-grained
reward function R(x|c) according to how impor-
tant each generated token is, but also how close
it is from the gold token, so that the model can
focus more on learning key information once it
can generate non-key tokens semantically close
to the reference. Finally, we describe our KRLS
algorithm in Section 3.3 and Algorithm 1, which
utilizes RL combined with our proposed generation
method and reward function.

3.1 RL with Next-word Sampling
To avoid the slow auto-regressive sequence gener-
ation process during RL training, we propose an
alternative sequence generation mechanism that
can be used for RL exploration. First, we assume

that there is a model pθ that generates sequences
similar to the gold responses in the training set.
Then, under this assumption, we can approximate
the MDP process of auto-regressive sequence gen-
eration by sampling from the next-word distribu-
tions conditioned on the gold response. This is
because if previously generated tokens are similar
to the gold context (e.g., after LSL training), then
conditioning on those generated tokens is similar
to conditioning on the gold tokens. In this setting,
the next-word sampling process could approximate
auto-regressive generation used during RL, but it is
much faster as each token is generated in parallel.

Specifically, we first perform a forward pass to
obtain the next-word distributions for xgent given
the context and the gold response up to t− 1:
{
pθ(x

gen
1 |c(i)), . . . , pθ(xgenT |x(i)1:T−1, c

(i))
}

(2)

Then, we generate each next-token at = xgent

by sampling from pθ(X = x|x(i)1:t−1, c
(i); τ) with

temperature τ . Finally, given some suitable re-
ward function R(st, at) ∈ [−1, 1] (see Section 3.2
for details), we can use policy gradient methods
(Sutton et al., 1999; Williams, 1992) to perform a
“weighted learning” on each generated token:

∇L(θ) = −Gt∇ log pθ(xt|c) (3)

Note that this procedure is much faster than auto-
regressive generation as it only requires one for-
ward pass. Moreover, it is suitable for training
a model to focus on generating key information,
because we can use the gold response as an ora-
cle to locate those key positions and penalize each
generated token in the reward function accordingly.

12340

3.2 Per-Token Reward Function
To improve a model’s keyword generation abil-
ity, we design a reward function that measures
the importance and semantic closeness of each
generated token. This reward aims to prioritize
accurate generation of key tokens, and also con-
textually evaluate how far-off is each generated
token from the ground truth. We draw inspiration
from BERTScore (Zhang et al., 2019), which uses
a separate neural network to compute a contextual
semantic score of the generated sequence by com-
paring it against the gold reference. However, we
found that directly adapting BERTScore to a per-
token reward function is sub-optimal in our setting,
as our generated sequence is “sampled” from the
gold response. Therefore, we consider a simpler
approach, utilizing the fact that our generation pro-
cedure provided a one-to-one mapping between
each generated token and the gold token.

First, we use a LSL-finetuned decoder network
Decoder(ϕ) to compute the probability pϕ(Xt =

x|x(i)1:t−1, c
(i)) of generating any token x at time

t, which can be done in a single forward pass.
Then, we index into this probability distribution
to find pϕ(X = xgent |x(i)1:t−1, c

(i)) of our generated
tokens, as a measure of the semantic appropriate-
ness of xgent in the given context. To ensure that
R correctly reflects the gold tokens as the optimal
choice, we manually set this semantic closeness
score to 1 for any token that is correctly generated
xgent = xgoldt . To emphasize keyword learning,
we also strictly set this closeness score to −1 if
a key token is incorrectly generated. Otherwise,
we use the probability pϕ produced by the decoder
network as the closeness score. Finally, we adjust
the reward for key tokens by an importance scale
µ > 1, which is a hyper-parameter for specify-
ing the relative importance between keywords and
non-keywords. This gives our per-token reward:

R(st, at) = closeness(xgent , xgoldt , c̄) · µ (4)

We standardize R to [−1, 1] to be later compared
with other related reward functions in Section 5.2.

3.3 KRLS Training Algorithm
Algorithm 1 describes our KRLS training al-
gorithm. Given a supervised dataset D =
{ci,xgold

i }Ni=1 consisting of the dialog context ci
and the gold response xgold

i at each turn, we train a
neural network pθ to generate a response that satis-
fies the user’s need given by ci. A separate neural

Algorithm 1 KRLS Training Algorithm

Require: generative network pθ
Require: semantic scoring network pϕ
Require: supervised language dataset D
Require: empty buffer BL, BS

1: Repeat for n epochs:
2: for batch bi in D = {b1, . . . , bm} do
3: Perform sup. learning on bi (Equation 1)
4: Update generative network pθ
5: Append bi to buffer BL

6: if i% κ == 0 then
7: for each batched episode bj in BL do
8: Collect k samples per episode
9: by sampling from Equation 2

10: Calculate per-token reward
11: using pϕ and Equation 4
12: Calculate per-token returns Gt

13: Append all to replay buffer BR

14: end for
15: Perform RL on BR (e.g., PPO)
16: Update generative network pθ
17: Clear BL and BR

18: end if
19: end for

network pϕ is used to compute the reward function
during RL phase (see Section 3.2).

For each epoch, we first perform SL over sev-
eral batches of training examples and update our
network pθ. This is because our generation pro-
cedure is based on the assumption stated in Sec-
tion 3.1, so we periodically train pθ with the LSL

objective to imitate the gold responses before pass-
ing over to RL (see Appendix F for generated se-
quences). Then, we store those SL-trained batches
into a buffer BL, and perform RL on this learned
buffer. During this RL training, we first gener-
ate k responses per trained episode by next-word
sampling (see Section 3.1), calculate their rewards
and returns using a scoring network pϕ, and ap-
pend them to a replay buffer BR. Then, we utilize
the clipped policy gradient objective from Proxi-
mal Policy Optimization (Schulman et al., 2017)
to learn from BR and update the generative policy
model pθ (see Appendix A and Appendix B).

Note that Algorithm 1 only additionally requires
prior definitions of keywords to compute the re-
ward. This means that such an approach can be
generic to many task-oriented dialogues where key-
words can be easily defined (e.g., using entities
from a database). For instance, in movie recom-

12341

mendation (Harper and Konstan, 2015), correctly
generating key information such as “movie_ratings”
and “movie_genres” could be helpful to improve
the system’s response. Additionally, we believe
that for other dialogue tasks such as QA/social chat,
keywords can often be automatically processed and
defined, such as using the entities mentioned in
WikiQA answers (Yang et al., 2015) and the intent
keywords in ESConv (Liu et al., 2021).

4 Experiments

4.1 Dataset and Preprocessing

We evaluate our algorithm on the MultiWoZ dataset
(Budzianowski et al., 2018). MultiWoZ is a large-
scale multi-domain TOD dataset consisting of
8438, 1000, and 1000 dialogs for training, valida-
tion, and test sets respectively. The dataset consists
of seven domains: attraction, hotel, hospital, police,
restaurant, taxi, and train. Each dialog consists of a
sequence of user utterances and system responses,
all annotated with the corresponding dialog state
and system action.

We follow the preprocessing procedure from
Zhang et al. (2020a) to delexicalize slot values
for each system response, and use the standardized
evaluation script released by Nekvinda and Dušek
(2021), which has also been adopted by the official
MultiWoZ dataset.

4.2 Evaluation Metrics

In our experiments, we primarily consider the
task of end-to-end response generation. In Mul-
tiWoZ, response generation performance is eval-
uated by a combination of three metrics: In-
form rate measures whether the system has pro-
vided an appropriate entity; Success rate measures
whether the system has answered all the requested
attributes; BLEU measures the fluency as com-
pared to the references, which are also delexical-
ized. Finally, the Combined score is calculated as
(Inform + Success)× 0.5 + BLEU.

4.3 Model Architecture and Baseline

In this work, we use GODEL-base (Peng et al.,
2022) as a backbone, which is a T5-base model
(Raffel et al., 2020) pretrained on both texts and
dialog datasets (except MultiWoZ).

