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Abstract

The ability to proactively engage with users
towards pitching products is highly desired
for conversational assistants. However, exist-
ing conversational recommendation methods
overemphasize on acquiring user preferences
while ignore the strategic planning for nudg-
ing users towards accepting a designated item.
Hence, these methods fail to promote speci-
fied items with engaging responses. In this
work, we propose a Reinforced Target-driven
Conversational Promotion (RTCP) framework
for conversational promotion. Specifically,
RTCP integrates short-term and long-term plan-
ning via a balanced gating mechanism. In-
side which, the dialogue strategies are pre-
dicted via knowledge-integrated multi-head at-
tention and guided via reinforcement learning
rewards. RTCP then employs an action-guided
prefix tuning method to generate relevant re-
sponses. Experimental results demonstrate that
our model outperforms state-of-the-art models
on both automatic metrics and human evalua-
tion. Moreover, RTCP has a strong capability
in quickly adapting to unseen scenarios just by
updating prefix parameters without re-training
the whole model. Code and data are here 1.

1 Introduction

In recent years, conversational recommender sys-
tems (CRSs) (Li et al., 2018; Kang et al., 2019;
Zhou et al., 2020b; Ma et al., 2021; Zhou et al.,
2021b; Li et al., 2022; Ren et al., 2022; Zou et al.,
2022; Chu et al., 2023) have gained considerable
attention from both academic researchers and in-
dustrial practitioners. Inside such systems, most
CRS models will first infer user preferences via
multi-turn conversations and then recommend a set
of potential items when appropriate. The essential
goal for such models is to solicit user interests accu-
rately and then map such interests to some specific
items in repository.

1https://github.com/huyquangdao/RTCP

Conversation
Dialogue Actions

Bot:  Good morning, Mr. XXX 
User: Good morning. 
Bot:  How's everything going recently? 
User: Retirement is very enjoyable. 

Goal: Greetings 
Topic: None

Goal: Chat about stars
Topic: JayChou

Bot: Let's talk about Jay Chou. Jay Chou is the best-selling
Chinese artist of World Music Awards for four times. He's a very
good singer.
User: Yeah, I like his songs best.
Bot: Jay Chou is not only good at singing, but also good at acting.
He once won the Chinese Film Media Awards for Best New Actor.
User: I only know that he sings well, but I haven't seen his movies
yet.

Bot: Do you want to see Kung Fu Panda 3 starred Jay Chou. 
User: I haven't seen this movie. Is that a good one ? 
Bot: It' very good movie. It can be called a template for
inspirational films. 
User: That sounds good. I will watch this movie later. Thank you
for the recommendation 

Goal: Movie Recommendation 
Topic: KungFu Panda 3

Goal: Say Good Bye
Topic: None

Bot: No Problem. I won't disturb you anymore. Good Bye
User: Bye

Targeted Item: Kung Fu Panda 3 

   

Figure 1: An illustration of the target-driven conversa-
tional promotion setting.

However, a more challenging scenario would be
target-driven conversational promotion, where the
system mimics a salesperson to nudge the users
towards accepting a pre-given item. As illustrated
in Figure 1, the bot tries to recommend a given
target ‘Kung Fu Panda 3’ to the user via multiple
turns of conversation. It gradually nudges the user
via chatting about ‘JayChou’, on his well-known
achievements in music, and then recommends his
movie, which helps the user to get interested and ac-
cept the target with higher chance. Such a scenario
is highly desired due to the potential for boosting
sales revenue and reducing human costs but also
calls for higher requirements on wisely promoting
items and proactively engaging with users (Liao
et al., 2023a,b; Deng et al., 2023a). Although ex-
isting CRS models (Chen et al., 2019; Zhou et al.,
2020a; Lu et al., 2021; Zhou et al., 2021a; Liang
et al., 2021; Zhou et al., 2022; Wang et al., 2022c)
have achieved promising results, they tend to adopt
a relatively passive scheme—mainly guessing user
preferences via conversations, hence cannot be di-
rectly applied to the new proactive nudging setting.

Generally speaking, the new conversational pro-
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motion setting brings in two new obvious chal-
lenges that press for solutions. Firstly, as the virtual
assistant needs to converse gradually to convince
the user in accepting the target item, it is essential
to produce an appropriate plan, e.g. in a sequence
of action tuples, that leads to the target item while
can also keep the user interested in the conversation.
Secondly, once the plan is predicted, the other im-
portant requirement is to generate proper responses
that are in line with the plan accurately. Also, it is
likely that the model would encounter new conver-
sation scenarios with unseen dialogue plans. The
model should be able to adapt to such scenarios
quickly and handle them properly, in order to avoid
disappointing the users.

To address the aforementioned challenges,
we propose a systematic framework–Reinforced
Target-driven Conversational Promotion (RTCP)
for the new setting. For planning, RTCP integrates
long-term planning and short-term planning via a
balanced gating mechanism. The former takes care
of achieving the predefined target, while the latter
looks into engaging the user and the smoothness
of the conversation. Specifically, RTCP predicts
action tuples in a plan via knowledge-integrated
multi-head attention and is guided via estimated
Reinforcement Learning rewards. For response
generation, RTCP employs a novel action-guided
prefix tuning method to regulate the response gen-
eration being in line with the plan. In particular,
it pushes action plan factors into different prefix
parameters, while leaves the main generation task
to the pre-trained language model. This helps the
model to learn and adapt better, especially when
new action plans happen. To sum up, our contribu-
tions are threefold:

• We emphasize on a new target-driven conver-
sational promotion setting where the agent
nudges the user towards accepting a specified
item via multiple turns of conversation.

