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Abstract
Dialogue comprehension and generation are vi-
tal to the success of open-domain dialogue sys-
tems. Although pre-trained generative conver-
sation models have made significant progress
in generating fluent responses, people have dif-
ficulty judging whether they understand and
efficiently model the contextual information of
the conversation. In this study, we propose a
Multi-Source Probing (MSP) method to probe
the dialogue comprehension abilities of open-
domain dialogue models. MSP aggregates fea-
tures from multiple sources to accomplish di-
verse task goals and conducts downstream tasks
in a generative manner that is consistent with
dialogue model pre-training to leverage model
capabilities. We conduct probing experiments
on seven tasks that require various dialogue
comprehension skills, based on the internal rep-
resentations encoded by dialogue models. Ex-
perimental results show that open-domain dia-
logue models can encode semantic information
in the intermediate hidden states, which facili-
tates dialogue comprehension tasks. Models of
different scales and structures possess different
conversational understanding capabilities. Our
findings encourage a comprehensive evaluation
and design of open-domain dialogue models.

1 Introduction

Conversational understanding and response genera-
tion are critical for the success of open-domain dia-
logue systems. Recently, pre-trained open-domain
dialogue models, including DialoGPT (Zhang
et al., 2020), BlenderBot (Roller et al., 2020), and
Meena (Adiwardana et al., 2020), have achieved im-
pressive progress in a wide range of conversational
tasks. The pre-trained model has become a solid
foundation for the downstream fine-tuning pro-
cess, such as generating empathetic (Zhong et al.,
2020) and persona-coherent (Wolf et al., 2019b)
responses, delivering knowledge-grounded conver-
sations (Zhao et al., 2020; Wu et al., 2021), and
completing task goals (Wu et al., 2020; Peng et al.,

2020). While these generative dialogue models
can produce fluent responses, they still have many
limitations in conversational understanding (Saleh
et al., 2020; Li et al., 2016), leading to irrelevant,
repetitive, and generic responses (Li et al., 2017a;
Welleck et al., 2019; Cho and Saito, 2021).

Research on conversational understanding can
provide a holistic evaluation of dialogue mod-
els (Parthasarathi et al., 2020), contributing to the
deployment and design of models. However, the
analysis of open-domain dialogue models on con-
versational understanding remains a controversial
topic (Dinan et al., 2020; Tao et al., 2018; Ji et al.,
2022). Some work (Sankar et al., 2019; Saleh et al.,
2020) demonstrates that dialogue models have dif-
ficulty in capturing the conversational dynamics in
the dialog history and struggle with conversational
understanding tasks such as question answering,
contradiction inference, and topic determination.
In contrast, Parthasarathi et al. (2020) affirms the
conversational understanding of open-domain dia-
logue models and indicates recurrent dialogue mod-
els perform better than transformer-based models.
These studies have limitations in probing meth-
ods and experimental settings (Ravichander et al.,
2020), making them not applicable to present large-
scale open-domain dialogue models.

In this work, we propose a Multi-Source Probing
(MSP) method to examine the conversational un-
derstanding ability of open-domain dialogue mod-
els. Specifically, MSP conducts dialogue compre-
hension tasks in a generative manner, which is co-
herent with the pre-trained dialogue generation task
to take full advantage of model capabilities. In addi-
tion, considering that different tasks require various
information of the dialogue context, MSP aggre-
gates features from multiple sources to accomplish
diverse tasks. We propose a multi-source cross-
attention mechanism to extract local features and
adopt a late fusion module to incorporate global
features. With the help of these components, MSP
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has the capability to evaluate generative dialogue
models more accurately and comprehensively.

To expose the validity and reliability of our
method, we conduct comprehensive experiments
to compare the conventional MLP-based probing
approach with MSP. Furthermore, we also set up
a series of ablation experiments to verify the ne-
cessity of the multiple-source attention mechanism
and the late-fusion module.

In order to verify that our method also applies to
even more massive scale models, we extend our
MSP method to provide insight into larger pre-
trained dialogue models. We found that larger
models have stronger extraction capability for the
information inferred via the pre-trained encoder.

Our study reveals three critical findings:

• Different from the conclusion reached by the
vanilla probing method, we find through MSP
that encoder hidden states contain more infor-
mation than original embeddings in pretrained
dialogue models, as reflected by the higher ac-
curacy obtained on our probing tasks.

• Generative dialogue models with a single de-
coder have a worse understanding of the con-
versation than encoder-decoder-based mod-
els, as the uni-directional attention mechanism
only encodes partial context (content before
each token) information for tokens, leading
to asymmetric representations of dialogue his-
tory and current utterance.

• Dialogue models can capture the dialogue
structure in conversational understanding.
Larger dialogue models have a better under-
standing of conversational information and
achieve higher accuracy on probing tasks.

2 Related Work

2.1 Open-domain Conversational Models

Recently, open-domain conversation systems have
been largely advanced due to the increase of
dialogue corpus and the development of large-
scale pre-training (Devlin et al., 2018; Rad-
ford et al., 2019; Brown et al., 2020). Pre-
trained open-domain dialogue models, such as Di-
aloGPT (Zhang et al., 2020), BlenderBot (Roller
et al., 2020) and Meena (Adiwardana et al., 2020),
demonstrate outstanding conversation skills, in-
cluding empathetic (Zhong et al., 2020) and
persona-coherent (Wolf et al., 2019b) response gen-
eration, delivering knowledge-grounded conversa-

tions (Zhao et al., 2020; Wu et al., 2021) and com-
pleting task goals (Wu et al., 2020; Peng et al.,
2020). These dialogue models are capable of flu-
ent response generation, but they still have many
conversational understanding limits (Saleh et al.,
2020; Li et al., 2016) that result in irrelevant, repet-
itive, and generic responses (Serban et al., 2017; Li
et al., 2017a; Welleck et al., 2019; Cho and Saito,
2021). Several studies (Sankar et al., 2019; Bao
et al., 2020) point out that generative dialogue mod-
els don’t always properly exploit the existing dialog
history and they are yet unable to understand the
context to provide coherent and engaging conversa-
tions. Some work (Komeili et al., 2022; Zhou et al.,
2018) introduce external knowledge to enhance
conversational understanding, which facilitates the
generation of relevant and coherent responses.

2.2 Probing Method

With the growing demand for natural language un-
derstanding, the probing method has been widely
employed in machine translation (Belinkov et al.,
2017, 2018; Dalvi et al., 2017; Yawei and Fan,
2021) and knowledge attribution (Alishahi et al.,
2017; Beloucif and Biemann, 2021) to assess the
linguistic properties of sentence representations
learned by models.