Baseline We use MTTOD (Lee, 2021), which
achieves previous state-of-the-art performance in
response generation by performing SL with addi-
tional multi-task training. We re-train MTTOD

with GODEL-base (Peng et al., 2022) as the back-
bone, and report this as Baseline (MTTOD).

KRLS Since KRLS targets at improving re-
sponse generation, we replace the SL objective dur-
ing response training in MTTOD with the KRLS
algorithm, which involves both SL and RL training.
We report this result as KRLS.

finetune+KRLS As the generation procedure in
KRLS is based on the assumption stated in Sec-
tion 3.1, we first initialize the model with an LSL-
finetuned checkpoint, and then perform the same
KRLS training procedure as used in KRLS. We
report this result as finetune+KRLS.

More details in training/hyperparameters can be
found in Appendix D.

4.4 Main Results

Table 1 summarizes the results of end-to-end re-
sponse generation performance on MultiWoZ. As
shown in Table 1, when trained with KRLS directly
from backbone (KRLS in Table 1) we achieve an
improvement of 1.4 in Combined Score compared
to the baseline, which mostly comes from increased
inform and success rate. Since inform/success rate
evaluates how often informable/requestable slot
values (i.e. keywords) are generated correctly, this
suggests that KRLS can help reinforce a model’s
ability to generate key tokens (see Section 6.1).

When trained from an LSL-finetuned checkpoint
(finetune+KRLS), KRLS further improves to a com-
bined score of 103.8, with major improvements
again in the success and inform rate. We believe
this is because, as the model has already been fine-
tuned on the entire training dataset, the assumption
mentioned in Section 3.1 is better satisfied (see Ap-
pendix F for examples). Then, KRLS can better
improve a model’s keyword generation ability as
compared to the case when trained from backbone.

Table 2 compares the training speed of the KRLS
algorithm with standard RL training which uses
auto-regressive generation. During standard RL
training, we removed the SL step in Algorithm 1,
and only use a terminal reward during RL as newly
generated sequences no longer have a one-to-one
mapping to the tokens in gold response (more de-
tails in Appendix J). We then measure the total
wall-clock time per epoch spent by each algorithm
during training and separately during experience
collection (line 7-14 in Algorithm 1). While ad-
ditionally initializing KRLS with a LSL-finetuned
checkpoint (finetune+KRLS) achieves a better per-

12342

Model Backbone
Response Generation

Inform Success BLEU Combined

SOLOIST (Peng et al., 2021) GPT-2 82.3 72.4 13.6 90.9
DoTS (Jeon and Lee, 2021) BERT-base 80.4 68.7 16.8 91.4
UBAR (Yang et al., 2021b) DistilGPT-2 83.4 70.3 17.6 94.4
PPTOD (Su et al., 2022) T5-base 83.1 72.7 18.2 96.1
BORT (Sun et al., 2022a) T5-small 85.5 77.4 17.9 99.4
MTTOD (Lee, 2021) T5-base 85.9 76.5 19.0 100.2
GALAXY (He et al., 2022) UniLM-base 85.4 75.7 19.0 100.2
Mars-G† (Sun et al., 2022b) T5-small 88.9 78.0 19.9 103.4

Baseline (MTTOD) GODEL-base 86.0 77.4 18.9 100.6
KRLS GODEL-base 87.3 (87.2±0.3) 78.3 (78.2±0.5) 19.2 (19.1±0.3) 102.0 (101.9±0.5)

finetune+KRLS GODEL-base 89.2 (89.2±0.3) 80.3 (80.0±0.4) 19.0 (19.0±0.2) 103.8 (103.5±0.4)

Table 1: MultiWoZ 2.2 end-to-end response generation evaluation. Results are “best run (µ, σ)” over three runs.
The results of previous works are from the official leaderboard of MultiWOZ. † indicates concurrent work.

Algo Generation Time Training Time

KRLS 48 min/epoch 306 min/epoch
std. RL 172 min/epoch 362 min/epoch

Table 2: Training speed comparison between KRLS and
RL. In standard RL (std. RL), auto-regressive sequence
generation is used for experience collection.

formance, we note that the same procedure is often
used for RL training in NLP (Ramamurthy et al.,
2022). Due to the large exploration space for lan-
guage models, RL algorithms may require many
more epochs to train without initializing from a
finetuned checkpoint (see Appendix H). Therefore,
we focus our comparison solely on running the
KRLS algorithm and the standard RL algorithm.

As shown in Table 2, the experience collection
time (Generation Time) for KRLS is much shorter
than RL using auto-regressive generation, as in
KRLS only a single forward pass is needed for
sequence generation. However, since KRLS ad-
ditionally includes SL (68 min/epoch) and a per-
token reward computation, the total training time
per epoch becomes 306 min/epoch, though still
15% faster than the 362 min/epoch with standard
RL, which only includes experience collection and
PPO training (190 min/epoch).

4.5 Human Evaluation

We consider the possibility that automatic metrics
from MultiWoZ may not correlate well with human
judgements (Liu et al., 2016; Lubis et al., 2022).
Thus, we ask crowd-workers on Amazon Mechani-
cal Turk to compare responses generated by base-
line (MTTOD) and finetune+KRLS (ft+KRLS). The

Metric ft+KRLS Win MTTOD Win Tie

Fluency 34.7% 48.0% 17.3%
Appropriateness 55.3%* 30.7% 14.0%
Informativeness 60.7%* 26.7% 12.7%
Overall 59.3%* 29.3% 11.3%

Table 3: Human evaluation on the generated responses.
* indicates p < 0.01. Fluency result has no statistical
significance due to large variances among annotators.

responses are rated in terms of their 1) appropriate-
ness2, 2) fluency, 3) informativeness, and 4) overall
quality given a dialogue context. We randomly
picked 50 turns in the test set, and provided the
generated responses without delexicalization and
the dialogue history up to that turn. For each metric,
the crowd-workers were to choose which response
is better, or if it is a tie. We collected preference
from 3 crowd-workers per sampled turn.

Table 3 summarizes the human evaluation re-
sults. Our method has been rated more appropriate,
informative, and overall more preferred by Turk-
ers. We believe this coincides with the results in
Table 1 that our method performs better in inform
and success rate, by providing more relevant key in-
formation. There is no statistical significance in the
fluency result (p > 0.05), which is expected given
both models’ comparable BLEU scores. Specifi-
cally, only 16% of the dialogues have more than
one annotator rating MTTOD as more fluent. We
believe this is because many pre-trained LMs can
already generate fluent texts, and it is often chal-
lenging for humans to notice the difference.

2For appropriateness and fluency, we followed the defini-
tions from prior work (Zhang et al., 2020b; Ramachandran
et al., 2021; Jang et al., 2022; Feng et al., 2023).

12343

Model
5% 10% 20%

Inform Success BLEU Combined Inform Success BLEU Combined Inform Success BLEU Combined

MTTOD 51.1 20.7 9.5 46.6 63.1 44.4 13.8 67.7 75.0 61.0 16.8 84.8
ft+KRLS 55.0 22.7 11.5 50.3 64.8 47.4 15.4 71.9 78.9 65.0 17.2 89.2

Table 4: MultiWoZ end-to-end response generation performance using 5%, 10%, and 20% of training data.
“ft+KRLS” refers to finetune+KRLS. Both models use GODEL-base as backbone. Results are shown as mean values
over three runs.

4.6 Low Resource Experiment

Since large and well-annotated dialogue datasets
such as MultiWoZ (Budzianowski et al., 2018) is
not easy to create in practice, we also investigate
KRLS’s performance under a low-resource regime.
We use 5%, 10%, and 20% of training data to train
both baseline (MTTOD) and finetune+KRLS, and
report their performance in Table 4. In Table 4
we find our method outperforms the baseline in
all settings. We also find large contributions often
from improving inform and success scores, which
indicates the effectiveness of KRLS at key token
learning without abundant training data.

