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Abstract

This paper focuses on using natural language
descriptions to enhance predictive models in
the chemistry field. Conventionally, chemoin-
formatics models are trained with extensive
structured data manually extracted from the lit-
erature. In this paper, we introduce TextReact,
a novel method that directly augments predic-
tive chemistry with texts retrieved from the lit-
erature. TextReact retrieves text descriptions
relevant for a given chemical reaction, and then
aligns them with the molecular representation
of the reaction. This alignment is enhanced via
an auxiliary masked LM objective incorporated
in the predictor training. We empirically val-
idate the framework on two chemistry tasks:
reaction condition recommendation and one-
step retrosynthesis. By leveraging text retrieval,
TextReact significantly outperforms state-of-
the-art chemoinformatics models trained solely
on molecular data.

1 Introduction

In this paper, we propose a method for leveraging
automatically retrieved textual knowledge to im-
prove the predictive capacity of chemistry models.
These chemoinformatics models are utilized for a
wide range of tasks, from analyzing properties of
individual molecules to capturing their interactions
in chemical reactions (Yang et al., 2019; Segler
et al., 2018; Coley et al., 2018). However, stan-
dard approaches make these predictions operating
solely on molecular encodings. Despite significant
advances in neural molecular representations, the
accuracy of these models still offers room for im-
provement. We hypothesize that their performance
can be further enhanced using relevant information
from the scientific literature.

For instance, consider the task of finding a cat-
alyst for the chemical reaction shown in Figure 1.
This prediction proves to be challenging when con-
sidering the reaction components alone (Gao et al.,

2021). At the same time, scientific literature pro-
vides several cues about potential catalysts (see
highlighted excerpts). While on their own these
paragraphs might not provide a comprehensive an-
swer, they can guide a molecular predictor. This
intuition motivates our approach to aggregating tex-
tual sources with molecular representations when
reasoning about chemistry tasks. Specifically, we
aim to align the representations of the reaction
and its corresponding text description, enabling
the model to operate in the combined space. This
design not only enables the model to retrieve read-
ily available information from the literature but
also enhances its generalization capacity for new
chemical contexts.

We propose TextReact, a novel predictive chem-
istry framework augmented with text retrieval.
TextReact comprises two modules – a SMILES-
to-text retriever1 that maps an input reaction to cor-
responding text descriptions, and a text-augmented
predictor that fuses the input reaction with the re-
trieved texts. The model learns the relation be-
tween a chemical reaction and text via an auxiliary
masked LM objective incorporated in the predictor
training. Furthermore, to improve generalization to
unseen reaction classes, we simulate novel inputs
by eliminating from the training data the closest
textual descriptions for given reactions.

In addition to condition recommendation,
TextReact can be readily applied to other chem-
istry tasks. In our experiments, we also consider
one-step retrosynthesis (Coley et al., 2017), the
task of predicting reactants used to synthesize a
target molecule (see Figure 2). By leveraging rel-
evant text, TextReact achieves substantial perfor-
mance improvement compared to the state-of-the-
art chemoinformatics models trained on reaction
data alone. For instance, for condition recommen-

1SMILES, i.e. Simplified Molecular-Input Line-Entry Sys-
tem, is a specification in the form of a line notation for de-
scribing chemical structures (Weininger, 1988).
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mixture was …… a saturated aqueous solution of 
sodium bicarbonate.
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10-(2-Amino-3-phenylpropyl)-…-2,4(3H,10H)-dione 
is dissolved in MeOH at room temperature, and 
then benzaldehyde and AcOH (1 drop) are added 
…… NaBH3CN is added in one portion …… The 
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Figure 1: Predictive chemistry augmented with text retrieval. For example, given the task of reaction condition
recommendation, we retrieve texts relevant to the input reaction to provide additional evidence for the model’s
prediction. The two retrieved texts describe similar reactions to the input and share similar conditions. For
visualization purposes, we mark the catalyst, solvent, and reagent in red, green, and blue in the retrieved texts.
However, we do not assume that the text corpus contains such structured data.

dation, TextReact increases the top-1 prediction
accuracy by 58.4%, while the improvement in one-
step retrosynthesis is 13.6–15.7%. The improve-
ment is consistent under both random and time-
based splits of the datasets, validating the efficacy
of our retrieval augmentation approach in general-
izing to new task instances. Our code and data are
publicly available at https://github.com/tho
mas0809/textreact.

2 Related Work

Multimodal Retrieval This field studies retrieval
algorithms when the query and target are in differ-
ent modalities, as exemplified by image-text re-
trieval (Weston et al., 2010; Socher and Fei-Fei,
2010; Socher et al., 2014; Karpathy et al., 2014;
Faghri et al., 2018). Previous research learns mul-
timodal embeddings in image and text using tech-
niques ranging from kernel methods to more ex-
pressive neural networks. This line also extends to
other modalities such as video (Miech et al., 2020)
and audio (Aytar et al., 2017).

Our retrieval method closely relates to CLIP
(Radford et al., 2021), a multimodal model that
leverages contrastive learning to align images with
their corresponding natural language descriptions.
Moving to the chemistry domain, Edwards et al.
(2021) proposed Text2Mol to retrieve molecules
using natural language queries. Our SMILES-to-
text retriever operates in the opposite direction, i.e.,
we use the aligned embedding spaces to retrieve a
text description given a reaction query. We then use
the retrieved text to enhance chemistry prediction.

Product Reactant

Model
Cl

H
N NH2 O

Cl

+

Input: Output:

Figure 2: One-step retrosynthesis, another predictive
chemistry task studied in this paper.

