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Abstract

In code vulnerability detection tasks, a de-
tector trained on a label-rich source domain
fails to provide accurate prediction on new or
unseen target domains due to the lack of la-
beled training data on target domains. Previ-
ous studies mainly utilize domain adaptation
to perform cross-domain vulnerability detec-
tion. But they ignore the negative effect of
private semantic characteristics of the target
domain for domain alignment, which easily
causes the problem of negative transfer. In ad-
dition, these methods forcibly reduce the dis-
tribution discrepancy between domains and do
not take into account the interference of irrele-
vant target instances for distributional domain
alignment, which leads to the problem of ex-
cessive alignment. To address the above is-
sues, we propose a novel cross-domain code
vulnerability detection framework named MN-
CRI. Specifically, we introduce mutual near-
est neighbor contrastive learning to align the
source domain and target domain geometri-
cally, which could align the common seman-
tic characteristics of two domains and sepa-
rate out the private semantic characteristics of
each domain. Furthermore, we introduce an
instance re-weighting scheme to alleviate the
problem of excessive alignment. This scheme
dynamically assign different weights to in-
stances, reducing the contribution of irrelevant
instances so as to achieve better domain align-
ment. Finally, extensive experiments demon-
strate that MNCRI significantly outperforms
state-of-the-art cross-domain code vulnerabil-
ity detection methods by a large margin.

1 Introduction

With the development of the Internet, the number
of vulnerabilities in software has increased rapidly,
which leaves software to face huge security threats.
There are multiple efforts (Lin et al., 2017; Grieco

*Corresponding authors.

et al., 2016; Li et al., 2018; Zou et al., 2019; Zhou
et al., 2019; Feng et al., 2020) have attempted to
introduce deep learning and NLP techniques for
automated vulnerability detection. Those deep
learning-based detection methods mainly focus on
in-domain code vulnerability detection. That is, the
training and test datasets are assumed to be drawn
from the same distribution (i.e., from the same soft-
ware project). However, in practice, most software
projects lack labeled vulnerability datasets. Label-
ing data is labor-intensive and expensive, which re-
quires that the models trained on a label-rich source
domain (i.e., a software project with abundant la-
beled data) are applied to a new target domain (i.e.,
a software project without labeled data). Owing to
program style, application scenarios, and other fac-
tors, different software projects may obey different
probability distributions. The models trained on
the source domain suffer from severe performance
loss on the target domain due to the obvious dis-
tribution discrepancy between two domains. To
solve this problem, some research works have at-
tempted to introduce domain adaptation to perform
cross-domain code vulnerability detection. Domain
adaptation is a technique that aims to eliminate
distribution discrepancy and transfer knowledge
from a labeled source domain to an unlabeled tar-
get domain (Ganin and Lempitsky, 2015). Lin et al.
(2018) first proposed a function-level cross-domain
code vulnerability detection framework. But they
only hypothesize that the learned high-level repre-
sentations are transferable, and they do not propose
a method to explicitly eliminate the domain discrep-
ancy. Lin et al. (2019) proposed a cross-domain
detection framework that utilizes two LSTMs to
learn two groups of transferable feature represen-
tations, and then combine both groups of feature
representations to train a classifier. Nguyen et al.
(2019) proposed a new code domain adaptation
framework named SCDAN that incorporated con-
ventional domain adaptation techniques such as
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Figure 1: The framework of MNCRI.

DDAN, MMD, and DIRT-T (Ganin and Lempitsky,
2015; Long et al., 2015; Shu et al., 2018). CD-
VulD (Liu et al., 2020) employed a metric transfer
learning framework (MTLF) (Xu et al., 2017) to
learn cross-domain representations by minimizing
the distribution divergence between the source do-
main and the target domain. Lastly, Li et al. (2023)
proposed a detection framework called VulGDA
that utilized a graph embedding method to extract
comprehensive vulnerability features and a feature
generator to generate domain-invariant feature rep-
resentations by minimizing Maximum Mean Dis-
crepancy (MMD).