5 Ablation Studies

5.1 KRLS Algorithm Ablation

Since KRLS effectively combines SL and RL, we
illustrate the contribution of each component in Ta-
ble 5. During SL Only and RL Only, we remove the
RL training and SL training in KRLS, respectively.
In SL+GOLD, we replace our RL procedure with
GOLD (Pang and He, 2021), which is an offline
and off-policy RL algorithm that learns from the
gold demonstrations without any generation (see
Appendix K for more details), so that we can also
isolate the impact of additionally generating a se-
quence in our approach. Since GOLD uses Policy
Gradient (Sutton et al., 1999) without clipping, we
do the same with KRLS here (denoted KRLS(PG)).

As shown in Table 5, using SL+GOLD only
achieved a similar performance as compared to
SL Only. We believe that this is because GOLD
only intends to learn from the gold responses,
while KRLS(PG) also attempts to explore other
sequences/tokens to reinforce its keyword learn-
ing. Additionally, if the SL objective is removed
from KRLS when directly trained from backbone,
the performance degrades as the assumption men-
tioned in Section 3.1 becomes harder to satisfy (c.f.
KRLS in Table 1, and discussions in Appendix H).3

3In our prior study, we also experimented with a simple
alternative of only using weighted SL on key tokens, remov-

Algo Inform Success Bleu Total

SL Only 86.0 77.4 18.9 100.6
RL Only 84.2 72.2 17.5 95.7

SL+GOLD 86.1 77.1 18.8 100.4
KRLS(PG) 88.7 78.7 19.1 102.8

Table 5: KRLS Ablation Study. The first two are trained
directly from the backbone, and the latter two are trained
from a LSL-finetuned checkpoint (see more details in
Appendix K).

5.2 Reward Function Ablation
In Table 6, we empirically compare our proposed
reward with 4 different reward functions and show
that: a) providing a per-token reward in addition to
providing a terminal reward for the entire sequence
is helpful, and b) a fine-grained, context-aware re-
ward that correctly factors in our generation proce-
dure can further improve performance.

In this experiment, we replace our proposed re-
ward in Section 3.2 (denoted as Prob. in Table 6)
with the following alternatives: Zero, which assigns
a zero score to all generated tokens, hence only uses
the terminal reward for training; Error, which as-
signs a hard penalty of ±µ whenever the generated
token is correct/incorrect; BERTS., which uses the
core mechanism in BERTScore (Zhang et al., 2019)
to measure the semantic similarity between the gen-
erated tokens and the gold tokens (see Appendix G
for more details); Static., which takes the static,
context-unaware token embeddings from the em-
bedding layer of GODEL-base and compute their
cosine similarity as reward. In all cases, the same
set of hyperparameters is used to make results more
comparable.

As shown in Table 6, our proposed token-level

ing RL entirely. However, weighted SL only yields a minor
improvement compared to the baselines, reaching a score of
101.2. KRLS using a similar reward function (Error, see Sec-
tion 5.2) already achieves 102.5. We believe this is because
KRLS rewards/penalizes generated tokens sampled from the
model’s distribution using RL, while SL only uses the gold
tokens. This finding motivates KRLS to use RL with a reward
function emphasizing on keyword learning.

12344

Finetune+KRLS
Reward Inform Success BLEU Total

None 86.0 77.4 18.9 100.6
Zero 88.3 77.9 18.9 102.0
Error 88.8 78.5 18.8 102.5
Static. 88.7 78.4 18.8 102.4
BERTS. 88.5 78.7 18.9 102.5
Prob. 89.2 80.3 19.0 103.8

Table 6: KRLS using different per-token reward when
trained from a finetuned checkpoint. None refers to the
baseline of training only with supervised learning.

reward (Prob.) outperforms all other alternatives.
Interestingly, all reward functions that specified
a per-token reward (i.e. Error, BERTS., Static.,
Prob.) achieved improvements over Zero, which
only relies on the terminal reward. This indicates
that a more fine-grained per-token reward function
is helpful. Additionally, Prob. improves upon Er-
ror, BERTS., and Static., because it additionally
factors in our generation procedure that the gener-
ated sequence is conditioned on the gold response.
Therefore, it can also correctly capture the contex-
tual relationship of the generated tokens.

6 Analysis

6.1 Keyword Learning

Since KRLS aims to improve the model’s ability
to generate key information correctly, we track the
model’s accuracy in generating key tokens during
training and validation. In this experiment, we feed
in the gold contexts up to the key tokens, and the
model is tasked to generate the next token. We then
calculate the accuracy by measuring how often the
generated token matches the gold key token.

As shown in Figure 4, only performing SL (base-
line) leads to a slow increase in keyword generation
accuracy during early training, as the model fo-
cuses on learning other non-key tokens due to their
abundance. On the other hand, KRLS periodically
uses RL to help the model focus on learning key
tokens, which leads to a higher keyword generation
accuracy throughout both training and validation
(more details in Appendix I).

6.2 Error Analysis

Despite reaching a higher inform rate and success
rate as more key tokens are generated correctly,
we still observe responses that miss some key to-
kens. We found that these errors often originate

Figure 4: Keyword generation accuracy during valida-
tion. Baseline is trained with only supervised learning,
LSL. Both models are trained directly from backbone
to additionally demonstrate the difference during early
training.

Algo Inform Success BLEU Total

KRLS 89.2 80.3 19.0 103.8
+DST 93.1 83.7 19.1 107.5
+Both 93.5 90.9 29.8 122.0

Train 93.7 90.9 - -

Table 7: Test performance of KRLS when generating
with Gold Dialog State (+DST), and with both Gold
Dialog State and Gold System Act (+Both). Train is the
performance of the training dataset. Note that +DST is
the same as the “policy optimization” task.

from incorrectly generated dialog states and sys-
tem acts (see Appendix O for examples). This is
understandable, as we only used KRLS to improve
the response generation component.

To quantify these errors, we additionally use our
KRLS-trained model to generate responses when
a) the gold dialog state is provided (+DST) and
b) both the gold dialog state and the gold system
action are provided (+Both). We present this result
in Table 7, and found that +DST improved the
overall score by nearly 4 points, and +Both further
improved the overall score by 14.5 points, almost
reaching the performance of the training dataset4.
This shows that much error remains in the DST
and system act generation process, so the overall
performance can further increase if techniques to
separately improve DST and system act generation
(e.g., Sun et al. (2022b)) can be combined with
KRLS. We leave this for future work.

4In MultiWoZ, the training dataset includes human errors,
hence does not have a perfect inform/success score. Valida-
tion/test datasets are hand-picked to only include successful
dialogs, so that model performance can be fairly evaluated.

12345

7 Related Work

End-to-end dialog systems such as Lei et al. (2018);
Yang et al. (2021a); Lee (2021); He et al. (2022)
have shown promising results in TOD benchmarks
such as MultiWoZ. However, as the standard SL ob-
jective does not directly account for TOD metrics
such as task success rate, much recent work seeks
to incorporate RL techniques to improve TOD per-
formance. In this section, we discuss related ap-
plications of RL in TOD, as well as other non-RL-
based approaches that have similarities in concept.

RL for Text Generation Ranzato et al. (2016);
Li et al. (2016); Zhou et al. (2017); Ramamurthy
et al. (2022) applies RL to text generation tasks
by treating each word as an action and then uses
auto-regressive generation to explore high-reward
sequences. This results in a large action space for
exploration, and these work focuses on methods to
stabilize the training process. In principle, these
approaches can be modified for TOD tasks, but they
would still generally use a user simulator and/or
the slow auto-regressive generation step.