Retrieval-Augmented NLP There have been
several studies on augmenting NLP models with
retrieval. The idea is to retrieve relevant documents
from a corpus and use them as additional context to
the model. Earlier works on open-domain question
answering adopted standalone retrievers to iden-
tify supporting paragraphs for the given questions
(Chen et al., 2017; Lee et al., 2019; Karpukhin
et al., 2020). Guu et al. (2020) jointly trained an
end-to-end retriever with a language model, and
Lewis et al. (2020b) extended the idea to general
sequence-to-sequence generation.

Our work implements a similar idea of retrieval
augmentation. However, we focus on tasks in the
chemistry domain (see Figures 1 and 2), with the
goal of enhancing chemistry prediction models
with natural language descriptions retrieved from
the literature.

Natural Language Grounding Previous studies
have demonstrated how natural language can be
harnessed as a grounding mechanism to supervise
tasks in various domains. For example, in com-
puter vision, natural language descriptions have
been used to improve fine-grained classification of
bird images (He and Peng, 2017; Liang et al., 2020)
and to regularize the learning of visual representa-
tions (Andreas et al., 2018; Mu et al., 2020). In rein-
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Figure 3: Overview of TextReact as applied to reaction condition recommendation. The retriever searches for texts
relevant to the chemistry input, which are then used to augment the input of the predictor.

forcement learning and robotics, natural language
instructions are transformed into executable actions
of the agent (Branavan et al., 2009; Narasimhan
et al., 2015; Ichter et al., 2022) and enable adapt-
ability to new tasks (Hill et al., 2020).

In the chemistry domain, our work comple-
ments ongoing efforts in the automatic extraction of
structured reaction data from the chemistry litera-
ture (Lowe, 2012; Swain and Cole, 2016; Guo et al.,
2021; Qian et al., 2023a,b; Wilary and Cole, 2021;
He et al., 2021; Nguyen et al., 2020; Vaucher et al.,
2020; Zhai et al., 2019). While these works focus
on creating structured databases used for training
molecular models, we focus on directly leverag-
ing unstructured natural language descriptions to
further augment their predictions.

3 Method

3.1 Problem Setup
For concreteness, consider the task of reaction con-
dition recommendation, where the input X is a
chemical reaction and the output Y is a list of reac-
tion conditions, including the catalyst, solvent, and
reagent. We aim to train a machine learning model
F to generate the prediction, i.e., Y = F(X). The
model F is typically trained on a set of labeled
training data Dtrain = {(xi, yi), i = 1, . . . , N}.

In this paper, we incorporate two additional re-
sources for the training of model F :

(1) Each example in the training set is paired with
a text paragraph, i.e. (xi, yi, ti), where ti de-
scribes the corresponding chemical reaction.
Many reaction databases are curated from the
chemistry literature and provide text references
for their reaction data.2

2Examples of such text references are available in the
appendix.

(2) An unlabeled text corpus of chemical reactions
T = {tj , j = 1, . . . ,M}, where each tj is
a paragraph describing a chemical reaction.
They can be easily obtained from the text of
journal articles and patents using a model or
heuristics to determine that they contain a reac-
tion description.

More generally, other predictive chemistry tasks
can use the same problem setup while changing the
definitions of X and Y accordingly. For instance,
in one-step retrosynthesis, X is a product molecule
and Y is a list of potential reactants.

3.2 TextReact Framework

We propose a novel framework TextReact to aug-
ment chemistry prediction with text retrieval. As
illustrated in Figure 3, the TextReact framework
comprises two major components: a SMILES-to-
text retriever (Section 3.2.1) and a text-augmented
predictor (Section 3.2.2). The retriever searches the
unlabeled corpus for texts relevant to the particular
chemistry input. The predictor leverages both the
chemistry input and the retrieved texts to generate
the prediction.

3.2.1 SMILES-To-Text Retriever
The goal of the retriever is to locate relevant texts
from an unlabeled corpus based on a given chem-
istry input. To accomplish this task, we devise a
SMILES-to-text retriever, leveraging the widely
used dual encoder architecture employed in docu-
ment retrieval (Lee et al., 2019; Karpukhin et al.,
2020) and image-text retrieval (Radford et al.,
2021). The model consists of two parts: a chem-
istry encoder for processing the input molecule or
reaction represented as a SMILES string, and a text
encoder for encoding the text descriptions. For the
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Figure 4: SMILES-to-text retriever trained with con-
trastive learning.

chemistry encoder, we use a Transformer to encode
the SMILES string into a latent vector. As for the
text encoder, we employ a Transformer pre-trained
on scientific text (Beltagy et al., 2019) to encode
each paragraph into a latent vector. To enable ef-
ficient retrieval using nearest neighbor search, we
train the model to align the two latent spaces.

The retriever is trained with contrastive learn-
ing, as illustrated in Figure 4. Given a batch
of SMILES strings and their corresponding para-
graphs {(xi, ti), i = 1, . . . , n}, we first compute
their encodings,

xi = ChemEnc(xi), ti = TextEnc(ti). (1)

The similarity between a SMILES and a text para-
graph is defined by the dot product of their encod-
ings,

Si,j = x⊤
i tj . (2)

For each SMILES string xi, its paired paragraph
ti is a positive example, and the other paragraphs
within the same batch are considered negative ex-
amples. We further randomly sample n paragraphs
from the unlabeled corpus as additional negative
examples for each batch, denoted as tn+1, . . . , t2n.
The training objective is to maximize the log-
likelihood of matching the SMILES strings with
positive text paragraphs, i.e.,

Lret = −
∑

i=1...n

log
exp(Si,i)∑

j=1...2n exp(Si,j)
. (3)

After training, we pre-compute all text encod-
ings and compile them into an index to support
efficient retrieval. When retrieving relevant texts
for a given SMILES string, we compute its en-
coding with the chemistry encoder and then run a
maximum inner product search (Mussmann and Er-
mon, 2016; Johnson et al., 2019) to find its nearest
neighbors in the index.