Although the above-mentioned research works
achieve considerable performance improvements,
there still exist two problems that restrict further
performance improvements: (1) In practice, dif-
ferent domains (i.e., different software projects)
share common semantic characteristics and while
having their own private semantic characteristics
due to different application scenarios, coding style,
and code implementation, etc. Previous studies
reduce the domain discrepancy by forcibly min-
imizing divergence of the entire source domain
and the target domain. They ignore semantic dif-
ferences between two domains and allow samples
with private semantic characteristics to participate
in domain alignment, which is prone to the prob-
lem of negative transfer. Eliminating the domain
discrepancy should be constrained on only aligning
the common semantic characteristics (also known
as the common knowledge) between two domains

and the respective private semantic characteristics
should be separated simultaneously. (2) There
will always exist some target instances that are
not relevant to source instances. Current methods
treat the instances equally when conducting statis-
tical distribution domain alignment. Intuitively, the
relevant instances should be given larger weights,
and irrelevant instances should be assigned smaller
weights so as to decrease their importance and con-
tribution to domain alignment. Ignoring the rel-
evance of instances will make models learn sub-
optimal cross-domain representations. To address
these issues, we propose a novel cross-domain code
vulnerability detection framework named MNCRI
(as illustrated in Figure 1) based on mutual near-
est neighbor contrastive learning and the instance
re-weighting scheme, which jointly achieves ge-
ometric domain alignment and statistical domain
alignment. First, we argue that geometric domain
alignment should follow a principle: semantically
consistent instances should be geometrically ad-
jacent to each other, whether within or across
domains. Based on this principle, we introduce
mutual nearest neighbor contrastive learning to
achieve the alignment of common semantic charac-
teristics. Specifically, we construct mutual nearest
neighbor pairs across the source domain and the
target domain by leveraging the mutual neighbor
rule. Then we introduce a contrastive loss func-
tion that aims at reducing the feature discrepancy
of mutual nearest neighbor pairs. By minimizing
this contrastive loss, we achieve the alignment of
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common semantic characteristics across domains
and separate out private semantic characteristics
of each domain. Second, to alleviate the problem
of excessive alignment, we introduce the instance
re-weighting scheme that assigns different weights
to different target domain instances based on the
relevance with source domain instances. In this
way, the effect of some target domain instances
that are irrelevant to source domain instances is re-
duced and the effect of some relevant target domain
instances is highlighted, which is beneficial for re-
ducing the distribution discrepancy. Finally, we
conduct extensive experiments to verify the effec-
tiveness of our proposed method. The experimental
results show that the proposed method outperforms
current baseline methods by a large margin.

In summary, our contributions are as follows:

• We propose a novel cross-domain code vulner-
ability detection framework named MNCRI,
which reduces the domain discrepancy from
two perspectives of geometries and statistical
distributions by exploiting the mutual nearest
neighbor contrastive learning and the instance
re-weighting scheme.

• We introduce mutual nearest neighbors con-
trastive learning to solve the problem of neg-
ative transfer, which explores instances rela-
tionships between domains and achieves the
domain alignment geometrically.

• We incorporate an instance re-weighting
scheme into the statistical domain alignment,
which dynamically weights different instances
according to the relevance between instances
to eliminate the negative effect of irrelevant
instances for domain alignment.

• We conduct extensive experiments to verify
the effectiveness of MNCRI. Experimental
results show that MNCRI outperforms current
cross-domain detection methods and obtain
obvious performance improvements.