• We propose a reinforced target-driven conver-
sational promotion framework that balances
between short-term and long-term planning,
while further integrates action-driven prefix
tuning to better guide the generation of rele-
vant responses.

• Experiments show that RTCP outperforms the
baselines on both automatic metrics and hu-
man evaluation. It also has a strong ability to
quickly adapt to unseen conversation scenar-
ios without re-training the whole model.

2 Related Work

2.1 Conversational Recommender Systems
The goal of CRS models is to offer personalized
recommendations via interactive dialogues. One
line of CRS methods (Lei et al., 2020a,b; Ren et al.,
2021; Deng et al., 2021; Hu et al., 2022; Tu et al.,
2022) mainly focuses on improving the perfor-
mance of item recommendation, where they ask
clarifying questions to gradually find an optimal
candidate set. Therefore, the quality of generated
responses is less emphasized as these works only
leverage pre-defined response templates (Lei et al.,
2020a,b; Ren et al., 2021) to interact with the users.

Another line of CRS research integrates recom-
mendation modules into dialogue systems so that
the item recommendation and the response gener-
ation objectives could be jointly optimized. Some
efforts (Chen et al., 2019; Zhou et al., 2020a; Liao
et al., 2020; Liang et al., 2021; Lu et al., 2021;
Wang et al., 2022b; Zhou et al., 2022; Zhang et al.,
2023) utilize different knowledge resources, such
as knowledge graphs (Bizer et al., 2009; Wu et al.,
2022) and user reviews to enrich extracted informa-
tion from the conversations. However, such CRS
systems lack appropriate conversational strategies
to interact with users. Therefore, other recent meth-
ods (Liu et al., 2020, 2021; Hayati et al., 2020;
Zhang et al., 2021) aim to develop goal-oriented
CRS models that can converse with users by using
different strategies (e.g chitchat, asking questions
or recommendation). Liu et al. (2020) make the
first attempt by introducing a goal-oriented CRS
dataset called DuRecDial. State-of-the-art goal-
driven CRS approaches (Wang et al., 2022a; Deng
et al., 2023b) attempt to improve their short-term
planning abilities with either target-side informa-
tion or multi-task learning.

However, since these models mainly produce
items according to the user’s preference, it is non-
trivial for these methods to transfer into a setting
when a target item is given by the system before-
hand. In this work, we utilize both short-term and
long-term planning and combine these two strate-
gies via a flexible balancing mechanism.

2.2 Controlled Response Generation
Recently, a surge of works (Zhong et al., 2021;
Qin and Eisner, 2021; Ye et al., 2022b,a) focuses
on leveraging the power of pre-trained language
models for improving response generation. Among
them, prefix-based methods aim to tune a set of

12584



Generated Response 𝑌gen 

Generation Module 

GPT-2 (Fixed) 

State 𝑠𝑡+1 = {𝑎𝑡}𝑡=1
𝑇  

Environment 

Reward 𝑟𝑡 = 𝛽 ∗ 𝑟a + 𝑟𝑠 Action 𝑎𝑡 

𝑟𝑎 = 𝑣 if 𝑔𝑡 = 𝑔  and 𝑝𝑡 = 𝑝 , else 0 

Agent 

𝑓𝜃 

Knowledge-Integrated 

Attention  Model 

Knowledge K   

Context C  

Previous Actions A 

Action 𝑎𝑖,𝑡 

Gating 

Mechanism 

𝛼 

1 − 𝛼 

Planning Module Long-Term Planning 

Short-Term Planning 

Goal 

Prefix 

Topic 

Prefix 
Task 

Prefix Dialogue History 
Target 𝑣 = (𝑔 , 𝑝 ) 

Figure 2: The architecture of the proposed RTCP model. The planning module predicts action tuples via balancing
between short-term and long-term planning to keep user engaged and approach the target. With predicted action
tuples, the generation module employs action-guided prefix tuning to generate relevant responses and realize fast
adaptation to unseen scenarios.

trainable parameters, which are prepended to the
input and control text generation (Li and Liang,
2021). Lester et al. (2021) propose a similar
method, where they prepend the input sequence
with special tokens and then they directly train the
embeddings of these tokens. Such methods side-
walk the heavy burden of training separate large
models for different settings. Inspired by these,
we incorporate predicted strategies into separate
prefix parameters and give different inputs to these
prefixes for controlled response generation.

3 Preliminary

Notations. We denote by G the set of all goals
(e.g. chit-chat, movie recommendation, etc), and
denote by P the set of all topics (e.g The Conjur-
ing, Jaychou, etc). At the t-th turn, we represent an
action tuple at by a pair of goal gt and topic pt (i.e
at = (gt, pt)). Each conversation D = (C,K,A)
is a tuple of three elements namely the conversa-
tion content C, a set of all associated knowledge
K = {kj}NK

j=1 (NK is the size of the knowledge
base) and a sequence of action tuples A = {at}Mt=1

(M is the number of turns). The conversation con-
text C = {(Xt, Yt)}Mt=1 is a set of all historical
user utterances and corresponding responses. The
goal of conversational promotion is to interact with
the users to persuade them to accept a targeted item.
We decompose the problem into 2 sub-tasks includ-
ing (1) the dialogue strategy planning and (2) the
response generation tasks.
Dialogue Strategy Planning: Formally, given a
designated item v ∈ P . We aim to produce a
plan Â = {â1, â2, ..., âM} which is a sequence of

action tuples to please the users and recommend
the targeted item when appropriate.
Response Generation: For the t-th turn, given
historical context Xt, knowledge base K and a pre-
dicted action tuple ât, we aim to generate a coher-
ent response Ŷt to the user.