In this paper, we train the retriever separately
from the predictor with a standalone objective.
While joint optimization of the retriever and the
predictor is possible (Guu et al., 2020; Lewis et al.,
2020b), it requires significantly more computation
as it involves iterative index rebuilding and retrieval
during training. We choose a standalone retriever
that has exhibited strong performance in identify-
ing relevant texts in our experiments (see Table 2).

3.2.2 Text-Augmented Predictor
The goal of this component is to merge chemistry
and natural language to produce accurate predic-
tions. Our text-augmented predictor is designed
as an encoder-decoder model, with the encoder
handling both the chemistry input and retrieved
texts, and the decoder generating the correspond-
ing chemistry output.

The encoder’s input consists of the concatenation
of the chemistry input (i.e., the SMILES string)
and the retrieved texts. To structure the input, we
prepend a [CLS] token at the beginning and use
[SEP] tokens to separate the SMILES and the texts.
This yields the following input format:

[CLS] SMILES [SEP] (0) TEXT0 (1) TEXT1 · · · [SEP]

TEXT0, TEXT1, · · · are the nearest neighbors re-
trieved by the SMILES-to-text retriever, which
serve as additional input to augment chemistry pre-
diction. The number of the appended nearest neigh-
bors k is a hyperparameter.

The decoder architecture is tailored to the spe-
cific predictive chemistry task. For reaction condi-
tion recommendation, we adopt the approach estab-
lished in prior research (Gao et al., 2018), which
generates the reaction conditions in a specific or-
der: catalyst, solvent 1, solvent 2, reagent 1, and
reagent 2. For one-step retrosynthesis, the decoder
either directly generates the SMILES strings of
the reactants (i.e., a template-free approach), or
predicts the reaction template first and uses chem-
informatics software to derive the reactants (i.e., a
template-based approach).3

The predictor is trained via supervised learning
to maximize p(yi | xi, Ti), where Ti is the set of
retrieved texts. To encourage the predictor to lever-
age the information of both chemistry and text, we
add an auxiliary masked language model (MLM)

3Depending on whether to use an explicit set of reaction
templates, existing one-step retrosynthesis models can be cat-
egorized into template-based and template-free approaches.
See Section 5.2 and Appendix A.2 for further discussion.
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loss. Specifically, we randomly mask out portions
of the input, either the SMILES string or the text,
and add a prediction head on top of the last layer
of the encoder to predict the masked tokens. In-
spired by previous research on language model pre-
training (Devlin et al., 2019; Lewis et al., 2020a;
Joshi et al., 2020; Du et al., 2022), the masking is
performed by repeatedly sampling spans of length
drawn from a Poisson distribution with λ = 3, until
the total number of masked tokens reaches 15% of
the original input. With the MLM loss, the model
learns to infer the missing part of a SMILES string
from its nearest neighbor texts, and vice versa, thus
encouraging it to learn the correspondence between
chemistry and text. The masking also encourages
the predictor not to rely on a single source of input,
similar to dropout, thus improving its robustness.
Finally, the training objective of the predictor is

Lpred = −
∑

i

log p(yi | xi, Ti) + λ1LMLM (4)

where λ1 is a hyperparameter controlling the
weight of the MLM loss LMLM.

To improve the generalizability of the predictor,
we employ a dynamic sampling training strategy
that addresses the following important distinction
between the training and testing of the predictor.
During training, we have access to the gold text
paired with each chemistry input, providing a de-
scription of the corresponding reaction. However,
in testing, it is not guaranteed to retrieve the gold
text. Moreover, for novel chemistry inputs lack-
ing a corresponding text description in the exist-
ing corpus, the predictor can only use information
from the nearest neighbors, which may describe
similar but not identical reactions. To address this
gap, we employ a random sampling policy during
training to simulate novel chemistry inputs that
are not present in the corpus. With probability α,
the chemistry input is augmented with k random
neighbors from its top-K nearest neighbors, where
K > k and the top-K neighbors are expected to
cover reactions similar to the chemistry input. In
the remaining cases, the model is given the gold
text along with the top-(k − 1) neighbors (exclud-
ing the gold text) returned by the retriever. During
inference, the examples are always augmented with
the top-k nearest neighbors.

4 Experimental Setup

Text Corpus We construct a text corpus from
USPTO patent data processed by Lowe (2012).

Each paragraph in the corpus provides a descrip-
tion of the synthesis procedure of a chemical reac-
tion. The corpus consists of 2.9 million paragraphs,
with an average length of 190 tokens.4 While the
original dataset includes structured reaction data
extracted from each paragraph, including reactants,
products, and reaction conditions, our model does
not rely on this extracted data but instead learns
directly from the unlabeled text.