RL for Policy Planning Many direct applica-
tions of RL in TOD focus on optimizing dialog pol-
icy planning (Takanobu et al., 2020; Tseng et al.,
2021; Lubis et al., 2020). Takanobu et al. (2020);
Tseng et al. (2021) jointly optimize both a user sys-
tem and a dialog system to improve a model’s TOD
task performance and/or domain adaptation ability,
but could be resource intensive as additional user-
side training is needed. Alternatively, Lubis et al.
(2020); Zhao et al. (2019) uses RL to optimize sys-
tem action generation in a latent space, but tends to
result in the model generating very short responses
(i.e., a low BLEU score of 10.8 in MultiWoZ).

Offline RL in TOD Many offline RL applica-
tions in TOD consider an actor-critic type algo-
rithm (Jang et al., 2022; Verma et al., 2022), which
involves using a critic to choose better responses
among several generated candidates. These ap-
proaches tend to be vulnerable to errors made
by the critic model (especially for OOD actions
(Levine et al., 2020)), and is resource intensive
as multiple auto-regressive generations are needed
per episode. Alternatively, Pang and He (2021)
proposes the GOLD algorithm, which uses policy-
gradient based method in an off-policy setting, by
learning solely from the gold demonstrations with-
out any generation/exploration. KRLS additionally
performs sequence generations and utilizes gold
demonstrations in computing the reward function

(also see Section 5.1 for an empirical comparison).
Other Notable Related Techniques Qian et al.

(2021) utilizes a student-teacher architecture and
MAML (Finn et al., 2017) to improve domain adap-
tation ability of the student model. Specifically, the
teacher model provides weights to scale the NLL
loss of each gold token when training the student
model. In this aspect, this is similar to GOLD, per-
forming a “weighted learning” on the gold demon-
strations. KRLS aims to directly improve TOD
performance and achieves this by utilizing RL to
perform a “weighted learning” on generated tokens.

8 Conclusion

In this work, we explore an approach to utilize RL
to improve a model’s TOD performance, but also
to avoid using a user-simulator or the slow auto-
regressive generation process. We propose the Key-
words Reinforcement with Next-word Sampling
(KRLS) training algorithm, which combines offline
RL with a fast sequence generation scheme that di-
rectly samples from next-word distributions after
supervised training, and a fine-grained per-token re-
ward function that measures the importance and se-
mantic closeness of each generated token. We then
evaluate KRLS on the MultiWoZ dataset and show
that a) it can help improve E2E response generation
performance, reaching new state-of-the-art in the
inform rate, success rate, and combined score; b) it
can be trained 15% faster than using a standard RL
algorithm that performs auto-regressive generation
during training/exploration.

9 Limitations

Although KRLS is faster to train as it avoids auto-
regressive generation, it is difficult for the model
to learn/generate sequences significantly different
from the gold examples in the dataset. Therefore,
this could limit the potential to achieve perfor-
mance better than the training dataset itself.

Additionally, since during training KRLS creates
sequences by conditioning on the gold response,
whereas at inference we use auto-regressive gen-
eration, the problem of compounding generation
error (exposure bias) is re-introduced (Bengio et al.,
2015; Venkatraman et al., 2015; Ranzato et al.,
2016). Therefore, in this aspect KRLS trades its
faster training speed with certain benefits brought
by standard RL training in NLP. In the future, it
would be worthwhile to explore if a more fine-
grained trade-off can be found between an efficient

12346

sequence exploration strategy and those benefits
inferred by using auto-regressive generation.

Next, to make KRLS have minimal require-
ments of extra resources, we avoid using user sim-
ulators and perform offline RL training at turn-
level. As a result, KRLS does not perform ex-
ploration/planning on a dialog-level, which can be
very useful for tasks that require long-horizon plan-
ning to be successful (e.g., persuading a person to
donate to a charity (Wang et al., 2019)). We believe
one way to extend KRLS could be using a GPT-like
model to learn from an entire dialog, and combine
with safe policy improvement methods to avoid
potentially large bias and poor sample efficiency
during dialog-level RL learning (Ramachandran
et al., 2022). We leave this for future work.

Finally, in our runtime experiments (Section 4.4)
we found that performing PPO (as well as PG) is
a significant bottleneck, taking up more than half
of the total training time. Future work may wish
to consider ways to improve the speed/memory
efficiency5 of computing those RL objectives to
further reduce training time.

10 Ethical Considerations

Our work describes an algorithm to improve a
model’s TOD performance and to expedite the
training process. It is aimed at making current TOD
systems easier to train, and also better at helping
users to achieve their goals.

Generally, while most algorithms are not de-
signed for unethical usage, there is often potential
for abuse in their applications. In our experiments,
we apply KRLS on the MultiWoZ (Budzianowski
et al., 2018) dataset, to improve performance on
tasks such as restaurant booking and hotel reserva-
tion. However, because TOD training algorithms
are typically task-agnostic, it is possible to use
them for unethical tasks, such as scamming. We do
not condone the use of KRLS for any unlawful or
morally unjust purposes.

Additionally, since our experiments use pre-
trained language models, another concern is on
their (in)ability to generate safe, respectful content
(Welbl et al., 2021; Gehman et al., 2020). Our
work specifically focuses on improving TOD per-
formance, and hence we caution users against any

5In our implementation, we noticed that certain compu-
tations could be cached to save time. However, we found it
infeasible in our setting due to limited GPU memory. Future
work may also investigate ways to improve memory efficiency
in our implementation, to allow for potential speedups.

potential unsafe/toxic/offensive responses gener-
ated from the models. Without safety guardrails
such as Arora et al. (2022); Lu et al. (2022), we
do not advocate using any of our trained models in
production settings.

References
Kushal Arora, Kurt Shuster, Sainbayar Sukhbaatar, and

Jason Weston. 2022. Director: Generator-classifiers
for supervised language modeling. In Proceedings
of the 2nd Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and
the 12th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 512–526, Online only. Association for Compu-
tational Linguistics.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence
prediction with recurrent neural networks. In Ad-
vances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os-
man, and Milica Gašić. 2018. Multiwoz - a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani-
Tur. 2019. Multiwoz 2.1: Multi-domain dialogue
state corrections and state tracking baselines. arXiv
preprint arXiv:1907.01669.

Yihao Feng, Shentao Yang, Shujian Zhang, Jianguo
Zhang, Caiming Xiong, Mingyuan Zhou, and Huan
Wang. 2023. Fantastic rewards and how to tame them:
A case study on reward learning for task-oriented di-
alogue systems. In The Eleventh International Con-
ference on Learning Representations.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of

12347

https://aclanthology.org/2022.aacl-main.39
https://aclanthology.org/2022.aacl-main.39
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=086pmarAris
https://openreview.net/forum?id=086pmarAris
https://openreview.net/forum?id=086pmarAris
https://proceedings.mlr.press/v70/finn17a.html

deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages
1126–1135. PMLR.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

F. Maxwell Harper and Joseph A. Konstan. 2015. The
movielens datasets: History and context. ACM Trans.
Interact. Intell. Syst., 5(4).

Wanwei He, Yinpei Dai, Yinhe Zheng, Yuchuan Wu,
Zheng Cao, Dermot Liu, Peng Jiang, Min Yang, Fei
Huang, Luo Si, et al. 2022. Galaxy: A generative
pre-trained model for task-oriented dialog with semi-
supervised learning and explicit policy injection. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 10749–10757.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 20179–20191. Curran Associates,
Inc.

Youngsoo Jang, Jongmin Lee, and Kee-Eung Kim. 2022.
GPT-critic: Offline reinforcement learning for end-to-
end task-oriented dialogue systems. In International
Conference on Learning Representations.

Natasha Jaques, Asma Ghandeharioun, Judy Han-
wen Shen, Craig Ferguson, Àgata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind W. Picard. 2019.
Way off-policy batch deep reinforcement learning
of implicit human preferences in dialog. CoRR,
abs/1907.00456.