4 Methodology

We show the overall framework in Figure 2. Our
RTCP consists of two components namely planning
in Section 4.1 and generation in Section 4.2.

4.1 Long Short-Term Strategic Planning

At each turn, the planning module needs to pre-
dict an action tuple ât = (ĝt, p̂t). For target-driven
recommendation setting, it is crucial to balance
between two objectives: (1) engaging users with
relevant topics; (2) recommending the target item
while avoiding lengthy conversations. Correspond-
ingly, we adopt short-term and long-term planning
to achieve these two aforementioned objectives.

4.1.1 Short-Term Planning

Similar to existing works (Zhang et al., 2021; Deng
et al., 2023b), we consider short-term planning as
the task of predicting the next action tuple.

Knowledge-integrated Attention To effectively
leverage different kinds of inputs, we propose to
utilize a Knowledge-integrated Attention block to
gradually incorporate the previous action tuple se-
quence A, historical context X , and knowledge
base K in order to produce the final prediction (as
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described as follows):
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where E
(l)
O is the output of the l-th attention block

while EA, EX , EK are representations of the ac-
tion path, dialogue context, and knowledge base,
which are computed by using separated BERT mod-
els (Devlin et al., 2019). MHA and FFN are the
multi-head attention and feed-forward neural func-
tions (Vaswani et al., 2017) respectively.

Prediction via Short-Term Planning. We uti-
lize the representation of the [CLS] token of the
last layer to simultaneously predict the next goal
and topic. Formally, we compute probability distri-
butions of goals and topics as follows:

Pg = Softmax(WgE
(L)
O,[cls] + bg),

Pp = Softmax(WpE
(L)
O,[cls] + bp),

where Pg,Pp are probability distributions for the
goals and topics respectively while Wg,Wp, bg, bp
are model’s parameters. To train goal and topic
planning, we minimize the negative log likelihood
functions of the ground-truth goal g∗ and topic p∗:

Lg = −
N∑

i=1

logPg(g
∗
i |Xi,Ki, Ai,Θg),

Lp = −
N∑

i=1

logPp(p
∗
i |Xi,Ki, Ai,Θp),

where N is the total number of training examples
and Θg,Θp are parameters associated with the goal
and topic prediction task respectively.

4.1.2 Long-Term Planning
In this work, we adopt Reinforcement Learning
(RL) to enhance the long-term planning ability of
our system. The goal is to encourage the system
to focus more on recommending the targeted item
while avoiding long-lasting conversations.

A MDP Viewpoint of Conversational Planning.
We re-formalize conversational planning as a
Markov Decision Process (MDP) which includes

a sequence of states, actions, and rewards. For-
mally, a MDP consists of a tuple of five elements
M = (S,A,P,R, γ). At the t−th turn, we de-
fine the state st ∈ S as the sequence of previ-
ous t− 1 action tuples in chronological order (i.e
st = {a1, a2, ..., at−1}). The action space A con-
sists of all available action tuples (i.e A = {aj =
(gj , pj)|gj ∈ G, pj ∈ P }). For state transition,
after employing the action tuple at, we append the
action tuple at to the end of the current state st to
construct the next state st+1. Finally, γ ∈ [0, 1] is
the discount factor.

Reward R. To train the RL agent, we define the
following reward function:

rt = β ∗ ra + rs,

where rt is the final reward and β is a hyper-
parameter while we refer to ra, rs as target and
intermediate rewards respectively. On the one hand,
we use the former to encourage the agent when it
successfully recommends the targeted item. The
target reward is computed as follows:

ra =

{
v, if gt = ĝ, pt = ŝ, t1 ≤ t ≤ t2,

0, otherwise,

where v is a predefined value, ĝ, ŝ are the targeted
goal and item of the current conversation respec-
tively. t1, t2 are two hyper-parameters utilized
to determine whether the system should recom-
mend the targeted item. On the other hand, we
adopt the intermediate reward to preserve the rel-
evance of topical transitions during the conversa-
tions and compute it by applying a binary classifi-
cation model on the state st+1 as follows:

rs = σ(Wshst+1 + bs),

where hst+1 is the latent representation of the state
st+1, σ is the Sigmoid activation function and
Ws, bs are parameters. To compute hst+1 , we feed
the next state st+1 through a BERT model and
utilize the output corresponding to the [CLS] to-
ken. Additionally, to train the binary classification
model, we consider sequences of strategies from
the training set as positive instances and randomly
replace some elements in the positive instances to
produce negative ones.

Prediction via Long-Term Planning. At each
turn, we compute a policy π(at|st, θ) which is a
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probability distribution over all available action
tuples by using the following formulation:

π(at|st, θ) = fθ(st),

where function fθ is parameterized by a neural
network and θ are its corresponding parameters.
Finally, following (Zhao et al., 2017), we utilize
actor-critic framework to train our RL agent.