Although several studies have been proposed
to probe the conversational understanding capabil-
ity of open-domain dialogue models (Dinan et al.,
2020; Tao et al., 2018; Ji et al., 2022), this research
area is still controversial. According to certain re-
search (Sankar et al., 2019; Saleh et al., 2020; Das
et al., 2020), conversational comprehension tasks
including question answering, contradiction infer-
ence, and subject determination pose challenges for
dialogue models in terms of capturing the conver-
sational dynamics in the dialog history. In contrast,
Parthasarathi et al. (2020) validates conversational
comprehension of open-domain dialogue models
and demonstrates that recurrent dialogue models
outperform transformer-based models. In addition,
previous work (Saleh et al., 2020; Alt et al., 2020;
Ravichander et al., 2020; Parthasarathi et al., 2020;
Richardson et al., 2020) usually adopted a certain
probing method to perform model-level analysis of
dialogue systems, thus they lacked an exhaustive
comparison of different probing methods. These
studies have reached opposite conclusions for two
major reasons. First, these methods usually adopt a
shallow Multi-Layer Perceptron (MLP) as the clas-
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Figure 1: Overview of three probing methods. The MSP method introduces the multi-source attention mechanism to
integrate local features from multiple sources and the late fusion module to capture global features, where probing
tasks are conducted in a generative manner, which is consistent with the objective of the pre-training task.

sifier, which cannot fully utilize the information
encoded in intermediate representations to conduct
probing tasks. Second, the experimental settings
are also insufficient (Ravichander et al., 2020), in-
cluding the probing tasks and probed model scales.

3 Methodology

3.1 Vanilla Probing Approach

For the vanilla probing method, we first use pre-
trained generative dialogue models to extract en-
coder hidden states and word embeddings corre-
sponding to the probing task texts and then feed
the extracted representations to a two-layer Multi-
Layer Perceptron (MLP) classifier.

In this way, we calculate the accuracy of prob-
ing tasks, which is empirically assumed to reflect
the ability of the corresponding model to capture
information that is beneficial for the goal of dia-
logue understanding. Here only the parameters of
the classifier are trainable during the training of
probing tasks, with encoder parameters kept fixed.
The vanilla probing method is shown in Fig 1(a).

First, we extract inner states from the encoder
to get the word-level representations on word em-
beddings and encoder states in the entire prob-
ing task input x = [u1, · · · , un], with un =

[w
(n)
1 , · · · , w(n)

cn ] denoting the tokens in the nth ut-
terance, where cn denotes the word numbers in the
utterance un and w(n)

i is the word embedding of
the ith word w

(n)
i in the utterance un.

We require utterance-level representations for
probing where mixed synthesized information is
present since the probing tasks rely on high-level
reasoning. To get Rhistory and Rcurrent, we inde-
pendently averaged the representations correspond-
ing to historical and contemporary utterances. Then

we concatenate the two averaged representations
to get the final feature Rprobing for probing tasks,
where the concatenation operation is denoted by ⊙.
The process is defined as follows:

Rhistory =
1

n−1∑
t=1

ct

n−1∑

t=1

ut

=
1

n−1∑
t=1

ct

n−1∑

t=1

ct∑

i=1

w(t)
i , (1)

Rcurrent =
1

cn

cn∑

i=1

w(n)
i , (2)

Rprobing = Rhistory ⊙ Rcurrent, (3)

3.2 Multi-Source Probing Approach
The prior MLP-based approach has been consid-
ered fairly intuitive to detect if the dialogue model
captures pertinent information in the encoder states.
However, it is difficult to effectively utilize the in-
formation encoded by the dialogue models using
these approaches due to the divergent objectives of
downstream probing tasks and dialogue generation
during pre-training (Liu et al., 2021; Schick and
Schütze, 2021).

To address this issue, we propose a Multi-Source
Probing (MSP) method to probe the dialogue com-
prehension abilities of open-domain dialogue mod-
els. MSP conducts probing tasks in a generative
manner, which is consistent with the pre-trained
task to take full advantage of model capabilities.
As various probing tasks require information from
different aspects of the dialogue, which may differ
greatly from the dialogue generation task, we pro-
pose a multi-source attention mechanism to aggre-
gate features from multiple sources to accomplish
diverse tasks.
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Moreover, the application of potential under-
standing capabilities that might be encoded in the
decoder parameters is also lacking in MLP-based
probing methods, while MSP reapplies the dis-
carded information and provides better modeling
of contextual information. The overview of MSP
is presented in Figure 1(c).

3.2.1 Continuous Prompt Learning
Continuous (or soft) prompt learning is one of the
central parts in our MSP method, which is shown in
Figure 1(b), as the generative approach of probing
classification is considered to be more consistent
with the goal in the pretraining phase, allowing the
model to be more adaptable.

Specifically, we set the Prompt-Template as a
sequence of different soft tokens for decoder in-
put. Each soft token has a unique word embedding
that is constantly adjusted and updated during the
training stage. Consistent with the vanilla prob-
ing setting, the transformer decoder is finetuned in
MSP, while the encoder parameters are fixed.

Since our probing task is based on classification,
a verbalizer (Hu et al., 2022) class is constructed
here to project the original probability distribution
over the whole vocabulary to the set of label words
given by the probing task.

3.2.2 Multi-Source Attention
Different downstream probing tasks have various
focuses on the location of the required informa-
tion (Sankar et al., 2019), while the general atten-
tion module of dialogue models tends to fail in
locating and extracting information from multiple
aspects and sources in a fine-grained way.

Therefore, to avoid overshadowing the key infor-
mation contained in the dialogue context when the
significance of information is unevenly distributed,
we propose a multi-source attention mechanism, by
using multiple cross-attention masks corresponding
to different sources through the decoding process,
to generate more reasonable attention that can ex-
tract relevant local features from different sources
for probing classification.

As shown in Figure 2, the multi-source atten-
tion module takes turns allocating different cross-
attention to different parts of encoded representa-
tions for soft prompt tokens. We adopt three types
of attention masks to operate the multi-source cross
attentions, which are separately called history-
source, current-source, and integrated-source.
Only the relevant portion of the dialogue is given

attention by the history-source and current-source
attention functions. While the integrated-source
cross-attention mask is built to gather information
from the full context of the dialogue.
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(c) Integrated Context Probing

Figure 2: Overview of multi-source attention.

In Prompt-Template, the three consecutive to-
kens are grouped into one combined unit, which is
designed to perform a round of coverage during the
probing process. We assign the three soft tokens
in the last combined unit as the prediction position
where the averaged logit is passed to the subsequent
verbalizer function, and then we can calculate the
loss for the corresponding classes. This step is spe-
cially formulated to fuse the information captured
by various soft-token representations that are fo-
cused independently on the history, current, and
entire section of the input text.