Natasha Jaques, Judy Hanwen Shen, Asma Ghandehari-
oun, Craig Ferguson, Agata Lapedriza, Noah Jones,
Shixiang Gu, and Rosalind Picard. 2020. Human-
centric dialog training via offline reinforcement learn-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 3985–4003.

Hyunmin Jeon and Gary Geunbae Lee. 2021. Domain
state tracking for a simplified dialogue system.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Yohan Lee. 2021. Improving end-to-end task-oriented
dialog system with a simple auxiliary task. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 1296–1303, Punta Cana,
Dominican Republic. ACL.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren,
Xiangnan He, and Dawei Yin. 2018. Sequicity: Sim-
plifying task-oriented dialogue systems with single
sequence-to-sequence architectures. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1437–1447, Melbourne, Australia. Association
for Computational Linguistics.

Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. 2020. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. CoRR,
abs/2005.01643.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep re-
inforcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1192–
1202, Austin, Texas. Association for Computational
Linguistics.

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. arXiv preprint
arXiv:1603.08023.

Siyang Liu, Chujie Zheng, Orianna Demasi, Sahand
Sabour, Yu Li, Zhou Yu, Yong Jiang, and Minlie
Huang. 2021. Towards emotional support dialog
systems.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang,
Lianhui Qin, Peter West, Prithviraj Ammanabrolu,
and Yejin Choi. 2022. QUARK: Controllable text
generation with reinforced unlearning. In Advances
in Neural Information Processing Systems.

Nurul Lubis, Christian Geishauser, Michael Heck,
Hsien-Chin Lin, Marco Moresi, Carel van Niekerk,
and Milica Gasic. 2020. LAVA: latent action spaces
via variational auto-encoding for dialogue policy op-
timization. CoRR, abs/2011.09378.

Nurul Lubis, Christian Geishauser, Hsien-chin Lin,
Carel van Niekerk, Michael Heck, Shutong Feng,
and Milica Gasic. 2022. Dialogue evaluation with
offline reinforcement learning. In Proceedings of the
23rd Annual Meeting of the Special Interest Group on
Discourse and Dialogue, pages 478–489, Edinburgh,
UK. Association for Computational Linguistics.

Tomáš Nekvinda and Ondřej Dušek. 2021. Shades of
BLEU, flavours of success: The case of MultiWOZ.
In Proceedings of the 1st Workshop on Natural Lan-
guage Generation, Evaluation, and Metrics (GEM
2021), pages 34–46, Online. Association for Compu-
tational Linguistics.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,

12348

https://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://ojs.aaai.org/index.php/AAAI/article/view/21320
https://ojs.aaai.org/index.php/AAAI/article/view/21320
https://ojs.aaai.org/index.php/AAAI/article/view/21320
https://proceedings.neurips.cc/paper_files/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://openreview.net/forum?id=qaxhBG1UUaS
https://openreview.net/forum?id=qaxhBG1UUaS
http://arxiv.org/abs/1907.00456
http://arxiv.org/abs/1907.00456
http://arxiv.org/abs/2103.06648
http://arxiv.org/abs/2103.06648
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2021.findings-emnlp.112
https://doi.org/10.18653/v1/2021.findings-emnlp.112
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D16-1127
http://arxiv.org/abs/2106.01144
http://arxiv.org/abs/2106.01144
https://openreview.net/forum?id=5HaIds3ux5O
https://openreview.net/forum?id=5HaIds3ux5O
http://arxiv.org/abs/2011.09378
http://arxiv.org/abs/2011.09378
http://arxiv.org/abs/2011.09378
https://aclanthology.org/2022.sigdial-1.46
https://aclanthology.org/2022.sigdial-1.46
https://doi.org/10.18653/v1/2021.gem-1.4
https://doi.org/10.18653/v1/2021.gem-1.4

Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Richard Yuanzhe Pang and He He. 2021. Text gener-
ation by learning from demonstrations. In Interna-
tional Conference on Learning Representations.

Baolin Peng, Michel Galley, Pengcheng He, Chris
Brockett, Lars Liden, Elnaz Nouri, Zhou Yu, Bill
Dolan, and Jianfeng Gao. 2022. Godel: Large-scale
pre-training for goal-directed dialog.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-
deh, Lars Liden, and Jianfeng Gao. 2021. Soloist:
Building task bots at scale with transfer learning and
machine teaching.

Kun Qian, Wei Wei, and Zhou Yu. 2021. A
student-teacher architecture for dialog domain adap-
tation under the meta-learning setting. CoRR,
abs/2104.02689.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Govardana Sachithanandam Ramachandran, Kazuma
Hashimoto, and Caiming Xiong. 2021. Causal-aware
safe policy improvement for task-oriented dialogue.
arXiv preprint arXiv:2103.06370.

Govardana Sachithanandam Ramachandran, Kazuma
Hashimoto, and Caiming Xiong. 2022. [CASPI]
causal-aware safe policy improvement for task-
oriented dialogue. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 92–102,
Dublin, Ireland. Association for Computational Lin-
guistics.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu,
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi.
2022. Is reinforcement learning (not) for natural
language processing?: Benchmarks, baselines, and
building blocks for natural language policy optimiza-
tion.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016.

John Schulman, Sergey Levine, Philipp Moritz, Michael
Jordan, and Pieter Abbeel. 2015a. Trust region pol-
icy optimization. In Proceedings of the 32nd In-
ternational Conference on International Conference
on Machine Learning - Volume 37, ICML’15, page
1889–1897. JMLR.org.

John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. 2015b. High-dimensional
continuous control using generalized advantage esti-
mation.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Weiyan Shi, Kun Qian, Xuewei Wang, and Zhou Yu.
2019. How to build user simulators to train rl-based
dialog systems. In EMNLP/IJCNLP (1).

Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta,
Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task
pre-training for plug-and-play task-oriented dialogue
system.

Haipeng Sun, Junwei Bao, Youzheng Wu, and Xiaodong
He. 2022a. BORT: Back and denoising reconstruc-
tion for end-to-end task-oriented dialog. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2022, pages 2156–2170, Seattle, United
States. Association for Computational Linguistics.

Haipeng Sun, Junwei Bao, Youzheng Wu, and Xiaodong
He. 2022b. Mars: Semantic-aware contrastive learn-
ing for end-to-end task-oriented dialog.

Richard S. Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 1999. Policy gradient methods
for reinforcement learning with function approxima-
tion. In Proceedings of the 12th International Con-
ference on Neural Information Processing Systems,
NIPS’99, page 1057–1063, Cambridge, MA, USA.
MIT Press.

Ryuichi Takanobu, Runze Liang, and Minlie Huang.
2020. Multi-agent task-oriented dialog policy learn-
ing with role-aware reward decomposition. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 625–638,
Online. Association for Computational Linguistics.

Bo-Hsiang Tseng, Yinpei Dai, Florian Kreyssig, and
Bill Byrne. 2021. Transferable dialogue systems
and user simulators. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 152–166, Online. Association
for Computational Linguistics.

Arun Venkatraman, Martial Hebert, and J Andrew
Bagnell. 2015. Improving multi-step prediction of
learned time series models. In Twenty-Ninth AAAI
Conference on Artificial Intelligence.

Siddharth Verma, Justin Fu, Sherry Yang, and Sergey
Levine. 2022. CHAI: A CHatbot AI for task-oriented
dialogue with offline reinforcement learning. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4471–4491, Seattle, United States. Association for
Computational Linguistics.