4.1.3 Long Short-Term Strategic Balancing
Based on the conversation situation, the system will
need to balance short-term and long-term planning
for better performance. Therefore, we propose an
adaptive gating mechanism that allows the system
to flexibly combine the two aforementioned abil-
ities. Specifically, during the inference step, we
compute a weighted combination of two probabil-
ity distributions. Formally, the final distribution on
action tuples is computed as follows:

P(at) = (1− α) ∗ Pshort(at) + α ∗ Plong(at)

= (1− α) ∗ Pg(gt) ∗ Pp(pt) + α ∗ π(at),

where α is a hyper-parameter that can be
flexibly chosen by using cross-validation.
Pshort(at),Plong(at) are probability distributions
computed by the short-term and long-term parts
respectively. Here, we assume that goal and topic
are two independent random variables. Therefore,
the short-term distribution Pshort(at) can be
computed by taking the product of the two factorial
distributions. By varying α, the planning strategy
of the system also changes accordingly. A larger
value of α might encourage the system to quickly
suggest the targeted item to the user. In contrast,
by using a smaller α, the system focuses more on
maintaining the relevance of topical transitions
during the conversations. Consequently, choosing
suitable values for α is not trivial and largely
depends on the situation at hand.

4.2 Action-Guided Response Generation

Given a predicted action tuple ât that consists of a
goal ĝt and a topic p̂t from the planning part, the
language generation model is expected to produce
appropriate responses accordingly.

Action-guided Prefix Tuning. Inspired by meth-
ods from controlled generation, we enhance the
standard prefix tuning (Li and Liang, 2021) with
action-driven contents to further calibrate the gen-
eration process. Specifically, to train the language

generation model, we prepend learnable continu-
ous prompts representing the predicted goal and
topic to the input sequence. Formally, given a spe-
cific action tuple ât = (ĝt, p̂t), we construct the
input sequence It for the i-th training example as
follows.

It = [Gt,Pt,Tgen, Xt],

where Xt is the historical context while
Gt,Pt,Tgen are corresponding continuous
prompt tokens representing the goal, topic and
the generation task respectively. Noticeably, in
contrast to these existing prompt tuning methods
(Li and Liang, 2021), our proposed approach is
data-driven which means the model can adapt
better to different individual training examples.

Parameter Optimization. We fix the parameters
of pretrained GPT2 model and only learn the ad-
ditional latent prompts. That means only the goal
prompt Gt, topic prompt Pt, and task-specific to-
kens Tgen are updated during the training process.
To learn the response generation task, we optimize
the following loss function:

Lgen = −
N∑

t=1

L∑

j=1

logPgen(y
∗
t,j |yt,<j |Gt,

Pt,Tgen, Xt,Θplm),

where N is the total number of training examples,
L is the length of the output sequence and Θplm are
fixed parameters of the pretrained language model.

5 Experiments

5.1 Experimental Setup
Dataset. In this work, we utilize DuRecDial (Liu
et al., 2021) and INSPIRED (Hayati et al., 2020)
to conduct our experiments. Both of them are orig-
inally designed for goal-driven CRS setting. It is
worth noticing that for INSPIRED, we only con-
duct the goal planning due to lacking annotations
of topics. We show the detailed statistics of these
two datasets in the Appendix A.2. In this work, we
regard the item which the user will accept at the
end of each conversation as the targeted item.

Baselines. In this work, we compare RTCP with
several representative baseline methods including
general pre-trained language models( GPT2 (Rad-
ford et al., 2019), DialoGPT (Zhang et al., 2020),
BART (Lewis et al., 2020) ) and state-of-the-art
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goal-driven CRS methods (KERS (Zhang et al.,
2021), TCP (Wang et al., 2022a) and UNIMIND
(Deng et al., 2023b)). Moreover, we also report the
results of variants of RTCP including RTCP with-
out knowledge-integrated attention (RTCP-KIA),
RTCP without goal-topic prompts (RTCP-GP) and
RTCP without task-specific prompt (RTCP-Tgen).
We describe the details of baselines in Appendix
A.3.

Implementation Details We use Pytorch frame-
work 2 to implement our conversational promo-
tion framework and train the framework on 1GPU
NVIDIA A100 40G card. We run the model 4 times
with different random seeds and compute the aver-
aged results. In this work, we use the GPT2-base
(114M) and Bert-base (114M) as our backbone
models, We set the dimension of hidden vectors
to 768. For the knowledge-integrated attention
model, we set the number of layers to 12 (4 for
INSPIRED), and the number of attention heads
to 8. To train our RL module, we set the target
reward and weighted parameter γ to 3.0 and 1.0
respectively. To balance between short-term and
long-term planning, we perform cross-validation
and empirically set the value of α to 0.6 and 0.9 for
DuRecDial and INSPIRED respectively. We use
a learning rate of 1e-5 to train the actor network
while the learning rate of the critic is set to 5e-5.
For the response generation part, we use 50 soft
tokens for training the task-specific prefix and 2 for
both the goal and topic prefixes respectively. Fi-
nally, we train the generation model with a learning
rate of 5e-5 with 5 epochs till converge.

Evaluation Metrics. We evaluate the models on
both dialogue planning as well as response gen-
eration aspects. In particular, we utilize accuracy
(Acc) and joint accuracy (Joint Acc) metrics for
short-term planning. For the target accomplish-
ment, we report the dialogue-level success rate
(SR), success rate at k-th turn (SR@k) (Lei et al.,
2020a,b) and the averaged number of conversation
turns (Avg. Turns) needed to successfully recom-
mend the targeted item. For response generation,
we utilize both automatic and human evaluation.
For automatic evaluation, we use perplexity (PPL),
word-level F1 (F1), BLEU-N (N=1,2) (Papineni
et al., 2002), Dist-N (N =1,2) (Li et al., 2016) and
Knowledge F1 (Know. F1)(Wang et al., 2022a;
Zhang et al., 2021). For human study, we randomly

2https://pytorch.org/

DuRecDial INSPIRED

Model
Goal Prediction Topic Prediction Joint Acc. Goal Prediction

Acc. (%) Acc. (%) Acc. (%) Acc (%)

KERS 96.10 78.41 77.83 19.64
BERT 97.81 88.03 89.61 27.21
TCP 97.88 93.00 92.75 21.12
UNIMIND 97.26 92.67 92.37 22.93

RTCP 98.41 95.27 95.12 30.57
RTCP - KIA 98.28 93.08 92.83 24.17

Table 1: Results on the short-term planning, demon-
strated via goal and topic prediction (t-test, p < 0.05).