The decoder fθ updates the hidden states Hi

conditioned on the past decoder states H<i with
self-attention, the soft token embedding Si, as
well as the encoded representations Ek with cross-
attention, where k could take values in K =
{history, current, integrated}, as follows:

Hi =

{
fθ (H<i, Si,Ehis) i = 0 (mod 3)
fθ (H<i, Si,Ecur) i = 1 (mod 3)
fθ (H<i, Si,Eint) i = 2 (mod 3)

. (4)
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3.2.3 Late Fusion
Previous studies (Vig, 2019; Vig and Belinkov,
2019) have shown that the attention mechanism
is sensitive to local features, while global features
of conversations should also be considered to pro-
duce a comprehensive representation.

Thus we introduce the late fusion module as a
merging strategy for information integration to gen-
erate a comprehensive representation from encoder
hidden states, which is combined with the probing
decoder states after passing through an MLP layer
with dropout. Late fusion is designed to capture
the global information encoded by the language
model which serves as the role of a complement
to the probing decoder aimed at extracting precise
local features, thus allowing a higher sensitivity to
various features of the linguistic information.

Here we implement the late fusion by averag-
ing the encoder hidden states Ek that focus on the
desired section of the text, where k could take
K = {history, current, integrated}. We would
receive the representation Lk after the late fusion,
and Ak is the final representation obtained by com-
bining the decoder hidden states Hk and the result
from late fusion module.

Lk = MLP(avg(Ek)), (5)

Ak = Hk + Lk. (6)

The probability of PM (y|x) with probing label y
is calculated as:

PM (y|x) = softmax(V(avg({A(n)
k |k ∈ K}))).

(7)
where V is the language model head that projects
the raw logits to the label space. Here n is the num-
ber of combined units in the soft token sequence.

4 Experiment

4.1 Probing Tasks

TREC (Li and Roth, 2002) is a question classifi-
cation dataset consisting of questions labeled with
relevant answer types. The task aims to determine
the information category the question is requesting.
DialogueNLI (Welleck et al., 2019) is a natural
language inference task consisting of dialog turns
with entailment, contradiction and neutral labels.
MultiWOZ (Eric et al., 2020) is a multi-domain,
goal-directed conversational dataset for exploring
natural language comprehension.

Schema-Guided Dialog dataset (SGD) (Rastogi
et al., 2020) is an intent-tracking task that requires
reasoning over multiple turns of dialogue.
SNIPS (Coucke et al., 2018) is an intent classifica-
tion task with crowd-sourced, single-turn queries
labeled for intent.
ScenarioSA (Zhang et al., 2019) is a sentiment
classification task with turn-level sentiment labels
and inputs from multi-turn, open-ended dialogues.
DailyDialog Topic uses dialogues from the Daily-
Dialog dataset (Li et al., 2017b) to create a probing
task where the goal is to make inferences about the
topic of conversations (Saleh et al., 2020).

4.2 Probing Methods
Vanilla MLP-based Probing adopts a two-layer
Multi-Layer Perceptron classifier (Saleh et al.,
2020; Parthasarathi et al., 2020), which takes the
word embedding and encoder states correspond-
ing to the conversation context of the pre-trained
dialogue models as input.
Prompt-based Probing applies prompt learning as
the principle for performing probing tasks. During
training, only the embeddings of soft prompt tokens
and the verbalizer parameters are fine-tuned while
the pre-trained encoder and decoder parameters are
fixed (Liu et al., 2021).
Multi-Source Probing is the proposed approach,
which is characteristic of its multi-source attention
and late fusion module. The parameters of the
verbalizer, prompt token embeddings, and decoders
are fine-tuned during training.

4.3 Open-domain Dialogue Models
We first train three widespread generative dialogue
models for 20 epochs on DailyDialog dataset (Li
et al., 2017b), using the Maximum-likelihood
objective(Sutskever et al., 2014). Specifically,
we train Transformer from scratch and fine-tune
BlenderBot-small and DialoGPT-small with pre-
trained parameters on DailyDialog for a fair com-
parison, as adopted in prior work (Saleh et al.,
2020).

Besides, we adopt BlenderBot-medium [400M]
and DialoGPT-medium [345M] without fine-tuning
for the inspection of larger pre-trained models.
Transformer (Vaswani et al., 2017) is a typical
language model with multiple attention layers. We
implement it in the form of encoder-decoder struc-
ture, with a 2-layer encoder and a 2-layer decoder.
BlenderBot (Roller et al., 2020) is a pre-trained
dialogue model based on the encoder-decoder ar-

12495



Method TREC DNLI MWOZ SGD SNIPS SSA Topic

Transformer

MLP Emb. 83.1∗[1.07] 69.9[0.79] 92.1∗[0.38] 69.9∗[0.55] 97.9∗[0.24] 77.1[0.17] 53.3[2.00]
Enc. 79.7[0.73] 68.7[0.70] 91.3[0.40] 67.0[0.66] 96.8[0.15] 77.8∗[0.36] 53.2[1.35]

PBP Emb. 68.2[1.17] 52.0[0.66] 57.0∗[0.30] 53.7[0.56] 95.8∗[0.11] 64.6∗[0.25] 30.8[1.15]
Enc. 69.1[1.14] 52.0[0.64] 56.5[0.26] 55.1∗[0.58] 94.9[0.56] 63.5[0.44] 35.1∗[1.31]

MSP Emb. 90.5[0.27] 75.0[0.64] 95.2[0.27] 78.9[0.80] 97.9[0.11] 79.4[0.28] 60.7[1.19]
Enc. 91.2∗

[0.50] 76.2∗
[0.23] 95.4∗

[0.21] 80.2∗
[0.48] 98.3∗

[0.21] 80.7∗
[0.29] 63.1∗

[1.61]

BlenderBotSMALL

MLP Emb. 85.7[0.69] 72.4[0.23] 92.5[0.18] 72.9[0.26] 97.5[0.27] 78.7[0.37] 52.2[2.64]
Enc. 92.1∗[0.56] 84.3∗[0.29] 93.6∗[0.32] 76.0∗[0.48] 97.7[0.18] 83.2∗[0.16] 65.2∗[0.78]

PBP Emb. 75.5[2.18] 54.5[1.01] 58.9[0.67] 56.4[1.28] 95.6[0.64] 62.9[0.85] 50.8[2.12]
Enc. 92.1∗[0.97] 61.0∗[3.30] 81.9∗[6.16] 80.6∗[2.74] 97.3∗[0.65] 76.3∗[0.76] 66.7∗[0.94]

