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Abstract

The pruning objective has recently extended be-
yond accuracy and sparsity to robustness in lan-
guage models. Despite this, existing methods
struggle to enhance robustness against adversar-
ial attacks when continually increasing model
sparsity and require a retraining process. As
humans step into the era of large language mod-
els, these issues become increasingly promi-
nent. This paper proposes that the robustness
of language models is proportional to the ex-
tent of pre-trained knowledge they encompass.
Accordingly, we introduce a post-training prun-
ing strategy designed to faithfully replicate the
embedding space and feature space of dense
language models, aiming to conserve more pre-
trained knowledge during the pruning process.
In this setup, each layer’s reconstruction error
not only originates from itself but also includes
cumulative error from preceding layers, fol-
lowed by an adaptive rectification. Compared
to other state-of-art baselines, our approach
demonstrates a superior balance between ac-
curacy, sparsity, robustness, and pruning cost
with BERT on datasets SST2, IMDB, and AG-
News, marking a significant stride towards ro-
bust pruning in language models.

1 Introduction

Pruning is a widely recognized compression
method employed to decrease the model size and
accelerate model inference (Frankle and Carbin,
2018; Chen et al., 2020; Prasanna et al., 2020; Chen
et al., 2021). In the age of large language mod-
els (Andrew and Gao, 2007; Brown et al., 2020;
Chowdhery et al., 2022; OpenAI, 2023; Touvron
et al., 2023; Ouyang et al., 2022; Smith et al., 2022),
the necessity of pruning has increased because it
greatly reduces deployment costs (Frantar and Al-
istarh, 2023). In addition to the significant com-
putation cost, the robustness of language models
has emerged as a crucial factor that demands at-
tention. This is primarily because models need to

remain resilient against adversarial attacks, even in
challenging real-world circumstances (Tran et al.,
2022; Wang et al., 2023). Therefore, exploring ro-
bust pruning strategies against adversarial attacks
in language models could potentially yield a sub-
stantial impact (Xu et al., 2021; Du et al., 2023).

Recent research has extended the pruning of lan-
guage models beyond accuracy and sparsity, with
an emphasis on the trade-off between accuracy,
sparsity, robustness and cost (Du et al., 2023; Xu
et al., 2021; Liang et al., 2021; Xi et al., 2022).
Zheng et al. (2022) propose a joint optimization ob-
jective to guide the pruning and adversarial training
simultaneously. Their approach views the identi-
fied subnetworks as robust tickets, which can be
trained as normal and offer enhanced robustness.
Despite achieving state-of-the-art results on target
datasets, these methods still display vulnerabilities,
as evidenced by a significant gap between met-
rics of clean accuracy 1 and accuracy under attack.
Moreover, the performance also rapidly declines
when sparsity exceeds a moderate level. Expanding
on their work, Xi et al. (2022) propose using robust
early-bird tickets to reduce the computational cost
from adversarial training. However, they face simi-
lar challenges regarding the trade-off between ro-
bustness and sparsity. In summary, existing robust
pruning works often demonstrate limited sparsity,
insufficient robustness, and expensive cost, indicat-
ing the ongoing challenge of the balance between
accuracy and the other three aspects.

To address this challenge, this paper investigates
why language models are susceptible to adversarial
attacks. (Wang et al., 2021; Garg and Ramakrish-
nan, 2020; Jin et al., 2020). Previous studies have
indicated that language models frequently capital-
ize on biases and artifacts inherent in datasets as
predictive shortcuts, which impedes reasoning abil-
ity and skills to develop advanced semantic com-
prehension. (Du et al., 2021; Niven and Kao, 2019;

1accuracy without adversarial attacks
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McCoy et al., 2020; Du et al., 2023). This reliance
leads to a more severe loss of pre-trained knowl-
edge during the pruning process. Furthermore, the
adversarial samples in Natural Language Process-
ing (NLP) are crafted by replacing components of
sentences with semantically similar counterparts,
thereby retaining high semantic similarity in the
entire sentence (Li et al., 2020a; Ren et al., 2019;
Jin et al., 2020). In this way, language models
that depend on spurious features from particular
words can not defend against adversarial attacks
constructed by replacing those words with seman-
tically similar alternatives. To put it more plainly,
this primarily stems from the fact that, without
pre-trained knowledge, the sparse language model
treats the substitute word simply as an integer iden-
tifier. Based on the above observation, we explore
the following questions in this paper:

Question 1. What is the core to defend against
adversarial attacks for sparse language models?

This paper proposes that the robustness of sparse
language models is directly proportional to the
amount of pre-trained knowledge retained after
pruning. Intuitively, the robustness of a sparse lan-
guage model is fundamentally tied to its capability
to distill advanced semantic features from input
sentences. This capability is largely established
during the pre-training phase of dense language
models, emphasizing the pivotal role of acquired
semantic knowledge. The extensive experiments
well support our statement.

Question 2. How can we efficiently prevent the
loss of pre-trained knowledge in pruning to pre-
serve or even enhance robustness?