2 Related Work

2.1 Cross-domain Code Vulnerability
Detection

Since different software projects have different
code styles, application scenarios and other fac-
tors, they may obey different distributions. There-
fore, when a code vulnerability detection model

trained on a label-rich project dataset is applied
to a new no-label project, its performance drop
sharply. To address this issue, researchers have
attempted to introduce domain-adaptation tech-
niques into cross-domain code vulnerability de-
tection tasks. Nam et al. (2013) utilized migration
component analysis to map software metrics in
the source and target domains to the same feature
space. Hellendoorn et al. (2020) attempted to uti-
lize local syntactic features and global semantic
features to perform file-level cross-domain vulner-
ability detection. Lin et al. (2018) first proposed a
cross-domain code vulnerability detection frame-
work at the function-level, which extracts features
from abstract syntax trees (ASTs) of functions and
then feeds extracted features into a long short-term
memory recurrent neural network (LSTM) to learn
higher-level representations. But they only hypoth-
esize that the learned high-level representations are
transferable, and they do not propose an effective
method to explicitly eliminate the discrepancy be-
tween the source domain and the target domain.
Lin et al. (2019) presented a cross-domain detec-
tion framework that employed two LSTMs to learn
two groups of transferable feature representations.
These representations were then combined to train
a classifier. Nguyen et al. (2019) proposed a novel
code domain adaptation network called SCDAN.
SCDAN incorporated conventional domain adapta-
tion network techniques such as DDAN, MMD, and
DIRT-T (Ganin and Lempitsky, 2015; Long et al.,
2015; Shu et al., 2018) to eliminate distribution
divergence. To further tackle the distribution di-
vergence, CD-VulD (Liu et al., 2020) deployed the
metric transfer learning framework (MTLF) (Xu
et al., 2017) to learn domain-invariant representa-
tions by minimizing Mahalanobis distance. Li et al.
(2023) proposed a cross-domain detection frame-
work called VulGDA, which employed a graph
embedding approach to extract comprehensive vul-
nerability features and a feature generator to gen-
erate domain-invariant feature representations by
minimizing the domain discrepancy.

2.2 Contrastive Learning

Contrastive learning in the latent space has recently
shown great promise, which aims to make the rep-
resentation of a given anchor data to be similar to
its positive pairs and dissimilar to its negative pairs
(Tian et al., 2020; Chen et al., 2020; Khosla et al.,
2020). Many state-of-the-art methods for represen-
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tation learning tasks are based on the contrastive
learning framework (Chen and He, 2021). Previous
studies construct positive samples by augmenting
original samples. In this paper, we utilize mutual
nearest neighbors as positive pairs to achieve fea-
ture alignment between domains.

3 Methodology

As illustrated in Figure 1, the architecture of MN-
CRI contains two main components: 1) the mu-
tual nearest neighbor contrastive learning module,
which performs contrastive learning based on mu-
tual nearest neighbors for better geometric domain
alignment; 2) the statistical distribution domain
alignment module equipped with the instance re-
weighting scheme, which reduces the distribution
discrepancy and achieves the domain alignment
statistically. Below we elaborate the details of MN-
CRI.

3.1 Problem Formulation

We formalize vulnerability detection as a binary
classification problem. In cross-domain vulnera-
bility detection, given a labeled source domain set
Ds = {(xsi , ysi )}ns

i=1 including ns instances xsi , it
aims to predict the label yti of the target sample xti
in an unlabeled target domain set Dt = {(xti)}nt

i=1,
where ysi ∈ {0, 1} and yti ∈ {0, 1} (1 means the
sample is vulnerable and 0 means the sample is
non-vulnerable). ns and nt are the number of the
source domain set and the target domain set, re-
spectively. As illustrated in Figure 1, our model
consists of two basic modules: (1) a feature ex-
tractor f(·) that maps the code sample xi into the
embedding representation zi (zi = f(xi)). (2) a
classifier g(·) to classify the class yi of the sample
xi (yi = g(f(xi))).