DuRecDial (t = 0.6) INSPIRED (t = 0.9)
Model SR@1 SR Avg. Turns(↓) SR Avg. Turns(↓)

DialoGPT 17.06 53.96 4.61 7.46 17.08
GPT2 14.77 67.22 4.26 3.33 17.53
BART 22.17 67.67 3.96 2.61 17.75
KERS 1.65 19.72 6.33 1.33 17.75
TCP 7.45 75.43 4.26 8.33 17.23
UNIMIND 8.13 86.89 3.80 10.04 17.21

RTCP (α = t) 9.84 87.49 3.74 11.67 16.82
RTCP (α = 0.0) 9.21 86.78 3.80 9.16 16.91
RTCP (α = 0.0) - GP 8.91 87.44 3.77 7.49 17.16

Table 2: Results on the long-term planning, demon-
strated via the target achievement (t-test, p < 0.05).

sample 20 dialogues and invite two annotators to
score those dialogues. We report the results in
both turn-level and dialogue-level. For turn-level,
we concern three aspects, Fluency, Proactivity
and Informativeness, while for dialogue-level we
compare user Satisfaction and conversation Co-
henrency. The range of scores is from 1 to 3. We
measure the inter-annotator agreement by Fleiss’
Kappa (McHugh, 2012).

5.2 Main Results

5.2.1 Results on Short-term Planning

Table 1 shows the empirical results of the goal
and topic prediction tasks. Overall, pre-trained
models such as BERT and TCP perform better
than KERS. This is because such models are pre-
trained on massive amounts of text, hence could
produce more meaningful representations for down-
stream tasks. Second, we observe that our proposed
method RTCP significantly outperforms all base-
line methods across all metrics, which indicates the
superior short-term planning ability of our model
compared to others. The superior performance
of our proposed RTCP mainly comes from the
knowledge-integrated attention mechanism. This
is supported by the substantial drop in the perfor-
mance for the variant RTCP-KIA, in which we
removed the knowledge-integrated attention.
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DuRecDial (t = 0.6) INSPIRED (t = 0.9)
Model PPL (↓) F1 BLEU-1 BLEU-2 DIST-1 DIST-2 Know. F1 PPL (↓) F1 BLEU-1 BLEU-2 DIST-1 DIST-2 Know. F1

BART 6.08 28.17 0.418 0.261 0.034 0.101 41.06 19.47 10.21 0.292 0.112 0.088 0.198 10.16
DialoGPT 4.59 37.11 0.452 0.314 0.030 0.095 42.20 16.69 14.58 0.338 0.142 0.050 0.117 12.42
GPT2 4.04 39.24 0.495 0.349 0.035 0.111 48.19 15.72 13.71 0.356 0.153 0.085 0.218 8.41
KERS 6.69 35.41 0.473 0.278 0.009 0.027 33.19 24.81 10.54 0.228 0.102 0.013 0.030 1.23
TCP 4.15 41.11 0.507 0.362 0.035 0.107 60.81 17.11 13.50 0.352 0.149 0.087 0.227 7.38
UNIMIND 4.09 42.51 0.530 0.381 0.032 0.102 68.66 15.38 15.69 0.356 0.159 0.125 0.295 11.85

RTCP (α = t) 4.36 42.27 0.524 0.376 0.034 0.104 63.13 19.72 14.27 0.351 0.153 0.085 0.211 14.24
RTCP (α = 0.0) 3.69 45.39 0.542 0.402 0.036 0.109 70.35 18.64 15.39 0.371 0.168 0.091 0.211 10.21
RTCP (α = 0.0) - GP 3.89 44.66 0.529 0.391 0.034 0.102 68.04 13.48 17.31 0.355 0.167 0.077 0.187 17.16
RTCP (α = 0.0) - Tgen 5.10 36.38 0.482 0.326 0.031 0.104 46.86 33.78 13.25 0.346 0.152 0.063 0.154 4.41

Table 3: Automatic evaluation results on the response generation task (t-test, p < 0.05). We empirically set α to 0.6
and 0.9 for DuRecDial and INSPIRED respectively.

DuRecDial INSPIRED

Model
Turn-level results Dialog-level results Turn-level results Dialog-level results

Fluency Infor. Proactivity Satisfaction Coherency Kappa Fluency Infor. Proactivity Satisfaction Coherency Kappa
GPT2 2.935 2.194 1.623 1.95 1.75 0.72 2.921 1.242 1.079 1.10 1.10 0.84
KERS 2.577 1.759 1.376 1.55 1.45 0.75 2.881 1.079 1.019 1.00 1.00 0.88
TCP 2.967 2.227 1.649 2.25 2.05 0.80 2.895 1.227 1.123 1.20 1.10 0.83
UNIMIND 2.971 2.236 1.659 2.32 2.22 0.79 2.932 1.504 1.148 1.50 1.20 0.87

RTCP 2.981 2.246 1.676 2.55 2.45 0.74 2.971 1.752 1.237 1.90 1.30 0.86

Table 4: Human evaluation results on the generated responses (Infor. stands for informativeness).