MSP Emb. 91.0[0.64] 77.9[1.00] 95.7[0.15] 82.0[1.34] 98.1[0.19] 80.3[0.26] 60.5[1.54]
Enc. 93.8∗

[0.70] 87.4∗
[0.25] 96.5∗

[0.30] 88.8∗
[0.55] 98.6∗

[0.16] 84.4∗
[0.33] 71.3∗

[1.71]

DialoGPTSMALL

MLP Emb. 88.4[0.63] 73.8[0.69] 92.9∗[0.29] 73.4∗[0.42] 98.8[0.14] 80.0[0.32] 52.6[1.22]
Enc. 92.1∗[0.28] 80.9∗[0.30] 90.8[0.23] 72.8[0.24] 98.7[0.09] 81.1∗[0.23] 65.2∗[1.31]

PBP Emb. 37.5[3.23] 42.3[1.27] 28.2[1.99] 10.6[0.52] 71.1[2.92] 57.1[0.01] 26.0[0.00]
Enc. 52.0∗[1.17] 50.0∗[0.61] 44.9∗[0.60] 34.3∗[1.02] 86.2∗[0.62] 57.9∗[0.32] 36.7∗[1.12]

MSP Emb. 94.2[0.38] 83.7[0.39] 96.1[0.27] 85.4[0.03] 98.9[0.15] 82.3[0.46] 58.7[0.64]
Enc. 96.8∗

[0.63] 83.4[0.21] 96.2[0.62] 85.7[0.43] 99.0[0.64] 82.4[0.37] 66.7∗
[0.66]

Table 1: Accuracy on probing tasks for Transformer, BlenderBotSMALL, DialoGPTSMALL. Experiments were
conducted on three probing methods: 1) MLP: Vanilla MLP-based Probing 2) PBP: Prompt-based Probing. 3)
MSP: Multi-Source Probing. Best results are marked in bold, and data that passed the significance test (t-test,
p-value < 0.05) between word embeddings and encoder states under one specific probing method are super-scripted
with an asterisk ∗. The numbers in square brackets represent the standard deviation.

chitecture which is first pre-trained on 1.5B Red-
dit comment threads (Baumgartner et al., 2020)
and later fine-tuned on Blended SkillTalk (BST)
dataset (Smith et al., 2020).
DialoGPT (Zhang et al., 2020) is a dialogue re-
sponse generation model for multi-turn conversa-
tions with a single decoder, which is pre-trained on
large-scale Reddit data(Baumgartner et al., 2020).

5 Analysis

We will detail experimental results in this section,
including the analysis of our main experiments on
the performance of different probing methods, the
ablation study of Multi-Source Probing architec-
tures, and evaluations of different dialogue models
and experimental settings.

5.1 Main Results

The main results are presented in Table 1, where
each probing task is evaluated by calculating an
average score of accuracy. We analyze the results
from the following perspectives:

Comparison between methods: For all prob-
ing tasks and dialogue models, MSP achieves the
best performances, indicating that our method more
effectively leverages the relevant information en-
coded in the intermediate representations to con-
duct probing tasks. Besides, the majority of en-
coder state results outperform word embedding re-
sults, indicating that encoder states contain more
semantic features than word embeddings. Thus, to
some extent, dialogue models learn semantic infor-
mation from conversations, which is required in
conversational understanding tasks.

For the MLP-based probing method, we ob-
serve a similar phenomenon of the Transformer
model that the performances of encoder states are
not superior in many tasks as reported in prior
work (Saleh et al., 2020). This observation demon-
strates that the vanilla probing method has limita-
tions in utilizing encoder states to conduct conversa-
tional understanding tasks, due to the gap between
downstream classification tasks and the pre-trained
dialogue generation task (Liu et al., 2021; Schick
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Method TREC DNLI MWOZ SGD SNIPS SSA Topic

BlenderBotMEDIUM

MLP Emb. 83.9[1.10] 73.3[0.77] 90.2[0.51] 65.3[0.80] 98.3[0.35] 79.3[0.28] 45.3[3.59]
Enc. 91.1∗[0.20] 85.1∗[0.35] 90.6[0.36] 66.3[0.46] 98.1[0.12] 83.6∗[0.45] 56.2∗[1.20]

MSP Emb. 92.6[0.27] 79.1[0.52] 96.3[0.31] 82.8[0.46] 98.1[0.66] 82.1[0.53] 61.5[0.51]
Enc. 94.1∗

[0.44] 90.3∗
[0.23] 97.4∗

[0.65] 91.3∗
[0.48] 98.9[0.61] 87.3∗

[0.50] 72.3∗
[1.09]

DialoGPTMEDIUM

MLP Emb. 89.2[0.87] 74.5[0.55] 92.9[0.46] 74.6[0.58] 98.4[0.11] 80.4[0.35] 49.6[2.47]
Enc. 94.8∗[0.13] 84.7∗[0.28] 91.5[0.20] 76.0[0.53] 98.6[0.12] 80.9[0.30] 67.0∗[0.94]

MSP Emb. 95.2[0.53] 88.2[0.57] 96.5[0.44] 86.1[0.49] 99.0[0.63] 82.8[0.53] 59.7[0.32]
Enc. 97.4∗

[0.34] 89.5∗
[0.52] 96.4[0.63] 89.6∗

[0.38] 99.1[0.42] 85.7∗
[0.80] 70.2∗

[0.92]

Table 2: The performance of MLP and MSP on two large-scale pre-trained dialogue models BlenderBotMEDIUM and
DialoGPTMEDIUM. Best results are marked in bold, and data that passed the significance test (t-test, p-value < 0.05)
are super-scripted with an asterisk ∗. The numbers in square brackets represent the standard deviation.

and Schütze, 2021). The prompt-based probing
approach obtains the worst performance among the
three probing methods. Although it performs the
probing tasks in a generative manner, this approach
cannot effectively extract relevant features required
in conversational understanding tasks, leading to
undesirable results.

Comparison between models: As the parame-
ters of dialogue models increase, the performance
on dialogue understanding tasks also improves
based on the MSP method. However, DialoGPT
doesn’t outperform BlenderBot on some tasks and
the performances of encoder states are not always
significantly better than those of word embeddings.
This is probably because DialoGPT adopts a sin-
gle decoder structure with the uni-directional at-
tention mechanism, which encodes partial con-
text (content before each token) information for
tokens, leading to asymmetric representations of di-
alogue history and current utterances. By contrast,
the encoder-decoder-based BlenderBot applies the
bi-directional attention mechanism to encode bi-
directional information (content before and after
each token) for tokens, achieving more consistent
and superior performances on conversational un-
derstanding tasks.