Implementation The SMILES-to-text retriever
is implemented with Tevatron (Gao et al., 2022).5

The chemistry encoder is initialized with Chem-
BERTa (Chithrananda et al., 2020) (pre-trained on
the SMILES strings from a molecule database) and
the text encoder is initialized with SciBERT (Belt-
agy et al., 2019) (pre-trained on scientific text from
the literature). We finetune a separate retriever on
the training set of each chemistry task. The in-
put to the chemistry encoder is slightly different in
each task. For reaction condition recommendation,
the input is the reactants and product of a reaction,
while for one-step retrosynthesis, the input is only
the product. In both cases, the chemistry input is
represented as a SMILES string.

The text-augmented predictor employs a pre-
trained SciBERT (Beltagy et al., 2019) as the en-
coder. We concatenate the input SMILES string
with three neighboring text paragraphs (k = 3)
by default, using [CLS] and [SEP] tokens as de-
scribed in Section 3.2.2. During training, we set
the random sampling ratio to α = 0.8 for reaction
condition recommendation and α = 0.2 for one-
step retrosynthesis, and the cut-off K is set to 10.
We analyze the effect of the hyperparameters in
Section 5.3. During inference, we use beam search
to derive the top predictions. More implementation
details can be found in Appendix C.

Evaluation For each chemistry task, we evaluate
TextReact under two setups. The first setup is the
random split, where the dataset is randomly divided
into training/validation/testing. This is a commonly
used setup in previous chemistry research (Gao
et al., 2018; Coley et al., 2017). The second and
more challenging setup is the time split, where the
dataset is split based on the patent year. We train
the model with historical data from older patents

4We use the tokenizer of SciBERT: https://huggingfac
e.co/allenai/scibert_scivocab_uncased.

5As the original Tevatron toolkit does not support different
encoders and tokenizers for queries and passages, we make
modifications to accommodate these requirements.

12735

https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/allenai/scibert_scivocab_uncased


RCR
(RS)

RCR
(TS)

RetroSyn
(RS)

RetroSyn
(TS)

Train 546,728 565,575 40,008 38,631
Valid 68,341 63,015 5,001 5,624
Test 68,341 54,820 5,007 5,761

Table 1: Statistics of datasets for reaction condition
recommendation (RCR) and one-step retrosynthesis
(RetroSyn). RS: random split; TS: time split.

R@1 R@3 R@10

RCR (RS) 70.9 91.6 97.0
RCR (TS) 75.1 91.8 96.2
RetroSyn (RS) 60.0 82.5 92.5
RetroSyn (TS) 58.0 81.4 91.5

Table 2: Performance of our SMILES-to-text retriever
trained on each dataset. We report the Recall@{1,3,10}
when retrieving from the full corpus. Scores are in %.

and test its performance on the data from newer
patents. Due to the substantial differences between
reactions in new patents and previous ones, it be-
comes more challenging for a model to generalize
effectively under a time split. During testing, we
compare retrieving from the full corpus (including
newer patents) and retrieving only from the years
used for training. Table 1 shows the statistics of the
datasets for the two tasks, which are elaborated in
the next section.

5 Experiments

5.1 Reaction Condition Recommendation

Data We follow the setup of previous research
(Gao et al., 2018) to construct reaction condition
datasets from the USPTO data (Lowe, 2012). The
reactions with at most one catalyst, two solvents,
and two reagents are kept, and reactions with con-
ditions that occurred fewer than 100 times are ex-
cluded.6 Each reaction is associated with a text
paragraph (gold) from the patent. However, we
only utilize the gold text during the training of the
retriever and the predictor, and do not use it for
validation or testing.

We create two splits of the dataset: RCR (RS) for
random split, and RCR (TS) for time split. More

6Gao et al. constructed their datasets from Reaxys, which
are not publicly available. We use the preprocessing script
of Parrot (https://github.com/wangxr0526/Parrot) to
process the public USPTO data.

details can be found in Appendix B.

Baselines We implement four baselines, none of
which use additional text input:

• Reaction fingerprint (rxnfp) LSTM, a repro-
duction of the method proposed by Gao et al.
(2018). The reaction fingerprint is calculated
as the difference between the product and re-
actant fingerprints, which is further encoded
by a two-layer neural network, and an LSTM
decodes the reaction conditions.

• Reaction fingerprint (rxnfp) retrieval, which
uses the conditions of the most similar reac-
tions in the training set as the prediction. Sim-
ilar reactions are determined based on the L2

distance of reaction fingerprints. This baseline
examines the performance of a pure retrieval
method on this task.

• Transformer, the most important baseline we
are comparing with, which uses the same ar-
chitecture as our predictor. This baseline rep-
resents the state-of-the-art model that only
takes chemistry input.

• ChemBERTa (Chithrananda et al., 2020). This
baseline is the same as the Transformer base-
line except that the encoder is pretrained on
external SMILES data. The purpose of this
baseline is to demonstrate the impact of such
pretraining.