12349

http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://openreview.net/forum?id=RovX-uQ1Hua
https://openreview.net/forum?id=RovX-uQ1Hua
http://arxiv.org/abs/2206.11309
http://arxiv.org/abs/2206.11309
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2104.02689
http://arxiv.org/abs/2104.02689
http://arxiv.org/abs/2104.02689
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2022.acl-long.8
https://doi.org/10.18653/v1/2022.acl-long.8
https://doi.org/10.18653/v1/2022.acl-long.8
https://doi.org/10.48550/ARXIV.2210.01241
https://doi.org/10.48550/ARXIV.2210.01241
https://doi.org/10.48550/ARXIV.2210.01241
https://doi.org/10.48550/ARXIV.2210.01241
https://doi.org/10.48550/ARXIV.1506.02438
https://doi.org/10.48550/ARXIV.1506.02438
https://doi.org/10.48550/ARXIV.1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2109.14739
https://arxiv.org/abs/2109.14739
https://arxiv.org/abs/2109.14739
https://doi.org/10.18653/v1/2022.findings-naacl.166
https://doi.org/10.18653/v1/2022.findings-naacl.166
https://doi.org/10.48550/ARXIV.2210.08917
https://doi.org/10.48550/ARXIV.2210.08917
https://doi.org/10.18653/v1/2020.acl-main.59
https://doi.org/10.18653/v1/2020.acl-main.59
https://doi.org/10.18653/v1/2021.acl-long.13
https://doi.org/10.18653/v1/2021.acl-long.13
https://ojs.aaai.org/index.php/AAAI/article/view/9590
https://ojs.aaai.org/index.php/AAAI/article/view/9590
https://doi.org/10.18653/v1/2022.naacl-main.332
https://doi.org/10.18653/v1/2022.naacl-main.332

Xuewei Wang, Weiyan Shi, Richard Kim, Yoojung Oh,
Sijia Yang, Jingwen Zhang, and Zhou Yu. 2019. Per-
suasion for good: Towards a personalized persuasive
dialogue system for social good. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5635–5649, Florence,
Italy. Association for Computational Linguistics.

Johannes Welbl, Amelia Glaese, Jonathan Uesato,
Sumanth Dathathri, John Mellor, Lisa Anne Hen-
dricks, Kirsty Anderson, Pushmeet Kohli, Ben Cop-
pin, and Po-Sen Huang. 2021. Challenges in detox-
ifying language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 2447–2469, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3–4):229–256.

Qingyang Wu, Lei Li, and Zhou Yu. 2021. Textgail:
Generative adversarial imitation learning for text gen-
eration. AAAI, 35:14067–14075.

Qingyang Wu, Yichi Zhang, Yu Li, and Zhou Yu.
2019. Alternating recurrent dialog model with
large-scale pre-trained language models. CoRR,
abs/1910.03756.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013–2018, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Yunyi Yang, Yunhao Li, and Xiaojun Quan. 2021a.
Ubar: Towards fully end-to-end task-oriented dialog
system with gpt-2. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
14230–14238.

Yunyi Yang, Yunhao Li, and Xiaojun Quan. 2021b.
Ubar: Towards fully end-to-end task-oriented dia-
log systems with gpt-2.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,
Raghav Gupta, Jianguo Zhang, and Jindong Chen.
2020. Multiwoz 2.2: A dialogue dataset with addi-
tional annotation corrections and state tracking base-
lines. In Proceedings of the 2nd Workshop on Natu-
ral Language Processing for Conversational AI, ACL
2020, pages 109–117.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020a. Task-
oriented dialog systems that consider multiple appro-
priate responses under the same context. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 9604–9611.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020b. Task-
oriented dialog systems that consider multiple appro-
priate responses under the same context. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 9604–9611.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020c. DIALOGPT : Large-
scale generative pre-training for conversational re-
sponse generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 270–278,
Online. Association for Computational Linguistics.

Tiancheng Zhao, Kaige Xie, and Maxine Eskenazi.
2019. Rethinking action spaces for reinforcement
learning in end-to-end dialog agents with latent vari-
able models. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1208–1218, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Zhou, Kevin Small, Oleg Rokhlenko, and Charles
Elkan. 2017. End-to-end offline goal-oriented di-
alog policy learning via policy gradient. CoRR,
abs/1712.02838.

12350

https://doi.org/10.18653/v1/P19-1566
https://doi.org/10.18653/v1/P19-1566
https://doi.org/10.18653/v1/P19-1566
https://doi.org/10.18653/v1/2021.findings-emnlp.210
https://doi.org/10.18653/v1/2021.findings-emnlp.210
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1609/aaai.v35i16.17656
https://doi.org/10.1609/aaai.v35i16.17656
https://doi.org/10.1609/aaai.v35i16.17656
http://arxiv.org/abs/1910.03756
http://arxiv.org/abs/1910.03756
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D15-1237
https://ojs.aaai.org/index.php/AAAI/article/view/17674
https://ojs.aaai.org/index.php/AAAI/article/view/17674
http://arxiv.org/abs/2012.03539
http://arxiv.org/abs/2012.03539
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1911.10484
https://arxiv.org/abs/1911.10484
https://arxiv.org/abs/1911.10484
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/N19-1123
https://doi.org/10.18653/v1/N19-1123
https://doi.org/10.18653/v1/N19-1123
http://arxiv.org/abs/1712.02838
http://arxiv.org/abs/1712.02838

A KRLS RL Details

To avoid high variance during policy gradient:

∇L(θ) = −Gt∇ log pθ(xt|c)
we consider a clipped version of this objective,
borrowing from proximal policy gradient (PPO)
(Schulman et al., 2017) to provide a more stable
training and prevent the policy from moving too far
away from the pretrained language model. Similar
to Wu et al. (2021), we consider optimizing the
following surrogate objective:

LRL = −min

{
r(θ)Ât,

clip(r(θ), 1− ϵ, 1 + ϵ)Ât,
(5)

where Ât = −Vθ(st) +
∑

l γ
lrt+l is the advantage

function (Schulman et al., 2015b), ϵ is the clipping
parameter, and r(θ) is the ratio of the new policy
to the old policy poldθ :

xgen ∼ pθ(x|c), r(θ) =
pθ(x

gen|c)
poldθ (xgen|c) (6)

In practice, we found that adding additional value
function heads Vθ would 1) increase model size,
making it difficult to train under our GPU setting
and 2) since KRLS training is performed over a
limited number of epochs (Appendix E), we found
fitting a small value function head can result in
high variance during training. As such, we fixed
the value function to be zero and used the return
as an estimate Ât ≈

∑
l γ

lrt+l = Gt, which also
signals the model the correct tokens to generate.
We note that according to Schulman et al. (2015b)
page 4, Gt is a γ-just advantage estimator for Ât.

For simplicity, we refer “KRLS” to use this
clipped policy gradient objective unless explicitly
mentioned otherwise.

B KRLS using PPO v.s. PG

As shown in Table 8, we found that using the
clipped objective (Equation (5)) in KRLS can
achieve better performance as compared to simple
PG, which can cause high gradient variance (Schul-
man et al., 2015a; Wu et al., 2021) during training.
We believe that this is also due to the clipped ob-
jective preventing the new policy pθ to move too
far away from the old policy, which is useful in our
approach as we approximated sequence generation
by “sampling” from the gold response. Therefore,
we believe that being more pessimistic (Schulman
et al., 2017) about each θ update can be beneficial
in our setting.

Finetune+KRLS
RL Algo Inform Success BLEU Total

PG 88.7 78.7 19.1 102.8
PPO 89.2 80.3 19.0 103.8

Table 8: Performance comparison when training KRLS
with Policy Gradient (PG) and a clipped version (PPO).

C Modeling Details

We use a GODEL-base model as backbone, which
is an encoder-decoder architecture like T5-base,
with ∼220M parameters. Similar to MTTOD, an
additional decoder is initialized for response gener-
ation (the other decoder for DST), which results in
an additional ∼160M parameters. The encoder is
shared for both DST and response generation. This
results in a total model size of ∼380M parameters.

D Implementation and Training Details

For all experiments (including (re)training MT-
TOD), we use Adam (Kingma and Ba, 2015) for
optimization, a linear schedule with an initial learn-
ing rate of 5e−5 and warm-up steps = 0.2×total
training steps.