We also evaluated the comprehension ability of
pre-trained language models such as BERT, BART,
and T5 through MSP, and the details are attached
in Appendix 6.

5.2 Ablation Study

Here we set up a series of ablation experiments to
investigate the validity and necessity of the compo-
nents of our Multi-Source Probing approach, which
is composed of two main parts: the multi-source

attention mechanism and the late fusion module.
The multi-source attention mechanism is designed
to pay fair attention to both the historical and cur-
rent turns of the conversational context, while the
design of the late fusion module is motivated by the
fact that many probing tasks need to capture global
features while maintaining a high sensitivity to lo-
cal features, so we add a layer of late fusion after
the decoder for fusing global and local features in
the final representation. Due to the length limit, the
results are presented in Table 4 in the Appendix.

5.2.1 Ablation Setting
Several sets of ablation experiments are designed
to verify the necessity and effectiveness of different
modules:

MSP w/o LF is an ablation setting where the
late fusion module is removed compared to the
complete MSP method.

MSP w/o MS is an ablation setting where the
multi-source attention and late fusion module are
removed. This approach has the same architecture
as the prompt-based probing method except that
the decoder is fine-tuned during training.

5.2.2 Effect of Late Fusion Module
In our experiment settings, we set ablation experi-
ments on the effectiveness of late-fusion. Through
the analysis, we discover that the late-fusion archi-
tecture enables a significant improvement in the
ability of the probing model to extract the repre-
sentational information encoded by the pre-trained
language model. Furthermore, it not only incorpo-
rates the information provided by the encoder very
well but also provides a nuanced insight for our
probing architecture of representational informa-
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Method TREC DNLI MWOZ SGD SNIPS SSA Topic

Transformer

MLP

Rand.Emb. 71.8[1.73] 60.4[0.42] 87.2[0.50] 60.5[0.60] 96.6[0.36] 70.6[0.29] 39.8[2.49]
Orig.Emb. 83.1∗[1.07] 69.9∗[0.79] 92.1∗[0.38] 69.9∗[0.55] 97.9∗[0.24] 77.1∗[0.17] 53.3∗[2.00]

Shuf.Emb. 83.0∗[1.08] 69.8∗[0.39] 92.0∗[0.46] 69.8∗[0.38] 97.9∗[0.35] 77.3[0.43] 53.5[1.44]
Shuf.Enc. 77.2[0.66] 68.8[0.28] 90.1[0.27] 67.6[0.35] 96.6[0.36] 77.1[0.32] 55.9∗[2.17]

MSP

Rand.Emb. 80.4[0.72] 65.5[0.34] 94.2[0.41] 75.9[1.12] 97.5[0.21] 75.6[1.02] 37.2[1.76]
Orig.Emb. 90.5∗[0.27] 75.0∗[0.64] 95.2∗[0.27] 78.9∗[0.80] 97.9[0.11] 79.4∗[0.28] 60.7∗[1.19]

Shuf.Emb. 84.2[0.67] 68.9[0.41] 94.9[0.79] 76.9[0.67] 98.1[0.25] 77.7[1.43] 52.3[1.44]
Shuf.Enc. 84.9[0.59] 70.0∗[0.24] 94.7[0.53] 78.1∗[0.23] 98.3[0.32] 78.8∗[0.95] 57.5∗[1.76]

BlenderBotSMALL

MLP

Rand.Emb. 76.2[1.10] 63.3[0.79] 90.6[0.48] 65.8[0.54] 97.2[0.29] 73.1[0.44] 40.1[2.12]
Orig.Emb. 85.7∗[0.69] 72.4∗[0.23] 92.5∗[0.18] 72.9∗[0.26] 97.5[0.27] 78.7∗[0.37] 52.2∗[2.64]

Shuf.Emb. 85.3∗[0.60] 72.7[0.51] 92.5∗[0.25] 72.9∗[0.28] 97.4[0.20] 78.8[0.43] 51.7[2.60]
Shuf.Enc. 83.1[1.34] 79.8∗[0.22] 89.7[0.23] 68.0[0.44] 97.5[0.22] 78.5[0.20] 59.9∗[0.78]

MSP

Rand.Emb. 84.0[0.82] 74.3[0.25] 94.6[0.50] 82.2[0.53] 97.6[0.16] 76.4[0.75] 47.7[1.77]
Orig.Emb. 91.0∗[0.64] 77.9∗[1.00] 95.7∗[0.15] 82.0[1.34] 98.1∗[0.19] 80.3∗[0.26] 60.5∗[1.54]

Shuf.Emb. 88.7∗[0.66] 75.8[0.31] 95.8[0.29] 83.9[0.26] 98.1[0.09] 79.8[0.43] 56.3[1.50]
Shuf.Enc. 85.2[0.45] 84.6∗[0.28] 95.4[0.46] 84.7∗[0.12] 98.3[0.15] 81.3∗[0.24] 65.9∗[4.16]

DialoGPTSMALL

MLP

Rand.Emb. 75.3[0.55] 74.1[0.61] 91.6[0.27] 68.2[0.48] 96.6[0.19] 75.3[0.44] 42.2[2.18]
Orig.Emb. 88.4∗[0.63] 73.8[0.69] 92.9∗[0.29] 73.4∗[0.42] 98.8∗[0.14] 80.0∗[0.32] 52.6∗[1.22]

Shuf.Emb. 89.5∗[0.84] 73.9[0.66] 93.0∗[0.31] 73.3∗[0.20] 98.9∗[0.17] 80.2∗[0.27] 50.8[1.62]
Shuf.Enc. 80.1[0.59] 76.7∗[0.20] 86.9[0.58] 66.8[0.16] 96.7[0.24] 76.0[0.23] 65.4∗[0.32]

MSP

Rand.Emb. 87.8[0.32] 78.6[0.76] 92.3[0.26] 70.4[1.45] 97.1[0.12] 77.4[0.56] 52.2[0.87]
Orig.Emb. 94.2∗[0.38] 83.7∗[0.39] 96.1∗[0.27] 85.4∗[0.03] 98.9∗[0.15] 82.3∗[0.46] 58.7∗[0.64]

Shuf.Emb. 85.4[0.28] 81.2[0.24] 94.5[0.19] 81.5[1.02] 98.5[0.12] 80.3[0.39] 53.6[4.21]
Shuf.Enc. 91.5∗[0.63] 82.7∗[0.26] 94.6[0.21] 82.3∗[0.34] 98.8∗[0.05] 81.5∗[0.21] 66.0∗[2.18]

Table 3: The performance with random embeddings and shuffled order of words in dialogue context. Data that
passed the significance test (t-test, p-value < 0.05) are super-scripted with an asterisk ∗.

tion at the shallow level. Consequently, this makes
the structure more hierarchical and efficient in inte-
grating different depths of encoded information.