Results Table 3 shows our experimental results
for reaction condition recommendation. TextReact
substantially outperforms standard chemistry mod-
els (Transformer and ChemBERTa), which are
trained on reaction data without text. This signif-
icant improvement can be attributed to the strong
performance of our retriever (shown in Table 2).
When the retriever successfully identifies the gold
text, TextReact effectively utilizes this information
to make predictions. Otherwise, TextReact can also
benefit from retrieving texts of similar reactions, as
we will demonstrate in Section 5.3.7

TextReact generalizes to a more challenging
time split. As reactions from the same patent are
often similar, it may be easy for the model to in-
fer the reaction conditions when similar reactions

7Another noteworthy observation is that the rxnfp retrieval
baseline performs comparably to Transformer, suggesting that
similar reactions often share similar reaction conditions, vali-
dating the efficacy of retrieval-based methods.
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RCR (RS) RCR (TS)

Top-1 Top-3 Top-10 Top-15 Top-1 Top-3 Top-10 Top-15

rxnfp LSTM (Gao et al., 2018) 20.5 30.7 41.7 45.3 15.2 26.2 40.7 45.4
rxnfp retrieval 27.2 37.5 47.9 51.1 7.8 15.2 27.3 31.5
Transformer 30.0 43.8 56.7 60.5 18.7 31.8 47.6 52.7
ChemBERTa 30.3 44.7 58.0 62.0 18.7 31.9 47.6 52.8
TextReact 88.4 93.9 96.0 96.5 83.9 90.9 93.9 94.6

Table 3: Evaluation results for reaction condition recommendation (RCR). RS: random split; TS: time split. Scores
are accuracy in %.

RetroSyn (RS) RetroSyn (TS)

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Template-free models

G2G (Shi et al., 2020) 48.9 67.6 72.5 75.5 — — — —
Transformer (Lin et al., 2020) 43.1 64.6 71.8 78.7 — — — —
Dual-TF (Sun et al., 2020) 53.6 70.7 74.6 77.0 — — — —
Transformertf 45.9 63.2 68.5 75.2 31.4 46.6 51.6 57.2
TextReacttf 59.5 72.6 75.9 80.0 51.0 64.1 68.1 72.9

Template-based models

LocalRetro (Chen and Jung, 2021) 53.4 77.5 85.9 92.4 — — — —
O-GNN (Zhu et al., 2023) 54.1 77.7 86.0 92.5 — — — —
Transformertb 52.5 72.8 79.7 86.2 43.6 65.6 73.2 82.1
TextReacttb 68.2 83.7 88.1 92.5 68.7 84.5 88.8 92.8

Table 4: Evaluation results for one-step retrosynthesis. RS: random split; TS: time split. Scores are accuracy in %.

are present in the training set. Unsurprisingly, all
baselines perform worse under the time split, high-
lighting the inherent difficulty of achieving such
generalization. In TextReact, despite being trained
only on historical data, the retriever retains high
accuracy in retrieving the corresponding paragraph
for reactions in the testing set (see Table 2). Thus,
TextReact retains a strong overall performance by
leveraging the retrieved text.

5.2 One-Step Retrosynthesis
Data We use the popular USPTO-50K dataset
(Coley et al., 2017) for our one-step retrosynthe-
sis experiment. We also create two data splits:
RetroSyn (RS), the original random split of the
dataset, and RetroSyn (TS), the time split.

Since the dataset was constructed from the same
USPTO data as our text corpus, we match the exam-
ples in the dataset with text paragraphs in the cor-
pus. However, due to differences in preprocessing,
not all examples could be matched.8 We use only

8Out of the 40,008 examples in the training set, 31,391 are

the matched examples to train the retriever, whereas
the predictor is trained with the full dataset.

Template-free & Template-based Models We
implement TextReact in two settings: (1)
TextReacttf is a template-free model that uses
a Transformer decoder to generate the SMILES
strings of reactants. (2) TextReacttb is a template-
based model that follows the formulation of
LocalRetro (Chen and Jung, 2021). Specifically,
we adopt the set of reaction templates extracted
from the training data, and predict which template
is applicable to a product molecule and which atom
or bond is the reaction center. For each atom, we
represent it using the corresponding hidden state
from the last layer of the Transformer encoder and
predict a probability distribution over the reaction
templates using a linear head. For each bond, we
concatenate the representations of its two atoms
and employ another linear head to predict the tem-
plate.

matched.
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Transformer 30.0 18.7
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Figure 5: Comparison of TextReact’s performance under three settings: (1) Retrieving from the full corpus, (2)
Retrieving from the corpus with gold texts of testing examples removed, and (3) Retrieving only from the historical
corpus under a time split.

Baselines We implement baselines Transformertf

and Transformertb for template-free and template-
based settings, respectively. They closely follow
the output format of TextReact but do not incor-
porate retrieved text as additional input. We also
report the published results of previous research
(Shi et al., 2020; Lin et al., 2020; Sun et al., 2020;
Chen and Jung, 2021; Zhu et al., 2023). All base-
lines are trained on the same data as TextReact, but
without the text input.

Results Table 4 shows the results of one-step ret-
rosynthesis. Similar to the RCR task, TextReact
has demonstrated strong performance by leverag-
ing text retrieval. On the RetroSyn (RS) dataset,
our baseline Transformer models perform com-
parably to previous models under both template-
free and template-based settings. Upon integrat-
ing text augmentation, TextReacttf and TextReacttb
advance the top-1 accuracy by 13.6% and 15.7%,
respectively, affirming the advantage of retrieval
augmentation for this task. Even under a time-split
scenario, TextReact maintains a high accuracy, un-
derscoring its proficiency in both retrieval and final
prediction stages.

5.3 Analysis

First, we demonstrate in Figure 5 that TextReact
exhibits generalization capabilities to novel reac-
tions not present within the text corpus. While
we have illustrated the accurate retrieval of text
descriptions from the corpus and their effective
utilization for predictions, it is important to note
that a gold text for the target reaction may not al-
ways be available within the corpus. To further
assess the model’s performance in a more chal-
lenging scenario, we remove the gold texts of all
testing examples from the corpus (referred to as
“gold-removed” in Figure 5). In both RCR and
RetroSyn, TextReact continues to outperform the
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Figure 6: Performance of TextReact with respect to the
random sampling ratio α during training.