5.2.2 Results on Target-achievement Task

Table 2 shows the performance comparison on the
target-achievement aspect. First, on DuRecDial,
relatively general models such as DialoGPT, GPT2,
and BART achieve rather good results on SR@1.
The reason is these models tend to recommend the
target item at the beginning state of the conversa-
tion since the target item is a part of their input
sequences. However, such behavior is less pre-
ferred in terms of user engagement and satisfaction.
On dialogue-level success rate (SR), target-driven
methods such as TCP and UNIMIND perform
significantly better than the aforementioned pre-
trained language models. Noticeably, our RTCP
consistently outperforms all baseline methods and
achieves state-of-the-art results. Moreover, com-
pared to other baseline approaches, the proposed
RTCP manages to complete the task in relatively
shorter conversations. This can be attributed to
RTCP’s long-term planning part which is effec-
tively guided by reinforcement learning rewards.

5.2.3 Automatic Evaluation on Responses

Table 3 shows the performance comparison on the
response generation task based on automatic met-
rics. First, target-driven methods such as TCP
and UNIMIND perform better than pre-trained
language models (i.e. BART, GPT2, and Dialog-
GPT). Thanks to their short-term planning part,
such CRS methods could produce interactive plans

to effectively guide the response generation task.
Second, our RTCP variants significantly outper-
form baseline methods on several metrics (6 out
of 7 metrics on DuRecDial and 5 of 7 metrics on
INSPIRED). This mainly comes from: (1): RTCP
could produce more accurate conversational plans
as demonstrated in Section 5.2.1. (2) RTCP utilizes
action-guided prompt tuning which parameterizes
dialogue strategies with learnable parameters and
adjusts them to better calibrate the generation pro-
cess. This is further demonstrated by removing the
goal-topic prompts (RTCP (α = 0 - GP) results in
a considerable drop in the results. Similarly, we
also experience a performance degradation when
removing the task-specific prompt Tgen, which in-
dicates the general task-specific tokens are indeed
important for the generation task. Finally, we show
the performance of RTCP with different values
of α. RTCP (α = 0) (only short-term planning)
achieves the best results. This is as expected since
this evaluation scheme is carried out turn-by-turn
and hence favors those methods that directly opti-
mize turn-level objectives.

5.2.4 Human Evaluation on Responses
Table 4 shows the results of human evaluation.
Overall, compared to other baseline methods, our
RTCP framework achieves better performance on
both turn-level and dialogue-level assessments. In-
terestingly, in the dialogue level, despite achieving
a high SR@1 as shown in Section 5.2.1, the GPT2
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baseline still performs worse than TCP and TCP
on the satisfaction and coherency metrics. This
indicates that the annotators are not quite satisfied
with responses generated by the GPT2 model. Such
an interesting insight further demonstrates our ob-
servation that pre-trained language models (GPT2,
BART, and DialoGPT) tend to recommend the tar-
geted item at the early stage of the dialogues, which
is not preferred in the conversational promotion set-
ting. Unsurprisingly, our RTCP presents the best
results on dialogue-level metrics. This could be
attributed to our planning strategy, which could
produce appropriate dialogue strategies to manage
the conversations.
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Figure 3: Performance of RTCP on DuRecDial with
different values of balancing parameter α.

5.3 Detailed Analyses

5.3.1 Effectiveness of Balancing Parameter α

Figure 3 shows the results on SR@1, SR, F1 and
BLEU-1 metrics of our RTCP model with differ-
ent values of balancing hyper-parameter α. First,
we can see that as we increase the value of α, the
SR@1 and SR results gradually increase. This is
reasonable since a large value of α means we focus
more on recommending the target item. However,
it also indicates that over-emphasizing long-term
planning would also hurt the model’s performance
(as SR decreases). Moreover, we notice that for
generation metrics such as F1 and BLEU-1, the
performance result decreases as α increases. The
main reason is that the F1 and BLEU-1 metrics
work in turn level. When long-term planning con-
tributes more, it is very likely that the model would
choose new plans which are significantly different
from ground-truth plans.
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Figure 4: Performance comparison on DuRecDial w.r.t
different ratio of the original training data.

5.3.2 Effectiveness of Training Data Size

Figure 4 illustrates the performance of BART,
GPT2, TCP, and the proposed RTCP on different
training data sizes. Overall, we can see that RTCP
consistently outperforms other baseline approaches
in all metrics across all different training sizes. It
indicates that RTCP learns faster and more effec-
tively than other baselines. This might be due to
the fact that RTCP only tunes prefix parameters
for generation. The backbone generation model
inside RTCP is a pre-trained GPT2 model which is
fixed and will not be updated. For baselines such as
BART, GPT2, and TCP, they have a large number
of tunable parameters, which requires more train-
ing data to approach a good local optima position.
Hence, when the ratio of training data decreases,
these methods’ performance drops relatively faster.

5.3.3 Fast Adaptation to Unseen Plans

We further conduct an experiment to demonstrate
the adaptability of our RTCP model to unseen sce-
narios. First, from the set of all available topics, we
randomly select a subset as unseen topics which is
approximately 20% of all topics. Then we divide
the original training set into two parts: train_seen
and train_unseen, where the train_unseen set con-
tains all the unseen topic samples. We do the same
for the original testing set and obtain test_seen and
test_unseen. Then we train the proposed RTCP and
the comparing TCP model on train_seen. For the
Without Training setting, we directly apply trained
RTCP and TCP models on the test_unseen for re-
sults. For the With Training setting, we further
fine-tune RTCP and TCP models on train_unseen
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and test on the test_unseen.