We found from the results of our experiments
that when the Multi-Source Probing Method does
not have a late-fusion layer, the probing results of
encoder states in several tasks are not better than
those of word embeddings, which indicates that
when we discard the late fusion, we also discard
some classification local features needed for the
task. We found that the ground-truth labels for
these tasks are often determined by a combination
of certain keywords in the historical utterance and
some obvious prompt words in the current utter-
ance of the dialog, so if we simply use the represen-
tations generated by the multi-layer transformer in
the decoder, this tends to draw out only the global
features and ignore the involvement of local fea-
tures. So in this step of the experiment, we verified
the significant role of the late fusion module for

synthesizing local features.

5.2.3 Effect of Multi-Source Attention

We further developed ablation experiments to ex-
plore the impact of discarding the multi-source
attention module of our MSP method, where an
exciting discovery is found that the accuracy of
the probing task was reduced by more than 10%
when the MSP method did not efficiently utilize
the multi-source attention module, suggesting that
we need to introduce specialized designs to focus
on different parts of the input text when evaluating
the ability of a language model to understand a con-
versation. This demonstrates the need to introduce
specialized designs to focus on different parts of
the input text, which is a concern that generative
dialogue models are constantly focusing on during
the pre-training process. We experimentally found
that a single cross-attention module is not effective
in accomplishing our probing purpose, and thus
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a multiple-source attention mechanism is a very
central component of our probing approach.

5.3 Extension Experiments

Considering the undesirable performance of the
prompt-based probing approach as shown in Ta-
ble 1, we adopt MSP and MLP methods in the
extension experiments.

5.3.1 Impact of Model Scale
Table 2 shows the performance of large-scale pre-
trained conversational models on probing tasks. As
can be seen, with the increase of model parameters,
the performance on dialogue comprehension tasks
also increases. The pre-trained dialogue models
demonstrate a strong capability of conversational
understanding even without fine-tuning on down-
stream dialogue corpus. For the MLP-based prob-
ing method, there is no obvious difference between
the performance of encoder states and word em-
beddings in many tasks. By contrast, our approach
is applicable to models of different scales from
the 2-layer Transformer trained from scratch to the
large-scale pre-trained BlenderBot and DialoGPT.

5.3.2 Impact of Word Embedding
During the training process of dialogue generation,
word embeddings can learn and encode linguistic
knowledge of conversations (Ravichander et al.,
2020) as Word2Vec (Mikolov et al., 2013) and
Glove (Pennington et al., 2014). Thus, we sub-
stitute the trained word embeddings with randomly
initialized ones and conduct probing experiments
to investigate the impact of word embeddings.

The performance with random embeddings is
shown in Table 3. As we can see, there is a signifi-
cant gap between the performance of random word
embeddings and original ones, indicating that the
trained word embeddings encode semantic infor-
mation required by conversational understanding.
In addition, the performance with random embed-
dings achieves above 90% on some tasks, such as
SNIPS and MWOZ, while only obtaining less than
70% on others. It shows that different tasks require
different degrees of conversational semantics.

5.3.3 Impact of Dialogue Structure
To examine whether dialogue models leverage di-
alogue structure in conversational understanding,
we shuffle the order of the input tokens within dia-
logue history and the current utterance respectively.
The results are shown in Table 3. We note that

the MLP method weakens the feature of the word
order by the average pooling operation, while MSP
offers superior modeling of the word order.

We observed that the performances of both word
embeddings and encoder states decrease substan-
tially with shuffled input. Furthermore, the perfor-
mance gap is even larger for encoder states, indi-
cating that dialogue models can capture the con-
text and flow of the dialogue for conversational
understanding, rather than just processing individ-
ual words or utterances in isolation.

6 Conclusion

In this paper, we propose a Multi-Source Probing
(MSP) method to probe the dialogue comprehen-
sion abilities of open-domain dialogue models. It
conducts probing tasks in a generative manner that
is consistent with the pre-training task of dialogue
models. Besides, we propose the multi-source at-
tention mechanism to aggregate features from mul-
tiple sources and the late fusion module to capture
global features for downstream tasks. Our experi-
mental results indicate the validity and reliability
of the MSP method, which could also offer insight
into the impact of the model scale, embedding qual-
ity, and dialogue structure on the conversational
understanding capability of dialogue models when
particular experimental settings are presented. This
research underscores the importance of a compre-
hensive probing framework for dialogue models
and paves the way for future studies aimed at en-
hancing their understanding capabilities.

Limitations

Although the Multi-Source Probing (MSP) method
can precisely detect the conversational understand-
ing of open-domain dialogue models of different
scales, it still faces two limitations. First, we focus
on evaluating three widespread dialogue models
in our experiments due to the limitation of compu-
tational resources. Dialogue models of different
structures and scales could be probed with MSP in
future work. Second, we adopt several representa-
tive classification tasks as our probing tasks, follow-
ing previous work (Saleh et al., 2020). These tasks
require different dialogue comprehension skills and
have different degrees of difficulty, as analyzed in
Section 5.3.2. In future work, a wide range of tasks
of different complexity in different domains could
be conducted based on MSP to construct a bench-
mark of conversational understanding.
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Method TREC DNLI MWOZ SGD SNIPS SSA Topic

Transformer

MSP Emb. 90.5[0.27] 75.0[0.64] 95.2[0.27] 78.9[0.80] 97.9[0.11] 79.4[0.28] 60.7[1.19]
Enc. 91.2∗

[0.50] 76.2∗
[0.23] 95.4∗

[0.21] 80.2∗
[0.48] 98.3∗

[0.21] 80.7∗
[0.29] 63.1∗

[1.61]

MSP w/o LF Emb. 90.0[0.54] 75.1[0.40] 95.2[0.19] 78.7[0.58] 97.9[0.42] 80.1∗[0.22] 61.6[2.17]
Enc. 90.6[0.38] 75.4[1.05] 95.2[0.21] 79.7∗[0.54] 98.2[0.23] 79.4[0.42] 62.1[1.65]

MSP w/o MS Emb. 87.7[0.30] 68.3[0.67] 84.4[0.35] 71.6∗[0.73] 97.7[0.41] 73.2[0.50] 60.5[1.65]
Enc. 89.1∗[0.30] 69.2[0.93] 83.9[0.59] 70.2[0.75] 97.7[0.11] 72.8[0.30] 61.9[1.37]

BlenderBotSMALL

MSP Emb. 91.0[0.64] 77.9[1.00] 95.7[0.15] 82.0[1.34] 98.1[0.19] 80.3[0.26] 60.5[1.54]
Enc. 93.8∗