Transformer baseline significantly. The improve-
ment is consistent under both the random split and
time split, albeit smaller as compared with retriev-
ing from the full corpus. However, we note that
under the time split, if the model is only allowed
to retrieve from the historical corpus (the patents
for the training data, referred to as “TS corpus”),
TextReact can hardly outperform the baseline. The
reason behind this could be that the reactions in
new patents are sufficiently different from those in
historical patents, placing a predictive barrier for
such out-of-distribution generalization.

TextReact’s robust generalization performance
is enabled by the sampling strategy we adopted
during training. Figure 6 illustrates the impact of
the random sampling ratio α. During training, the
predictor is given the gold text paragraph with prob-
ability 1 − α, and randomly sampled paragraphs
with a probability α. The results reveal that the
choice of α plays an important role in the model,
both when retrieving from the full corpus and the
gold-removed corpus. In the RCR (RS) dataset, the
full corpus evaluation prefers a smaller α, while the
gold-removed evaluation prefers a larger α. Since
α controls the probability of using gold input in
training, a larger α aligns better with the gold-
removed setting. We set α = 0.8 for the RCR
experiments for a good balance between the two
settings. In RetroSyn (RS), however, the model
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RCR (RS) RetroSyn (RS)

full g.r. full g.r.

TextReact 88.4 47.2 59.5 47.7
· SMILES-only 30.0 30.0 45.9 45.9
· text-only 81.7 38.3 23.0 9.0
· no MLM 87.7 47.0 51.0 43.5
· no pretrain 83.5 43.8 48.1 40.3
· sep. neighbors 80.7 45.2 49.4 45.3

Table 5: Ablation study of TextReact. We evaluate
TextReacttf for the RetroSyn task. (full: full corpus;
g.r.: gold-removed)

favors a much smaller α. We hypothesize that this
difference is due to the varying helpfulness of the
retrieved texts in different tasks. The texts appear
to be more helpful for condition recommendation
than retrosynthesis, perhaps due to the existence
of common reaction conditions that can be reused
across many different reactions of the same type.

Table 5 presents our ablation study. First,
TextReact performs significantly better than the
model that uses only the input SMILES or retrieved
text, illustrating that TextReact effectively inte-
grates both chemistry and text inputs to generate
its predictions. Second, we observe a significant
increase in accuracy for TextReact compared to the
model trained without the MLM loss. This demon-
strates the effectiveness of the auxiliary MLM ob-
jective in enhancing the model’s learning of the
correspondence between chemistry and text inputs.
In addition, TextReact benefits from the SciBERT
checkpoint, which has been pretrained on scien-
tific text. While TextReact concatenates the top-k
neighbors together to make predictions, we com-
pare with a variant that separates the neighbors
and ensembles their predictions, similar to RAG
(Lewis et al., 2020b). This variant yields worse
performance (the last row of Table 5), suggesting
the benefits of jointly encoding the neighbors.

Additional analyses in Appendix D reveal sev-
eral key findings: (1) TextReact achieves superior
performance on the RCR task using only 10% of
the training data compared to the Transformer base-
line; (2) TextReact performs better when the re-
trieved texts describe reactions that bear closer sim-
ilarity to the input reaction; and (3) TextReact ben-
efits from jointly modeling the input reaction and
retrieved neighboring texts.

6 Conclusion

This paper presents TextReact, a novel method that
augments predictive chemistry with text retrieval.
We employ information retrieval techniques to iden-
tify relevant text descriptions for a given chem-
istry input from an unlabeled corpus, and supply
the retrieved text as additional evidence for chem-
istry prediction. In two chemistry tasks, TextReact
demonstrates strong performance when retrieving
from the full corpus, and maintains a significant
improvement when retrieving from a harder corpus
that excludes the gold texts.

Our results highlight the promising potential of
incorporating text retrieval methods in the field of
chemistry. As chemically similar reactions have
similar conditions and outcomes, effectively re-
trieving and grounding textual knowledge from
patents and publications into the chemistry space
can significantly enhance the predictive power of
computational models.

7 Limitations

We acknowledge two limitations of this paper. First,
our experiments focused on two representative
chemistry tasks, but we believe that the proposed
method can be applied to other tasks and domains
that would benefit from the knowledge in the lit-
erature. Second, we employed a simplified imple-
mentation of the retriever and predictor models to
demonstrate the effectiveness of retrieval augmenta-
tion in chemistry. There is significant room for fur-
ther improvements, such as using more advanced
pretrained models and exploring joint training of
the models.
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A Background

A.1 Reaction Condition Recommendation
Reaction condition recommendation is the task of
suggesting reaction conditions, such as catalysts,
solvents, and reagents, for a chemical reaction. Gao
et al. (2018) proposed a machine learning model for
this task, where the reaction is represented as the
difference between the product and the reactant fin-
gerprint vectors, indicating the change of substruc-
tures during the reaction, and the reaction condi-
tions are sequentially predicted by the model. Later
research studied different methods to represent the
reaction, such as MACCS key fingerprints (Walker
et al., 2019) and graph neural networks (Ryou et al.,
2020), and alternative machine learning formula-
tions, such as multilabel classification (Maser et al.,
2021) and variational inference (Kwon et al., 2022).
In this work, we follow Gao et al.’s formulation but
use the more advanced Transformer architecture.