For Baseline, we re-train MTTOD (Lee, 2021)
using publicly released code and the best set of
hyperparameters reported by the author.

For KRLS and finetune+KRLS, we pick the
best set of hyperparameters (see Appendix E
for details) using grid search. As task success
and inform rate in MultiWoZ is highly corre-
lated with correctly generating the predefined
set of informable/requestable slot values such as
“[value_address]” in the response, we use µ = 5
for those key tokens and µ = 1 for others. In ad-
dition, we add a terminal reward by measuring the
F1-score of generated key tokens compared to the
gold key tokens (see Figure 3) to measure overall
performance in keywords generation. Note that we
did not add a BLEU score for terminal reward, as
we found the SL training in KRLS is sufficient.

E KRLS Hyperparameters

For the reported results of KRLS in MultiWoZ,
we use k = 3, κ = 0.5 × total steps per epoch,
sampling temperature during generation τ = 1.1,
top-p during generation of 0.9, terminal reward
scale of 5, learning rate of 5e−5, learning rate de-
cay of 0.2×total steps in training, and batch size of
4. When trained from a LSL-finetuned checkpoint,

12351

we additionally add a regularization term using
KL divergence (against the baseline model) with a
weighting of 0.01 to reduce over-optimization on
the reward function (Ouyang et al., 2022; Rama-
murthy et al., 2022; Jaques et al., 2020). During
testing, we used auto-regressive generation with
greedy decoding (same as Lee (2021)).

All of our experiments are run on a single
GPU, NVIDIA RTX A4000. Running KRLS on a
∼380M encoder-decoder model (see Appendix C)
for 4 epochs takes about one day, as it consists of
306 min/epoch for training and 32 min/epoch for
validation.

F KRLS Sampled Response Examples

We provide example comparisons between our
generated response using next-word sampling
(SAMPLED), and responses produced with auto-
regressive generation (GENERATED) in Figure 9,
Figure 10, and Figure 11. All examples are gener-
ated from a LSL-finetuned checkpoint. For short re-
sponses, we observe that GENERATED are similar
to SAMPLED. When responses get longer, SAM-
PLED responses become less similar to the GEN-
ERATED ones.

When the model is not yet LSL-finetuned on
the dataset, SAMPLED responses tend to repeat
keywords and can hardly be interpreted as a se-
quence. For example, given the input context in Fig-
ure 9, a sampled response looks like: "[value_stay]
[welcome] [value_stay] [value_arrive] [taxi] [train]
[value_stay] [value_stay] [value_stay] [value_stay]
[value_stay]".

G BERTScore for KRLS

To apply BERTScore in our setting, we first treat
our sampled sequence as a standalone generated
sequence, and use the cosine similarity between
the embedding of each pair of token xgent , xgoldt

after passing through a LSL-finetuned GODEL-
base as rewards. Note that as we naturally have
a one-to-one mapping between the generated and
gold sequences, we can skip the maximal similarity
matching step.

However, as shown in both Table 6 and Table 13,
BERTS. does not perform as well as Prob.. This
is because BERTScore is designed to measure the
semantic similarity between two standalone sen-
tences, while in our setting the generated sequence
is conditioned on the gold response. Therefore, in
cases when many generated tokens are incorrect,

viewing the sampled sequence as a standalone gen-
erated sentence will distort each token’s contextual
meaning, leading to sub-optimal performance.

Figure 5: Validation performance of KRLS and RL Only
over time. In RL Only, we remove the SL objective from
KRLS, and for each sampled episode we additionally
append its corresponding gold response.

Algo Inform Success BLEU Total

SL only 86.0 77.4 18.9 100.6
RL only 84.2 72.2 17.5 95.7
KRLS 87.3 78.3 19.2 102.0

Table 9: Performance of individual components of the
KRLS Algorithm when trained directly from backbone.

H KRLS Directly from Backbone

In Table 9, we present the results when training
directly from from the backbone. SL only refers
to the baseline of only training with SL objective.
RL Only refers to the KRLS algorithm with SL
objective removed. KRLS refers to the full KRLS
algorithm. When trained directly from backbone,
removing the SL objective (RL Only) degrades the
performance as the assumption mentioned in Sec-
tion 3.1 becomes harder to satisfy especially during
early training (see Figure 5). This is sensible be-
cause, without prior SL training, many sequences
generated from our sampling method can be highly
different from the auto-regressive generated ones.
When SL training is included in KRLS, the overall
performance improves by 1.4 points, as the addi-
tional SL training makes it easier to satisfy our
assumption and also made training much smoother
(see Figure 5).

I Additional Keyword Learning Curves

In addition to the keyword generation accuracy dur-
ing validation when trained directly from backbone

12352

(see Section 6.1), in this section we also show: a)
keyword generation accuracy when trained during
both training and validation in Figure 6; b) overall
generation accuracy learning curves in Figure 7;
c) keyword and overall generation accuracy curves
when trained from a LSL-finetuned checkpoint in
Figure 8. Overall generation accuracy is mea-
sured by how often a generated token xgent |xgold1:t−1, c

matches the ground truth xgoldt , whether xgoldt is a
key token or a non-key token. Keyword genera-
tion accuracy only performs the above comparison
when the ground truth token is a key token.

As shown in Figure 6, KRLS can achieve higher
keyword generation accuracy than baseline during
both training and validation. We believe this is
because the RL component in KRLS, especially
during the early stages of training, can help the
model also learn the less abundant but more im-
portant keywords as it has a higher reward. As a
result, in Figure 7, KRLS training can also achieve
a higher overall generation accuracy.

When trained from a LSL-finetuned checkpoint
as shown in Figure 8, KRLS further increases its
keyword generation accuracy. However, in Fig-
ure 8(b), the overall generation accuracy is similar
to a LSL-finetuned baseline. We believe this is
because, after the model has learned to generate
most of the tokens correctly, it needs to maintain a
balance between over-generating keywords (lower
overall accuracy) and correctly generating the key-
words (higher keyword generation accuracy).

J RL with Auto-Regressive Gen. Setup

In Section 4.4, we compared the training time be-
tween normal RL with auto-regressive generation,
and our KRLS algorithm. As KRLS has an ad-
ditional SL step during training, we removed this
component to provide a fairer comparison against
the normal RL procedure, which usually only in-
cludes an auto-regressive sequence generation step
during experience collection and PPO training.
However, after auto-regressive generation, the gen-
erated tokens no longer have a one-to-one mapping
to the gold response. Therefore, in this setting we
used a zero reward for each token, and a terminal
reward of keywords F1 (same as KRLS) as well as
a BLEU score (as SL training is removed).

In addition to a faster training speed as shown
in Section 4.4, we found that our approach can
also reach a better overall performance in Table 10
when trained from a LSL-finetuned checkpoint for

4 epochs. We believe that this is because, without
a fine-grained per-token reward, RL might need
many more epochs to figure out the importance of
those keywords.

Algo Inform Success BLEU Total

RL 88.5 79.3 18.8 103.1
KRLS 89.2 80.3 19.0 103.8

Table 10: Test performance when trained from a LSL-
finetuned checkpoint for 4 epochs. RL refers to remov-
ing the SL step in KRLS, and replacing sequence “sam-
pling” step with auto-regressive generation.

K Ablation Study Setup: GOLD

GOLD (Pang and He, 2021) is an offline, off-policy
RL algorithm that directly learns from the gold
examples in the dataset without any generation step.
As the RL component in KRLS is also an offline
RL algorithm, we compared KRLS to GOLD in
Section 5.1.

To implement GOLD in our experiments, we fol-
lowed the descriptions in Pang and He (2021), and
replaced the RL component in KRLS with GOLD.
We denoted this as SL+GOLD in Table 5. Addi-
tionally, as GOLD uses the simple policy gradient
(PG), for a fair comparison we also replaced our
PPO objective with PG in KRLS in this experiment.
Finally, we kept our per-token reward function R
in SL+GOLD, as the reward function proposed by
Pang and He (2021) is aimed at optimizing other
metrics such as perplexity.