3.2 Geometric Domain Alignment by Mutual
Nearest Neighbor Contrastive Learning
Paradigm

In supervised learning scenarios, the cross-entropy
loss on the source domain is defined as:

LCE =− 1

ns

ns∑

i=1

ysi log(g(f(x
s
i )))+

(1− ysi ) log(1− g(f(xsi )))
(1)

Due to the domain discrepancy between the source
domain and the target domain, the performance
drops sharply when transfer the model trained on

source domain to the target domain. Previous meth-
ods mainly focus on minimizing the global distri-
bution divergence between domains to achieve the
domain alignment, such as Maximum Mean Dis-
crepancy (MMD) (Yan et al., 2017; Li et al., 2023).
In practice, the target domain may preserve its own
private semantic characteristics that do not appear
in the source domain. Previous methods do not
consider domain private semantic characteristics
and forcefully align the global distributions of two
domains, which may cause the problem of nega-
tive transfer. In manifold learning (McInnes et al.,
2018; Chen et al., 2022), the concept of geometric
nearest neighbors is commonly used to describe the
similarities of semantic characteristics. For differ-
ent domains, the geometrically nearest neighbors
can be viewed as the most similar samples that
contain the same semantic characteristics. There-
fore, to align the common semantic characteristics
between domains and separate out private seman-
tic characteristics of each domain, we introduce
mutual nearest neighbors contrastive learning.

Specifically, for a target domain sample xti,
we retrieve its corresponding k nearest neighbors
NN s

i in the source domain. In the same way, for
a source domain sample xsj , we can also obtain
its corresponding k nearest neighbors NN t

j in the
target domain. Then mutual nearest neighbors can
be constructed by following the rule: if the source
sample xsj and the target sample xti are contained
in each other’s nearest neighbors, they are regarded
as mutual nearest neighbors. After that, we build
a relationship matrix to describe the mutual near-
est neighbor relationship between source domain
samples and target domain samples. Formally, the
relationship matrix is defined as: M st ∈ Rns×nt

where M st
i,j = 1 if only xti and xsj is the mutual

nearest neighbor pair; otherwise M st
i,j = 0. Be-

sides, to fully utilize supervised information of the
source domain and learn better discriminative fea-
tures for classification, we also build in-domain
relationship matrix M ss according to ground-truth
labels of the source domain.

In geometric domain alignment, we hope that
built mutual nearest neighbor pairs can be closer
to each other in the feature space, while non-
geometrically samples should be far away from
each other. In this paper, we introduce an con-
trastive learning loss to achieve this goal.

For each training sample xi, its positive sample
sets Pi and negative sample sets Ni in the memory
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bank can be obtained by relationship matrices M ss

and M st. The contrastive loss is formulated by:

LCon =−
ns+nt∑

i=1

∑

j∈Pi

logϕi,j

logϕi,j =
exp(zizj/τ)∑

p∈Pi
exp(zizp/τ) +

∑
q∈Ni

exp(zizq/τ)
(2)

where τ is a temperature parameter. By optimizing
the contrastive loss, it makes the model learn geo-
metric neighbor relationships between the source
domain and the target domain and makes the fea-
ture representations of samples with common se-
mantic characteristics closer in the feature space.

3.3 Statistical Domain Alignment by Instance
Re-weighting Scheme

As depicted in Section 3.2, the mutual nearest
neighbors contrastive learning could reduce the
geometrical domain discrepancy and achieve better
geometrical domain alignment. In practice, reduc-
ing the distributional divergence between domains
and achieving the statistical domain alignment are
also important for cross-domain code vulnerability
detection. MMD (Gretton et al., 2008)) is a popular
estimator to calculate the degree of statistical align-
ment of data distribution between two domains,
and it is defined as follows:

LMMD =‖ 1

U2

U∑

i=1

U∑

j=1

k(zsi , z
s
j )−

2

UW

U∑

i=1

W∑

j=1

k(zsi , z
t
j)

+
1

W 2

W∑

i=1

W∑

j=1

k(zti , z
t
j)‖H

(3)