A.2 One-Step Retrosynthesis
Another important task in predictive chemistry is
one-step retrosynthesis, which aims to propose re-
action precursors (reactants) for target molecules
(products). Prior methods can be broadly classified
into two categories: template-based and template-
free. Template-based approaches use classification
models to predict the reaction template that can be
applied to the target (Segler and Waller, 2017; Chen
and Jung, 2021), and subsequently employ chemin-
formatics software to derive the precursors based
on the template. Template-free approaches have a
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To a solution of 1-cyclopropylmethanamine (134 mg, 1.885 mmol) in 
methanol (10 mL) was added 4-chlorobenzaldehyde (100 mg, 
0.942 mmol) and a few drops of acetic acid. The reaction was 
stirred at rt for 30 minutes and then sodium cyanoborohydride 
(118 mg, 1.885 mmol) was added. The reaction was stirred for 3 
days at rt, concentrated in vacuo, and quenched with a saturated 
solution of sodium bicarbonate.
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SMILES NCc1ccccn1.O=Cc1ccc(S(=O)(=O)NCc2ccccc2)cc1 >> 
O=S(=O)(NCc1ccccc1)c1ccc(CNCc2ccccn2)cc1

Gold Text

Preparation of (S)-tert-butyl 4-(1-(4-((benzylamino)methyl)benzyl)-3-
(1-(naphthalen-1-yl)ethyl)ureido)butylcarbamate (5)
To a solution of (S)-tert-butyl 4-(1-(4-formylbenzyl)-3-(1-
(naphthalen-1-yl)ethyl)ureido)butylcarbamate, 4, (4.9 g, 9.8 mmol) 
in dichloroethane (20 mL) was added N-benzylamine (1.3 mL, 11.7 
mmol), acetic acid (10 drops) and Na(OAc)3BH (3.7 g, 17.6 mmol). 
The reaction mixture stirred at 65° C. for 18 h. The mixture was 
cooled to room temperature and quenched with a saturated 
aqueous solution of sodium bicarbonate.

Figure 7: Example reactions and their corresponding
gold texts in the USPTO data. Reactants and products
are marked in yellow and orange , while the catalyst,
solvent, and reagent are displayed in red, green, and
blue, respectively.

more ambitious goal: predicting the precursors di-
rectly without relying on a fixed set of reaction tem-
plates. Such approaches are usually implemented
as graph-to-graph or sequence-to-sequence genera-
tion models (Liu et al., 2017; Dai et al., 2019; Shi
et al., 2020; Lin et al., 2020; Somnath et al., 2021),
and achieve comparable performance to template-
based approaches on common benchmarks. In this
work, we apply TextReact to both template-based
and template-free approaches.

B Datasets

Figure 7 shows two example reactions and their
corresponding gold texts in the USPTO corpus.

Reaction Condition Recommendation The
dataset is constructed from the public USPTO data
(Lowe, 2012).9 We create two splits:

• RCR (RS), where the reactions are randomly
split into training/validation/testing with a ra-
tio of 80%/10%/10%.

• RCR (TS), where we perform a time split
of the dataset. The reactions collected from
patents before 2015 are categorized as the

9https://doi.org/10.6084/m9.figshare.5104873.
v1
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training set, reactions from 2015 as validation,
and reactions from 2016 as testing.

One-Step Retrosynthesis We adopt the USPTO
50K dataset (Coley et al., 2017)10, which is com-
monly used in previous works, and create two
splits:

• RetroSyn (RS), i.e. random split, which is the
original split of the dataset.

• RetroSyn (TS), i.e. time split, where we merge
the original training, validation, and testing
sets and re-split based on the patent year. Data
before 2012 are used for training, data from
2012 and 2013 are used for validation, and
data from 2014 and 2015 are used for testing.

Our datasets will be publicly available to foster
future research in this direction.

C Implementation Details

Our experiments are implemented with the Hug-
ging Face Transformers (Wolf et al., 2020), Py-
Torch Lightning11, Tevatron (Gao et al., 2022), and
Faiss (Johnson et al., 2019) libraries.

Reaction Condition Recommendation The
SMILES-to-text retriever consists of a chemistry
encoder and a text encoder. We train the retriever
by contrastive learning, where each batch contains
512 queries (chemistry inputs), and each query is
associated with one positive paragraph and one ran-
dom sampled negative paragraph from the corpus.
Both query and paragraph have a maximum length
of 256. We train the retriever for 50 epochs using
a learning rate of 1e− 4 (with 10% warmup and
linear decay).

The predictor is trained for 20 epochs using a
batch size of 128 and a learning rate of 1e− 4
(with 2% warmup and cosine decay). The weight
of the MLM loss is λ1 = 0.1. We apply data aug-
mentation by generating the SMILES strings with
a random order during training. By default, we
append the chemistry input with k = 3 neighbor-
ing text paragraphs, and a maximum length of the
encoder input is 512. The input SMILES string
and text are tokenized with the same SciBERT to-
kenizer. For the experiments with k = 1, 2, 4, 5,
we set the maximum length to 256, 384, 768, 1024,
respectively.

10https://github.com/coleygroup/openretro/tree
/main/data/USPTO_50k

11https://www.pytorchlightning.ai/index.html

Figure 8: Top-1 accuracies of TextReact and the Trans-
former baseline vs. the amount of training data used,
as a percentage of the total available training data. For
RCR, TextReact exhibits strong performance even in
low-resource scenarios. For RetroSyn, we evaluate
TextReacttf in this figure.