Model F1 BLEU-1 BLEU-2 Know. F1

Without Training
TCP 36.15 0.419 0.298 55.04
RTCP 43.51 0.532 0.381 69.38
RTCP - GP 43.24 0.514 0.371 66.07

With Training
TCP 42.27 0.500 0.362 56.07
RTCP 47.54 0.568 0.425 74.31
RTCP - GP 45.72 0.541 0.401 71.71

Table 5: Performance comparison on unseen dialogue
examples (results on DuRecDial) (t-test, p < 0.05).

The results are shown in Table 5. We observe
that even when the models have not seen such sce-
narios (without training), RTCP manages to per-
form better than TCP by large margins across sev-
eral metrics. When get exposed to new training
cases and get fine-tuned, both TCP and RTCP ob-
tain better performance results. However, there are
two important things to note: (1) In order to fine-
tune the model for such new scenarios, TCP needs
to update the whole model while RTCP only needs
to tune the prefix parameters, and the backbone
GPT2 part remains unchanged. This is of much
lower cost; hence RTCP is much more efficient as
compared to other fine-tuning based approaches.
(2) In the With Training setting, removing goal and
topic prefixes results in a considerable drop in the
performance, which indicates the impacts of these
action-driven parameters to our RTCP when it is
required to adapt to new plans.

6 Conclusion

In this work, we focused on a promising yet under-
explored setting called target-driven conversational
promotion. We proposed a novel RTCP framework
to produce dialogue action tuples which direct the
conversation to a targeted item while also please
the user with interesting and relevant topics. It man-
ages to properly generate responses that are closely
in-line with the plan while also can adapt quickly
to new scenarios. We conducted extensive exper-
iments to compare with a bunch of representative
baselines over a rich set of metrics. Both automatic
evaluation and human evaluation results showed
that RTCP significantly outperformed state-of-the-
art approaches on many important aspects.

Limitations

We discuss the limitations from the following
perspectives: (1) Difficulty level of promotion
datasets. In existing CRS datasets (DuRecDial,

INSPIRED, etc.), the users are likely to accept
items mentioned at the end of conversations, which
eventually limits the difficulty of the new nudg-
ing setting. To make the task more challenging,
it might be better to construct new promotion-
oriented datasets where the systems are given "hard
target items" that are less likely to be accepted by
the users, and the systems need several rounds of
promotions to convince the users. (2) Usage of
LLMs. Recently, large language models (LLMs)
such as ChatGPT or LLaMA have exhibited their
out-standing performance on generation. We plan
to further explore how to make use of such pow-
erful LLM models on the target-driven promotion
setting. (3) Reliance on dialogue actions. Exist-
ing goal-driven CRS models (KERS, UNIMIND)
and our model heavily rely on a pre-defined set of
dialogue actions, which inherently restricts their
usages to real-world scenarios. Improving action-
free conversational models will be a more potential
solution to alleviate such reliance.
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A Appendix

A.1 Additional Comparison with Large
Language Models (LLMs)

Recently, LLMs such as GPT3 (Brown et al., 2020),
ChatGPT (Liu et al., 2023) and Llama (Touvron
et al., 2023) have shown out-standing performance
on a variety of NLP tasks. Hence, in this work, we
also report the performance comparison between
our RTCP model and these LLM-based target-
driven recommender systems. In particular, we
adopt ChatGPT and leverage zero-shot prompting
to produce responses using the LLM model. We
construct the input prompt by prepending the target
item to the current dialogue context and ask the
model to generate the corresponding response. As
can be seen in Table 6, We can observe that RTCP
significantly achieves better performance on sev-
eral metrics including BLEU-N (N=1,2), F1 and
Know. F1. This is reasonable since RTCP is opti-
mized to mimic responses in the corpus. However,
ChatGPT performs better than our RTCP on DIST-
N metrics (N=1,2). This can be attributed to the
fact that ChatGPT have been pre-trained on a mas-
sive amount of texts. Therefore, it could generate
more diverse responses. For target-achievement as-
pects, we can observe that our RTCP outperforms
ChatGPT on all metrics. This can be attributed
to the planning module of RTCP which could pro-
duce appropriate plans to direct the conversations
towards the target item, while ChatGPT tends to
passively answer user queries. This can be seen
in Table 7 which shows the results of human eval-
uation with RTCP and ChatGPT on DuRecDial.
Athough ChatGPT is trained with large corpus and
with huge amount of parameters, our model still
manages to outperform it in Proactiveness.

A.2 Detailed Statistics of Benchmark Datasets
Detailed statistics of datasets are described in Table
8. In particular, the DuRecDial 2.0 dataset (Liu
et al., 2021) consists of 16.5K English-Chinese par-
allel dialogues and approximately 55K natural lan-
guage utterances belong to seven different domains
such as Movie/POI/Food/Music/Weather, etc. In
this work, we utilize the English version of the
dataset. We adopt the default data split 6.5 : 1 : 2.5
for training/development/test respectively. On the
other hand, INSPIRED dataset (Hayati et al., 2020)
consists of 1001 conversations (35K utterances)
that belong to the movie recommendation domain.
The dataset supports sociable conversation recom-

mendation setting and there are 19 different social
strategies in INSPIRED. In our setting, we regard
these social strategies as goals and attempt to pre-
dict them at each turn. Finally, we use the default
data splits of INSPIRED to conduct our experi-
ments.

A.3 Additional Details of Baseline Methods
In this work, we compare our RTCP framework
against several representative baselines including:

• BERT (Devlin et al., 2019) is a widely used
baseline model for text classification tasks.
We adapt it to show the performance compar-
isons on goal and topic prediction.