Previous studies (Liu et al., 2020; Li et al., 2023)
perform statistical domain alignment by minimiz-
ing Maximum Mean Discrepancy (MMD). How-
ever, there will always exist some instances that
are not relevant to the source instances. Previous
methods forcefully reduce the global distributional
divergence between domains and ignore the neg-
ative effect of irrelevant instances, which easily
leads to the problem of excessive alignment. Ide-
ally, relevant target instances should be assigned
large weights and irrelevant instances should be as-
signed small weights during the domain alignment.
Thus, in order to achieve this goal, we propose to
introduce the instance re-weighting scheme into
the statistical domain alignment. Specifically, we
adopt the prediction confidence of the classifier
trained on the source domain for target instances

as the weights of target instances during statistical
domain alignment. This process can be formulated
as:

LMMD−IR = ‖ 1

U2

U∑

i=1

U∑

j=1

k(zsi , z
s
j )

− 2

UW

U∑

i=1

W∑

j=1

f(ztj)k(z
s
i , z

t
j) +

1

W 2

W∑

i=1

W∑

j=1

k(zti , z
t
j)‖H

f(ztj) = 2 ∗ |Prob(ytj = 1|ztj)− 0.5|
(4)

where Prob(ytj = 1|ztj) denotes the prediction
probability that the classifier predicts the target in-
stance xti is vulnerable. Introducing the instance
re-weighting scheme degrade the impact of some
target instances that are not relevant to source in-
stances, which is helpful for reducing the distribu-
tional divergence between domains and achieving
better statistical domain alignment.

3.4 Overall Objective
MNCRI is proposed to jointly minimize the cross
entropy loss of the source domain instances and
reduce the divergence between the source domain
and target domain. The total objective function in
MNCRI is formulated as:

L = LCE + λLCon + µLMMD−IR (5)

where LCE denotes source supervised loss using
source labels, and LCon denotes the geometric do-
main alignment loss based on the mutual nearest
neighbor contrastive learning, and LMMD−IR de-
notes the statistical domain alignment loss using
instance re-weighting scheme. λ and µ are two
trade-off parameters.

4 Experiments

In this section, we conduct extensive experiments
to evaluate the effectiveness of the proposed frame-
work (MNCRI).

4.1 Experimental Settings
4.1.1 Dataset
In our work, we conduct experiments on three
open-source software project datasets: FFmpeg,
QEMU (Zhou et al., 2019) and ReVe (Chakraborty
et al., 2021). There are several reasons for choosing
the above datasets as experimental datasets. The
first one is that they are manually labeled so that
they could provide accurate supervised information.
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Second, the number of samples of these datasets
is abundant to support model training. The imple-
mentation details can be found in Appendix A.

4.1.2 Baselines
The state-of-the-art cross-domain code vulnerabil-
ity detection methods include: VulDeePecker (Li
et al., 2018), SySeVr (Li et al., 2021), Devign
(Zhou et al., 2019), CodeBERT (Feng et al., 2020),
GraphCodeBERT (Guo et al., 2020), CodeT5
(Wang et al., 2021), SCDAN (Nguyen et al., 2019),
CD-VulD (Liu et al., 2020), and VulGDA (Li et al.,
2023).

4.1.3 Evaluation Metric
In general, F1-score is a widely used metric to eval-
uate the performance of vulnerability detection sys-
tems. Let TP be the number of vulnerable samples
that are predicted correctly, FP be the number of
truly non-vulnerable samples that are predicted as
vulnerable and FN be the number of truly vulner-
able samples that are predicted as non-vulnerable.
Precision (P = TP

TP+FP ) represents the ratio of
vulnerable samples that are correctly predicted as
vulnerable out of all samples predicted as vulnera-
ble. Recall (R = TP

TP+FN ) represents the ratio of
vulnerable samples that are correctly predicted as
vulnerable out of all truly vulnerable samples. The
F1-score (F1 = 2×P×R

P+R ) is the harmonic mean of
precision and recall. It is clear that the higher F1-
score represents better classification performance.
Besides, vulnerability detection tasks also focus on
TPR (True Positive Rate) performance (as known
as Recall) of detectors. Because the higher TPR
represents that the more vulnerable samples are
discriminated correctly, it is crucial for the perfor-
mance evaluation of detectors. Therefore, in our
experiments, we adopt TPR (True Positive Rate)
and F1-score as our evaluation metrics.