[0.70] 87.4∗
[0.25] 96.5∗

[0.30] 88.8∗
[0.55] 98.6∗

[0.16] 84.4∗
[0.33] 71.3∗

[1.71]

MSP w/o LF Emb. 90.4[1.07] 74.7[0.30] 95.5[0.19] 81.9[0.67] 98.2[0.23] 79.8[0.47] 60.4[1.44]
Enc. 93.6∗[0.62] 85.5∗[0.39] 96.4∗[0.32] 88.8∗[0.86] 98.6[0.31] 84.2∗[0.41] 71.2∗[0.27]

MSP w/o MS Emb. 90.5[0.79] 71.7[0.59] 90.2[0.94] 81.2[0.17] 97.9[0.29] 74.0[0.56] 58.4[2.62]
Enc. 93.4∗[0.25] 84.7∗[0.59] 95.8∗[0.21] 87.9∗[0.30] 98.5∗[0.06] 83.1∗[0.17] 70.7∗[2.95]

DialoGPTSMALL

MSP Emb. 94.2[0.38] 83.7[0.39] 96.1[0.27] 85.4[0.03] 98.9[0.15] 82.3[0.46] 58.7[0.64]
Enc. 96.8∗

[0.63] 83.4[0.21] 96.2[0.62] 85.7[0.43] 99.0[0.64] 82.4[0.37] 66.7∗
[0.66]

MSP w/o LF Emb. 93.0[0.69] 83.2∗[0.87] 95.7[0.54] 84.8∗[0.22] 98.7[0.25] 81.8[0.31] 58.3[2.75]
Enc. 96.2∗[0.43] 81.7[0.73] 94.7[0.30] 79.1[0.60] 98.7[0.14] 81.6[0.20] 66.2∗[0.54]

MSP w/o MS Emb. 93.4[0.52] 82.1[1.00] 92.6∗[0.52] 83.7∗[0.72] 98.7[0.19] 77.1[0.38] 56.3[1.72]
Enc. 94.4[0.86] 83.0[0.41] 91.2[0.81] 77.5[1.27] 98.7[0.27] 80.7∗[0.27] 66.5∗[2.08]

Table 4: The performance of different dialogue models on probing tasks for ablation experiments. Here we introduce
three ablation settings: 1) MSP: The complete Multi-Source Probing method, 2) MSP w/o LF: MSP without the
late fusion module, 3) MSP w/o MS: MSP without the multi-source attention mechanism and the late fusion module.
Best results are marked in bold, and data that passed the significance test ( t-test, p-value < 0.05) are super-scripted
with an asterisk ∗.

Method TREC DNLI MWOZ SGD SNIPS SSA Topic

MSP Emb. 90.5[0.27] 75.0[0.64] 95.2[0.27] 78.9[0.80] 97.9[0.11] 79.4[0.28] 60.7[1.19]
Enc. 91.2∗

[0.50] 76.2∗
[0.23] 95.4∗

[0.21] 80.2∗
[0.48] 98.3∗

[0.21] 80.7∗
[0.29] 63.1∗

[1.61]

MLP-Deep Embs. 83.7∗[1.70] 70.2[0.48] 92.0∗[0.36] 69.2∗[0.67] 97.7∗[0.20] 77.3[0.39] 56.4[1.10]
Enc. 80.7[1.39] 69.3[0.62] 89.5[0.74] 67.5[0.67] 96.9[0.30] 78.4∗[0.24] 56.8[2.72]

Table 5: The performance of the MSP and MLP-Deep methods on probing tasks. Best results are marked in bold,
and data that passed the significance test ( t-test, p-value < 0.05) are super-scripted with an asterisk ∗.

A Discussion

A.1 Eliminate the Effect of Parameter Scales
We have already found a positive correlation be-
tween parametric size and probe model perfor-
mance earlier, so here we further explore the gap
between MLP and MSP performance at the same
parameter size to address the concern about the
effect of the number of parameters on the probing
results.

We extended the original two-layer MLP to a
parameter scale consistent with the MSP, and the
results are attached in Table 5. Although the pa-
rameter size of the MLP is increased to a level
comparable to that of the MSP, the results are still
sub-optimal because it does not operate in a manner
consistent with the goals in the pretraining phase
of the dialogue model. The supplementary exper-
iment results demonstrate the effectiveness of the

MSP structure.

A.2 Generalization on Pre-trained Language
Models

We also evaluated the results of MSP over the state-
of-the-art pre-trained language models. According
to the results over BERT, BART, and T5 in Table 6,
we could conclude that MSP still outperforms MLP
even on the pre-trained language model.

Among the three models of comparable parame-
ter size, Bart has the most outstanding ability for
dialogue understanding. Bert performs optimally
on the topic classification task, and T5 has very
good performance on the task of intent detection,
which is consistent with the characteristics and pre-
training goals of the individual models themselves.

We found that Blenderbot-Small outperformed
all of the three general pre-trained models in terms

12503



Method TREC DNLI MWOZ SGD SNIPS SSA Topic

Bert MLP Embs. 87.8∗[0.55] 73.7[0.77] 92.9∗[0.44] 73.0∗[0.68] 98.4∗[0.19] 78.2[0.34] 46.9[1.88]
Enc. 85.7[0.24] 81.8∗[0.45] 90.2[0.39] 70.2[0.34] 95.8[0.19] 81.1∗[0.28] 59.9∗[1.08]

Bert MSP Embs. 92.7[0.36] 80.2[0.54] 95.4[0.18] 81.9[0.37] 98.5[0.56] 81.9[0.47] 58.4[1.54]
Enc. 94.9∗

[0.23] 86.7∗
[0.59] 95.8[0.42] 83.2∗

[0.44] 98.6[0.68] 82.3[0.97] 69.7∗
[1.12]

Bart MLP Embs. 87.5[0.57] 75.1[0.95] 93.2[0.50] 73.7[0.60] 98.5[0.12] 79.9[0.12] 48.2[2.13]
Enc. 89.8∗[0.29] 85.9∗[0.36] 91.9[0.24] 72.5[0.39] 98.8[0.05] 83.7∗[0.14] 56.0∗[0.75]

Bart MSP Embs. 91.3[0.33] 81.3[0.87] 96.1[0.25] 84.5[0.79] 98.4[0.23] 81.7[0.21] 60.5[1.74]
Enc. 95.6∗

[0.29] 87.6∗
[0.46] 96.3[0.41] 87.2∗

[0.07] 99.0∗
[0.18] 84.9∗

[0.22] 68.1∗
[0.76]

T5 MLP Embs. 86.8[1.54] 74.0[1.07] 93.1[0.54] 73.6∗[0.16] 97.2[0.38] 78.5[0.86] 44.5[5.33]
Enc. 89.5∗[0.26] 83.3∗[0.34] 93.1[0.28] 72.4[1.22] 98.1[0.11] 82.1∗[0.20] 57.9∗[2.81]

T5 MSP Embs. 91.7[0.41] 80.8[1.39] 95.6[0.47] 83.2[0.19] 98.6[0.07] 81.4[0.24] 59.1[2.45]
Enc. 93.2∗

[0.73] 85.1∗
[0.54] 96.2[0.58] 85.7∗

[0.02] 98.9[0.17] 83.3∗
[0.25] 67.6∗

[1.22]

Table 6: The performance of the MSP and MLP methods with the state-of-the-art pre-trained language models
BERT, BART, and T5 on several probing tasks. Best results are marked in bold, and data that passed the significance
test ( t-test, p-value < 0.05) are super-scripted with an asterisk ∗.