L Proof of SL Equivalence

Applying our definition of R (see Section 3.2) in
Equation 3 we get, if xgen = xgold is generated
correctly and corresponds to R = 1, and with the
discount factor γ = 0:

∇L(θ) ∝ −∇ log pθ(x
gen|c)

this gives the same gradient as the traditional su-
pervised learning for SL in Equation 1.

M Effect of κ, µ and k in KRLS

We empirically tested a range of hyperparameters
for KRLS, including κ ∈ {0.1, 0.5, 1.0}× steps
per epoch, µ ∈ {2, 5, 10}, and k ∈ {1, 3, 5}. We
present the results in Table 11 and Table 12.

12353

Finetune+KRLS
µ = 2.0 µ = 5.0 µ = 10.0

κ = 0.1n 102.2 102.4 102.3
κ = 0.5n 103.3 103.8 103.8
κ = 1.0n 102.3 102.1 102.5

Table 11: Effect of different κ and µ on the combined
score in MultiWOZ. n represents the number of training
steps in an epoch.

Finetune+KRLS
k = 1 k = 3 k = 5

κ = 0.1n,
102.9 103.8 102.8

µ = 5.0

Table 12: Effect of different k on the combined score in
MultiWOZ. n represents the number of training steps
in an epoch.

N Additional Reward Function Ablation

We additionally show the effect of several per-token
reward functions in our KRLS algorithm when
trained directly from backbone (hence the assump-
tion mentioned in Section 3.1 is harder to satisfy).
As shown in Table 13, all variants using KRLS
still achieved improvement from baseline (also see
Figure 6 and Figure 7). Specifically, Zero reward
and Prob. reward achieved the highest and second
highest, with 102.2 and 102.0 as Combined Score,
respectively.

KRLS
Reward Inform Success BLEU Total

None 86.0 77.4 18.9 100.6
Zero 87.7 78.6 19.0 102.2
Error 86.2 78.6 19.2 101.6
BERTS. 87.2 78.1 19.0 101.7
Static. 87.2 77.6 19.3 101.7
Prob. 87.3 78.3 19.2 102.0

Table 13: Performance of Training Directly from Back-
bone with KRLS using Different per-token Reward

O KRLS Error Examples

We present three examples in Figure 12, Figure 13,
and Figure 14 when KRLS trained model does
not generate the required key tokens. We observe
that in most cases, error originates from incorrectly
generated system action and dialog state. This hints

at a direction for further improvement in lines of
making dialog state and system action generation
more robust (Sun et al., 2022b).

12354

(a) Keyword Learning during Training (b) Keyword Learning Validation

Figure 6: Keyword Generation Accuracy during Training and Validation. Baseline is the standard SL training using
LSL. Both baseline and KRLS are directly trained from backbone.

(a) All Tokens Learning during Training (b) All Tokens Learning Validation

Figure 7: All Token Generation Accuracy during Training and Validation. Baseline is the standard SL training using
LSL. Both baseline and KRLS are directly trained from backbone.

(a) Key Tokens Learning Validation (b) All Tokens Learning Validation

Figure 8: Key and All Token Generation Accuracy during Training and Validation. Baseline is the standard SL
training using LSL. finetunt+KRLS is trained from a LSL-finetuned checkpoint, i.e. Baseline.

12355

sure, what area of you like to stay in?

sure. what area would you like to stay in?

can you help me find a moderately priced place to stay?

GOLD

sure, what area of town would you like to stay in?

SAMPLED

GENERATED

Figure 9: Example sequence generated by KRLS. Texts in black are the user’s utterances. GOLD represents the
gold response. GENERATED represents response produced using auto-regressive generation. SAMPLED represents
response produced using the next-word sampling method in KRLS.

i have booked it. you will look for a [value_type], the
contact number is [value_phone]

i need to go to avalon and could you give me the car type and contact
number once it is booked?

GOLD

i have booked a [value_car] for you. the contact number
is [value_phone].

SAMPLED

GENERATED

i have booked for. the will be for a [value_car]. their
contact number is 23

Figure 10: Example sequence generated by KRLS. Texts in black are the user’s utterances. GOLD represents the
gold response. GENERATED represents response produced using auto-regressive generation. SAMPLED represents
response produced using the next-word sampling method in KRLS.

there is the [value_name]. it is nice and is a
[value_stars] star [value_type].

i would like to stay on the westside, at a place with free parking
and wifi.

GOLD

[value_name] is a [value_stars] star [value_type] that
fits your needs.

SAMPLED

GENERATED

[value_name] is the [value_name]. it is and is a
[value_stars] star [value_type].

Figure 11: Example sequence generated by KRLS. Texts in black are the user’s utterances. GOLD represents the
gold response. GENERATED represents response produced using auto-regressive generation. SAMPLED represents
response produced using the next-word sampling method in KRLS.

12356

[value_name] is an [value_pricerange] [value_food] restaurant in the [value_area] .
would you like me to make a reservation for you ?

[value_name] offers [value_food] found [value_area] has [value_pricerange]
price range [value_phone] [value_postcode] [value_address]

[restaurant] [inform] food price area address name postcode phone

[restaurant] [inform] food price area name [offerbook]

"restaurant": {
 "name": "restaurant alimentum"
}

i am looking for a particular restaurant . its name is called restaurant alimentum
RE

SP
AC

T
DS

T

Dialog: SNG01380

Figure 12: KRLS Generation Error Example 1. Texts in black are the input context, in blue are the generated tokens,
and in yellow/gold are the ground truth. Texts highlighted in red are incorrect/missing key tokens compared to the
ground truth.

booking was successful . the table will be reserved for 15 minutes . reference number
is : [value_reference] . is there anything else i can help you with ?

ok i have a table booked for [value_people] at [value_time] on [value_day] .
your reference number is [value_reference] .

[restaurant] [offerbooked] people day time reference

[restaurant] [offerbooked] reference [general] [reqmore]

"restaurant": {
 "food": "indian",
 "pricerange": "moderate",
 "name": "curry prince",
 "time": "19:30",
 "day": "tuesday",
 "people": "7"
}

i am looking for a place serving indian food in the moderate price range

RE
SP

AC
T

DS
T

Dialog: SNG0516

i have head [value_name] is fantastic . what area are you looking for ?

the area does not matter . the curry prince sounds good . please book a table
for 7 people at 19:30 on tuesday .

Figure 13: KRLS Generation Error Example 2. Texts in black are the input context, in blue are the generated tokens,
and in yellow/gold are the ground truth. Texts highlighted in red are incorrect/missing key tokens compared to the
ground truth.

12357

i would suggest [value_name] .

it 's hard to say . how about the [value_name] in the [value_area]
part of town ?

[hotel] [recommend] name area

i am looking for a place in cambridge . it does n't need to include internet and
should be a hotel .

RE
SP

AC
T

Dialog: MUL2177

i was not able to find a [value_type] type with no internet , but there are
[value_type] with internet .

okay , that would be fine , as long as it has free parking .

no . how many are available ?

okay , do you have any preference on price range ?

the area does not matter . the curry prince sounds good . please book a table
for 7 people at 19:30 on tuesday .

there are [value_choice] different hotels around the city with free parking .
do you have a preference for city area or star rating ?

"hotel": {
 "type": "hotel",
 "parking": "yes",
 "internet": "no"
 "pricerange": "dont care",
 "area": "dont care",
 "stars": "dont care"
}

DS
T

[hotel] [recommend] name

Figure 14: KRLS Generation Error Example 3. Texts in black are the input context, in blue are the generated tokens,
and in yellow/gold are the ground truth. Texts highlighted in red are incorrect/missing key tokens compared to the
ground truth.

12358