4.2 Results

We conduct extensive experiments to verify the
effectiveness of the proposed framework (MN-
CRI). Experimental results are shown in Table
1. Our proposed framework MNCRI (CodeT5)
achieves the best performances on all cross-domain
code vulnerability detection tasks, and outper-
forms all baseline methods. For instance, in the
FFmpeg-to-QEMU (F→ Q) cross-domain detec-
tion task, MNCRI (CodeT5) achieves an F1-score
of 58.21%, outperforming the current state-of-the-
art cross-domain detection method VulGDA by

5.41%. Meanwhile, MNCRI (CodeT5) obtains a
TPR gain of 9.18% compared to VulGDA. More-
over, our framework equipped with CodeBERT,
GCBERT (GraphCodeBERT) also can obtain sig-
nificant performance improvements compared to
baseline methods. This demonstrates that the pro-
posed framework has good generalization perfor-
mance and it does not rely on the specific code
feature extractor and can be adapted to various
feature extractors. Since CodeT5 adopts more ef-
fective pre-training mechanisms compared to Code-
BERT and GCBERT (GraphCodeBERT), MNCRI
using CodeT5 as the feature extractor obtains the
largest performance improvements. This demon-
strates that a power feature extractor is helpful
for improving cross-domain vulnerability detection
performance. To make the comparison with Vul-
GDA, MNCRI (VulGDA-f) uses the same feature
extractor as VulGDA. We can observe that MNCRI
(VulGDA-f) consistently outperforms VulGDA. We
can conclude that the performance improvements
can be attributed to the proposed domain adaptation
strategies.

By analyzing experimental results, we can ob-
serve that MNCRI could significantly improve TPR
(True Positive Rate) of the detector compared to
other cross-domain vulnerability detection meth-
ods. This observation shows that mutual nearest
neighbor contrastive learning and the instance re-
weighting scheme are conducive to reducing do-
main discrepancy by jointly conducting geometric
domain alignment and statistical domain alignment.
Besides, compared to the detectors CD-VulD, Vul-
GDA, and MNCRI exploiting domain adaptation
techniques, traditional detectors VulDeePecker, Sy-
SeVr and Devign have the worse performance in
cross-domain detection tasks. This is because tra-
ditional detectors do not consider the domain gap
between domains. The comparison results indi-
cate the importance of domain adaptation in cross-
domain code vulnerability detection tasks.

In order to more intuitively demonstrate the clas-
sification performance of MNCRI in cross-domain
vulnerability detection tasks, we plot the histogram
distributions of softmax-based prediction confi-
dence on the target domain dataset (see Figure 2).
We can see that the prediction confidence scores of
VulGDA are mainly distributed around 0.5 (see Fig-
ure 2(a)). This phenomenon indicates that VulGDA
has no discriminative ability for a large number
of target instances and is unable to judge whether
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Methods F→ Q F→ R Q→ F Q→ R R→ F R→ Q
TPR F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR F1