• GPT2 (Radford et al., 2019) is a basic but
strong text generation baseline which gains
from large pretrained language modeling.

• BART (Lewis et al., 2020) is a more recent
denoising autoencoder pretrained model for
language generation. It can be seen as gen-
eralizing BERT, GPT, and many other more
recent pretraining schemes.

• DialoGPT (Zhang et al., 2020) is a dialogue
generative pre-trained GPT model trained on
large-scale conversation-like exchanges from
Reddit, which helps to generate more relevant
and context-consistent responses.

• KERS (Zhang et al., 2021) is a knowledge-
enhanced multi-subgoal driven recommender
which predicts a sequence of subgoals and
use them to guide the dialog model to select
knowledge from a sub-set of existing knowl-
edge graph.

• TCP (Wang et al., 2022a) is a target-driven
recommender. It predicts a sequence of goals
and topics in short-term planning manner
which further guide the response generation.

• UNIMIND (Deng et al., 2023b) is the state-
of-the-art goal-driven CRS model which lever-
ages a multi-task learning and a prompt-based
approach to unify sub-tasks of multi-goal CRS
setting.

A.4 Instructions for Human Evaluation
Given generated conversations, we ask the annota-
tors to evaluate those dialogues in both turn-level
and dialogue-level aspects. For turn-level results,
we report three metrics namely Fluency, Informa-
tiveness, and Proactivity. On the dialogue level,
we report Satisfaction and Coherency respectively.
The rating scores must be in the range of [1,3] and
a higher score is corresponding to a better example.
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Model Response Quality Target-achievement
F1 BLEU-1 BLEU-2 DIST-1 DIST-2 Know. F1 SR@1 SR Avg. Turns(↓)

ChatGPT 12.26 0.317 0.176 0.048 0.205 16.20 5.19 85.09 3.97
RTCP (alpha = 0) 45.39 0.542 0.402 0.036 0.109 70.35 9.21 86.78 3.80

Table 6: Automatic evaluation between RTCP and ChatGPT on the DuRecDial dataset.

Model Turn-level results Dialog-level results
Fluency Infor. Proactivity Satisfaction Coherency Kappa

ChatGPT 3.000 2.376 1.577 2.65 2.40 0.69
RTCP 2.981 2.246 1.676 2.55 2.45 0.74

Table 7: Human evaluation on the DuRecDial by RTCP and ChatGPT (Infor. stands for informativeness).

DuRecDial INSPIRED
# of convs 16.5K 1001
# of utterances 255K 35,811
# of goals 14 19
# of topics 646 _
# of domains 5 1

Table 8: The detailed statistics of DuRecDial and IN-
SPIRED datasets.

For a consistent evaluation, we carry out a set of
detailed instructions to guide the annotators.

For fluency, we ask the annotators to check
whether the generated responses are grammar-
correct and understandable. The detailed instruc-
tions are as follows:

• (1): If the sentences are strictly grammar-
incorrect and the annotators can not under-
stand the meaning or the intention of the sen-
tences (e.g.: "I ’m not sure if it is it , but I
have n’t seen it ’s it ’s a big").

• (2): The sentences might have some minor
mistakes but they are still understandable.

• (3): The generated sentences are grammar-
correct and the annotator can understand its
meaning or intention (e.g.: "How about The
Conjuring (2013) ?").

For informativeness, the annotators need to check
if the generated responses contain topics or relevant
information. The instructions are as follows.

• (1): The generated responses do not contain
any useful information such as topics or re-
lated knowledge.

• (2): The generated responses contain either
topics or related information.

• (3): The generated responses not only contain
relevant topics but also provide additional re-
lated knowledge about the mentioned topics.

For proactivity, the annotators are required to check
if the systems can use diverse intents (e.g.: chit-
chat about a specific topic, ask clarifying questions,

or recommend items) to interact with the users. The
instructions are as follows:

• (1): The generated sentences are utilized to
just passively respond to the user’s last utter-
ance (e.g.: "I haven’t seen that movie."; "It is
an interesting movie", etc.).

• (2): The goal of the generated responses is to
obtain further information from the user. (e.g.:
"What are your favorite singers ?"; "Do you
like horror movies ?" etc.).

• (3): The generated responses are utilized to of-
fer recommendations or to provide relevant in-
formation about a specific topic (e.g: "Speak-
ing of Jacky Chung, he is also the Most Pop-
ular Asian Artist of Jade Solid Gold Best 10
Awards"; "Revolution is also very good. It’s a
song of Leehom Wang."; etc).

For satisfaction, we ask the annotators to evaluate
how successfully the target-driven promotion task
is fulfilled by considered methods. The detailed
criteria are as follows:

• (1): The systems fail to recommend the tar-
geted item. That means the targeted item
never appear in the generated dialogues.

• (2): The systems successfully recommend the
targeted item but they do not provide any con-
vincing reasons to persuade the user. (for in-
stance, they might intermediately suggest the
designated item).

• (3): The systems not only recommend the tar-
geted item successfully but they also convince
the users with additional justifications.

For coherency, we ask the annotators to check
if generated responses are relevant to their corre-
sponding dialogue contexts and if these responses
with the user’s utterances together they form a
meaningful conversation about the targeted item.

• (1): Major generated responses are not rele-
vant to their historical contexts. (for instance,
the models might frequently produce simple
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responses such as "It is a good movie" or
"What kinds of movie do you like ?" for every
dialogue context).

• (2): Generated responses are relevant to their
dialogue contexts. However, they together
with the user’s utterances do not form a mean-
ingful conversation about the targeted item.

• (3): Dialogues that satisfy the two criteria.
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