Method TREC DNLI MWOZ SGD SNIPS SSA Topic

MLP Rand.Emb. 71.8[1.73] 60.4[0.42] 87.2[0.50] 60.5[0.60] 96.6[0.36] 70.6[0.29] 39.8[2.49]
Orig.Emb. 83.1∗[1.07] 69.9∗[0.79] 92.1∗[0.38] 69.9∗[0.55] 97.9∗[0.24] 77.1∗[0.17] 53.3∗[2.00]

Linear Rand.Emb. 65.7[1.70] 53.4∗[0.59] 84.9[0.30] 55.4[0.26] 95.5[0.46] 69.2∗[0.25] 35.8∗[2.30]
Orig.Emb. 66.0[0.74] 51.2[0.85] 84.2[0.61] 63.8∗[0.98] 95.5[0.38] 62.3[0.61] 31.2[3.26]

Table 7: The performance of the MLP and Linear-Probing methods with original and random embeddings on
several different probing tasks. Data that passed the significance test (t-test, p-value < 0.05) are super-scripted with
an asterisk ∗.

Model Parameter Perplexity

Transformer 37M 30.3

BlenderBotSMALL 90M 10.4

DialoGPTSMALL 117M 8.6

Table 8: Training results of dialogue models.

of accuracy on the MWOZ SGD and Topic tasks.
While DialoGPT-Small performs best on the TREC
and SNIPS tasks. Another point to note is that all
three models included in the supplemental exper-
iments have over 25% more parameters than the
corresponding BlenderBot-Small DialoGPT.

A.3 Non-linear Probing Finetuning

Nonlinear probing is widely adopted in previous
works (Belinkov et al., 2017; Belinkov and Glass,
2017; Conneau et al., 2018). In fact, non-linear
probing and linear probing are essentially similar
in probing. Classifiers with even a shallow linear
structure can still fit well on these probing tasks. To
this end, we add an experiment on linear probing, in
which the original/random embeddings of the dia-
logue model were connected to a single linear layer
for linear regression. The results in Table 7 show

that the linear probing method can also achieve
more than 95% accuracy on random embeddings in
the SNIPS task. It also proves the previous conclu-
sion that linear probing is not an exclusive probing
skill and non-linear probing has stronger probing
performance in many aspects. We also add the ex-
perimental results of MSP on Bert (See Table 6),
where we could see that Bert does not outperform
pretrained ODD models of comparable size on the
task of probing for language understanding.

B Dataset Examples

Examples of probing dataset are shown in Table 9.

C Implementation Details

We implemented the above models with Py-
Torch (Paszke et al., 2017), OpenPrompt (Ding
et al., 2021) and Huggingface Library (Wolf et al.,
2019a). When implementing the Multi-Source
Probing method upon DialoGPT, we introduced
randomly initialized cross-attention parameters to-
gether with the decoder for fine-tuning since Di-
aloGPT is not an encoder-decoder-based model.
We utilized Soft Verbalizer (Hambardzumyan et al.,
2021; Hu et al., 2022), where a continuous vector
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Dataset Type Example Class Label

TREC Question Classification [User1]: What sprawling U.S. state boasts the most airports?
number,
entity,
location, ...

location

DialogueNLI Natural Language Inference [User1]: My locks are chestnut .
[User1]: You are blonde .

entail,
contradict,
neutral

contradict

MultiWOZ Intent Classification

[User1]: Can you find an expensive restaurant that serves
Venetian food?
[User2]: Sorry, looks like there aren’t any Venetian restaurants
that are expensive. Would you like something else?
[User1]: Yes, I would be interested in one that serves Chinese
food. Where would you recommend?

restaurant-inform,
taxi-request,
general-thank,
...

restaurant-inform

Schema-
Guided Intent Classification

[User1]: Can you show me attractions I can visit?
[User2]: Where do you want me to search.
[User1]: In Toronto please.
[User2]: I found 10, how about 3D Toronto Sign,
it’s a tourist attraction.

find-attractions,
reserve-flight,
get-ride, ...

find-attractions

SNIPS Intent Classification [User1]: I need another artist in the New Indie Mix playlist.
search-screening,
add-to-playlist,
get-weather, ...

add-to-playlist

ScenrioSA Sentiment Classification

[User1]: Have you met the new intern?
[User2]: Yes. She’s very enthusiastic.
[User1]: I know. I don’t trust her.
[User2]: Why? She is just ambitious.
[User1]: I think she wants my job.

positive,
negative,
neutral

negative

DailyDialog
Topic Topic Classification

[User1]: Happy birthday , Jim ! Here is a present for you.
[User2]: Oh , great ! I love it!
[User1]: I’m very glad to hear that .
[User2]: Come here, let me introduce some friends to you.

ordinary life,
work, school,
tourism, politics,
relationship, ...

relationship

Table 9: Examples from probing tasks.

is designed for each class label, to generate the
probability distribution for class label space by cal-
culating the dot product between the output of the
language model and the class vector. The class
vectors are initialized with the pretrained token em-
beddings and will be fine-tuned through training.

All models in this paper are optimized through
ADAM (Kingma and Ba, 2014) with learning rate
and dropout rate optimized through grid search.
The number of soft tokens is empirically set to 12
in our Multi-Source Probing method. The learning
rate is searched within the range of {5× 10−5, 1×
10−4, 2× 10−4, 3× 10−4, 5× 10−4} and dropout
rate within {0.1, 0.2, 0.3, 0.4, 0.5}. The batch size
for Transformer, BlenderBot, and DialoGPT are
128, 64, and 16 respectively. Accuracy and stan-
dard deviation data in this paper are calculated from
the results of 5 replicate experiments. We con-
ducted our probing experiments on the NVIDIA
V100 Tensor Cores, the average run-time for each
probing task is about 5 hours.
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