VulDeePecker 64.82 41.31 12.59 12.47 34.85 32.04 33.98 12.04 35.57 29.01 16.57 13.88
SySeVr 66.98 43.22 12.73 13.19 35.57 33.22 35.77 12.96 37.28 30.05 17.65 14.36
Devign 68.92 45.61 14.58 13.31 37.99 35.91 39.82 13.55 35.56 31.35 18.97 16.28
CodeBert 53.22 46.66 10.66 11.22 37.44 38.15 30.02 12.97 30.66 33.59 15.21 18.34
GCBERT 55.34 47.14 10.79 11.30 39.40 38.60 31.09 13.68 30.97 33.98 16.88 18.77
CodeT5 58.57 49.50 11.23 12.11 38.80 39.42 33.70 15.02 31.77 35.73 18.22 20.39
SCDAN 70.30 52.32 13.99 12.68 40.78 43.30 43.29 17.65 38.92 37.05 15.29 22.21
CD-VulD 73.21 51.24 13.88 14.06 48.80 46.68 48.80 20.10 40.25 40.17 18.71 25.78
VulGDA 76.76 52.80 15.22 14.37 47.96 47.72 50.52 20.98 40.68 42.86 19.88 26.35
MNCRI (VulGDA-f) 81.37 54.95 16.21 15.44 50.39 50.99 51.39 22.37 41.38 45.92 21.69 29.32
MNCRI (CodeBERT) 84.55 56.57 17.11 16.68 53.22 53.96 53.88 23.10 42.56 48.10 21.69 29.32
MNCRI (GCBERT) 84.92 57.09 17.92 17.02 54.10 54.11 54.74 24.97 44.74 49.83 22.28 30.10
MNCRI (CodeT5) 85.94 58.21 18.66 17.51 56.70 55.42 57.09 25.65 46.60 50.22 24.41 31.50

Table 1: Results on cross-domain code vulnerability detection tasks. For simplicity, GCBERT denotes the Graph-
CodeBERT (Guo et al., 2020) model. MNCRI (VulGDA-f) denote that MNCRI use the same feature extractor as
VulGDA. MNCRI (CodeT5) denotes that our framework MNCRI uses CodeT5 as the feature extractor. F denotes
the FFmpeg project dataset, and Q denotes the QEMU project dataset, and R denotes the Reveal project dataset. F
→ Q represents the source domain is the FFmpeg project dataset and the target domain is the QEMU dataset.

(a) VulGDA

(b) MNCRI

Figure 2: Histogram of softmax-based prediction confi-
dence on the target domain test dataset. (a) is the predic-
tion confidence score of VulGDA; (b) is the prediction
confidence score of MNCRI. x-axis coordinate repre-
sents the prediction confidence score from 0 to 1 and
y-axis coordinate represents the corresponding counts.

target instances are vulnerable or non-vulnerable.
In contrast, our proposed framework MNCRI over-
comes this phenomenon (see Figure 2(b)). We can
observe that there are few prediction confidences
distributed around 0.5, which shows that MNCRI
learns the more accurate vulnerable patterns across
domains and has the superior discriminative ability
for target instances.

Overall, the promising performance of MNCRI
can be attributed to the mutual nearest neighbor-
based contrastive learning and the instance re-
weighting scheme.

4.3 Ablation Study

To analyze the impact of different components in
our proposed MNCRI on the performance, we con-
duct an ablation study on all cross-domain vulnera-
bility detection tasks and report the results in Table
2.
Effect of Mutual Nearest Neighbors Con-
trastive Learning. From the results reported in
Table 2, we can observe that the removal of the mu-
tual nearest neighbors contrastive learning ("w/o
LCon") sharply reduces the performance in all eval-
uation metrics (TPR and F1). This indicates that
contrastive learning based on mutual nearest neigh-
bors guarantees geometric domain alignment by
pulling mutual nearest neighbors pairs closer to
each other and pulling away non-geometrically
close samples. Furthermore, we remove the mem-
ory bank mechanism ("w/o MB") in the contrastive
learning training stage and record its results. We
can find that removing the memory bank mecha-
nism would degrade performance. This indicates
that the global semantic information containing in
the memory bank is conducive to achieving more
accurate domain alignment.
Effect of Instance Re-weighting Scheme. To
evaluate the contribution of the instance re-
weighting scheme, we abandon it and report its
results in Table 2. We can see that the removal
of the instance re-weighting scheme ("w/o IR")
leads to performance degradation. This implies that
assigning different weights to different instances
according to relevance is helpful for reducing dis-
tributional divergence between domains, which en-
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Methods F→ Q F→ R Q→ F Q→ R R→ F R→ Q
TPR F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR F1

MNCRI (Full) 85.94 58.21 18.66 17.51 56.7 55.42 57.09 25.65 46.60 50.22 24.41 31.50
MNCRI (w/o LCon) 79.74 54.30 16.92 15.29 49.99 49.37 52.69 22.13 42.72 45.35 20.61 28.17
MNCRI (w/o MB) 83.49 55.76 17.24 16.66 53.85 52.28 55.37 23.48 43.92 48.50 23.69 30.22
MNCRI (w/o IR) 84.87 56.87 18.04 16.65 55.12 54.39 56.21 24.71 45.98 49.74 24.01 30.85

Table 2: Experimental results of ablation study.