One-Step Retrosynthesis The implementation
and hyperparameters for the one-step retrosynthe-
sis experiments largely resemble those of the reac-
tion condition recommendation experiments, with
a few differences. The retriever is trained for 400
epochs due to the smaller size of the RetroSyn (i.e.,
USPTO 50K) dataset. Each query (the SMILES
string of the product molecule) has a maximum
length of 128.

For the predictor, the template-free TextReacttf
and template-based TextReacttb architectures are
slightly different. While both employ a SciBERT
encoder, TextReacttf uses a 6-layer Transformer de-
coder to generate the output SMILES string, and
TextReacttb predicts the reaction template using lin-
ear heads on atom and bond representations. In
both scenarios, the predictor is trained for 200
epochs. The random sampling ratio in training
is also set differently (α = 0.2) as mentioned in
Section 4.

D Further Analysis

To investigate the effect that the amount of train-
ing data has on model performance, we trained
TextReact in both the RCR and RetroSyn on 10%,
20%, 50%, and 100% of the available training data
under the random split. The same was done with
the Transformer baseline model for comparison.
The models are evaluated on the full test dataset
and the top-1 accuracies are plotted in Figure 8.
As expected, both TextReact and the Transformer
baseline see a noticeable improvement in perfor-
mance as the amount of training data is increased.
In the RCR domain, the full-corpus accuracy and
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Figure 9: Top-1 accuracies of TextReact and TextReact
(sep. neighbors) on RCR (RS) when retrieving from the
full corpus, plotted against the average input-neighbor
distance and the average distance between neighbors.

Table 1

1 77.62 43.45 0.8541 0.8774 0.9027 0.915

- hard 0.5796 0.633 0.6993 0.7328

2 86.87 46.42 0.9233 0.9368 0.9495 0.9559

- hard 0.6082 0.657 0.7188 0.7513
3 88.37 47.16 0.9392 0.9496 0.9606 0.9655
- hard 0.6136 0.6637 0.7265 0.7571

4 88.51 47.04 0.9397 0.9509 0.9611 0.9658

- hard 0.6125 0.6622 0.7235 0.7552

5 88.4 46.95 0.9394 0.9503 0.9606 0.9654

- hard 0.6119 0.6612 0.7235 0.7551

RCR (RS)

To
p-

1 
Ac

cu
ra

cy

20

60

100

k
1 2 3 4 5

47.047.047.246.443.5

88.488.588.486.9
77.6

full corpus
gold-removed

Table 2

1 58.01 46.69 0.6692 0.7124 0.7561 0.798 0.8284
0.5684 0.6193 0.6752 0.7285 0.7715

2 58.25 47.45 0.6766 0.7175 0.7587 0.8006 0.8294
0.5791 0.6247 0.6732 0.7251 0.7679

3 59.47 47.69 0.6728 0.7716 0.7551 0.797 0.8292
0.5648 0.6119 0.6668 0.7185 0.7607

4 58.83 46.53 0.6768 0.7171 0.7589 0.7998 0.8332
0.5656 0.6181 0.6698 0.7279 0.7685

5 56.74 46.19 0.6618 0.6968 0.7373 0.7787 0.8098
0.5544 0.5993 0.6462 0.6996 0.7397

RetroSyn (RS)

40

50

60

k
1 2 3 4 5

46.246.547.747.546.7

56.7
58.859.558.358.0

1

Figure 10: Performance of TextReact with respect to
the number of neighbors k retrieved for each input. We
evaluate TextReacttf for RetroSyn.

gold-removed accuracy of TextReact when trained
on 10% of the available training data are 67.7% and
35.0%, respectively, both of which are higher than
the accuracy of the baseline as trained on the full
training set (30.0%). This shows that our model is
capable of achieving better performance with only
10% as much training data for reaction condition
recommendation.

To study the effect that the retrieved texts have
on model performance, we plotted the top-1 accu-
racy of TextReact and TextReact (sep. neighbors)
with respect to the average input-neighbor distance,
defined as the average L2 distance between the fin-
gerprint of the input reaction and the fingerprints
of the reactions corresponding to the retrieved texts
(left panel of Figure 9). This distance measures
the difference between the input reaction and the
reactions described by the retrieved texts. The plot
shows that model predictions are more accurate
when the retrieved texts correspond to reactions
more similar to the input reaction, thus confirming
that TextReact effectively incorporates information
from the retrieved texts when making predictions.

We also plotted the accuracy with respect to the
average distance between neighbors, defined as
the average L2 distance between the fingerprints

of the reactions corresponding to each pair of re-
trieved texts (right panel of Figure 9). This mea-
sures how different the retrieved neighbors are from
each other. The graph shows that TextReact’s per-
formance does not depend much on how similar the
retrieved neighbors are to each other, whereas the
performance of TextReact (sep. neighbors) drops
when the retrieved neighbors are more different
from each other. When separately encoding the
neighbors, the model does not know how much
it should trust each neighbor. On the other hand,
TextReact does not suffer from the same perfor-
mance drop, likely due to the attentions between
the retrieved texts, which allow the model to better
integrate the information from the neighbors. This
demonstrates the benefits of concatenating the in-
put reaction and all the retrieved texts together and
feeding them into a single Transformer encoder.

Figure 10 analyzes the number of text para-
graphs k that we retrieve for each example. In
the RCR (RS) dataset, there is a notable improve-
ment from k = 1 to k = 3, suggesting the benefits
of retrieving more neighbors as additional context.
In the RetroSyn (RS) dataset, the trend is similar
but the improvement is smaller. However, the per-
formance decreases when k > 3 for both datasets.
Therefore, we set k = 3 for our main experiments.
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