(a) Neighbors number k (b) Loss weights λ and µ

Figure 3: (a) Varying nearest neighbors number k. (b)
Varying loss weights λ and µ.

ables the model to derive better cross-domain rep-
resentations, and thus leads to improved MNCRI
performance.

4.4 Sensitivity to hyper-parameter
Impact of the nearest neighbors number k. To
show the sensitivity of MNCRI to the nearest neigh-
bors number k, we conduct the experiments on the
F→ Q cross-domain vulnerability detection task,
and show the results in Figure 3(a). We observe that
the F1-score increases with the increasing value of
k and peaks at k = 20. Further increasing the values
of k results in worse performance. The F1-score
varies slightly within a wide range of k, demon-
strating that MNCRI is robust to the choices of
k.
Impact of loss weights λ and µ. To show the sen-
sitivity of MNCRI to the loss weights λ and µ, we
conduct control experiments on the F→ Q cross-
domain vulnerability detection task. The results
are illustrated in Figure 3(b). We can observe that
MNCRI achieves the best performance when λ is
set to 0.2. Within a wide range of λ, the perfor-
mance of MNCRI changes very little, validating
that MNCRI is stable to the choices of λ. Simi-
larly, MNCRI varies slightly with µ ∈ [0.01, 0.3],
showing that MNCRI is robust to the selection of
µ.

4.5 Analysis of Few-Shot Condition
To evaluate the generalizability of MNCRI in few-
shot vulnerability detection, we also evaluate MN-
CRI in the few-shot condition on the F→ Q cross-

domain vulnerability detection task. From the ex-
perimental results shown in Table 3, we can see that
MNCRI outperforms all baseline methods under
the few-shot condition. This verifies the effective-
ness and generalizability of MNCRI in dealing with
both zero-shot and few-shot vulnerability detection.

Methods TPR f1
SCDAN 74.51 52.67
CD-VulD 79.32 53.45
VulGDA 79.05 54.88
MNCRI 86.33 59.89

Table 3: Experimental results of few-shot condition
with 20% target domain labeled samples for training.

4.6 Conclusion

In this paper, we propose a novel cross-domain
code vulnerability detection framework named
MNCRI to achieve domain alignment. On the one
hand, we introduce mutual nearest neighbors con-
trastive learning to learn geometric relationships
between source domain samples and target domain
samples, so as to achieve geometric domain align-
ment. On the other hand, we introduce the instance
re-weighting scheme to reduce distributional di-
vergence between domains and achieve statistical
domain alignment. Finally, we conduct extensive
experiments to verify the effectiveness of our pro-
posed framework.

Limitations

Here we summarize the limitations for further dis-
cussion and investigation of the community. Our
proposed k-nearest neighbor mechanism requires
manually setting the optimal k∗ to achieve the best
cross-domain detection performance, which is in-
efficient. A better solution is to design an adaptive
k-nearest neighbor mechanism which could adap-
tively seek optimal neighbor samples according to
the semantic information of training samples.
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A Implementation Details

We use CodeBERT, GraphCodeBERT, CodeT5 as
the feature extractor, respectively. We use cross-
entropy to calculate the classification loss. The
classifier is a 2-layer full connected layers with 256-
dimensional output, and uses MMD to measure
the distributional domain discrepancy. The initial
learning rate is set to 5e-4. We split source and
target samples into different mini-batches with size
36. The total training epoch is 10. The temperature
parameter τ is set to 0.05.
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