Previous research has demonstrated that pruning
exacerbates the model’s dependency on spurious
features (Xu et al., 2021; Du et al., 2023). We fur-
ther confirm that traditional pruning methods lead
to a considerable loss of pre-trained knowledge and
poor robustness. To prevent the above things, we
propose a pruning approach that minimizes dam-
age to the embedding space and feature space of
dense language models, striving to replicate the
features in each layer completely. Specifically, for
each layer, we iteratively eliminate a single weight
at a time and counterbalance the loss by updating
the remaining weights based on the Hessian Ma-
trix. In this setup, the reconstruction error at each
layer arises not only from its own layer but also
incorporates the accumulated error from preceding
layers. This is achieved by adaptively updating

the pruning-dependent information in accordance
with the sparse output generated by previous layers.
Concurrently, there’s an ongoing effort to correct
these errors collectively. Moreover, our method,
being a post-training approach, is cost-effective for
current language models, as it circumvents rigor-
ous retraining processes. Extensive experiments
show that our approach achieves a better trade-off
between accuracy, sparsity, robustness, and prun-
ing cost in SST2, AGNews, and IMDB compared
with other state-of-art methods.

2 Related Work

Textual Adversarial Attacks and Defense. Tex-
tual adversarial attacks pose a significant challenge
to the robustness of language models. These at-
tacks, formulated by carefully altering certain seg-
ments of sentences with semantically similar coun-
terparts, aim to fool language models (Jin et al.,
2020; Li et al., 2020a). To enhance the robustness
of language models and defend against adversarial
attacks, a range of potent defensive strategies, such
as adversarial training, has been proposed. (Madry
et al., 2017; Zhu et al., 2019; Li and Qiu, 2021).
Different from their research, which focuses on
dense models, we explore the robustness in the
context of language model pruning.

Robust Model Pruning. Prior studies indicate
that sparse models tend to underperform in Com-
pression Identified Examples (CIE), suggesting that
the pruning process exacerbates the inherent algo-
rithmic biases hidden within the datasets (Hooker
et al., 2020). In Computer Vision (CV), simultane-
ous optimization of model pruning and adversarial
training has been advocated as an effective solution
to this issue (Gui et al., 2019; Ye et al., 2019; Se-
hwag et al., 2020; Vemparala et al., 2021). In NLP,
Du et al. (2023) propose to prevent model overfit-
ting on easy samples by leveraging sample diffi-
culty in the context of pruning. Concurrently, Xu
et al. (2021) suggest the generation of robust sub-
networks through Knowledge Distillation and Post-
training Quantization. Taking a different approach,
Liang et al. (2021) strive to enhance model gen-
eralizability by extracting the super tickets, while
Zheng et al. (2022) and Xi et al. (2022) seek to iden-
tify robust tickets. Despite recent advancements,
achieving enhanced robustness alongside increased
sparsity remains a challenge. This paper signifi-
cantly promotes a better trade-off among accuracy,
robustness, sparsity, and pruning cost.
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3 Preliminary

3.1 Shortcut Learning and Mitigation
Recent studies provide evidence that language mod-
els are inclined to capitalize on inherent biases
and spurious features present in datasets, using
these as convenient predictive shortcuts (Niven and
Kao, 2019; Du et al., 2021; McCoy et al., 2020).
This tendency impedes the development of more
advanced semantic understanding and reasoning
capacity necessary for NLU tasks. Various pre-
liminary studies have begun to address this bias
issue, such as adversarial training and posterior reg-
ularization (Stacey et al., 2020; Chen et al., 2021).
From a unique perspective, we let language models
against adversarial attacks by mitigating this short-
cut issue through weight averaging. This method
will be elaborated further in Section 4.2.

3.2 Pruning with Hessian Matrix
Drawing inspiration from (LeCun et al., 1989; Has-
sibi et al., 1993), previous study has provided math-
ematical formulations for effectively eliminating a
single weight from a layer and updating the remain-
ing weights to correct the resulting error according
to the information from Hessian Matrix (Frantar
and Alistarh, 2022). The equations are presented
below:

wp = argmin
wp

w2
p

[H−1]pp

wr− =
wp

[H−1]pp
· H−1

:,p

(1)

where H is the Hessian Matrix, wp represents the
single weight that will be pruned, while wr denotes
the remaining weights that will be updated. The
notation [H−1]pp refers to the pth diagonal entry of
the inverse Hessian Matrix, and H−1

:,p represents its
pth column. However, the inversion of the Hessian
Matrix requires updates at each weight removal,
which is exceedingly costly. Frantar and Alistarh
(2022) observes that Hessian values across different
weight matrix rows are independent, as a single
weight removal only impacts its respective row
output. Accordingly, they simplify the calculation
of Hessian Matrix H and leverage the Gaussian
elimination technique to accelerate the update of
H−1, as described mathematically below:

H = XXT

H−1
−p = (H−1 − 1

[H−1]pp
H−1

:,p H
−1
p,: )−p

(2)

Here, −p denotes the removal action of a single
weight at index p. A more detailed explanation can

be found in the Appendix.

4 Methodology

This section proposes a pruning method for lan-
guage models that can better balance accuracy, spar-
sity, robustness, and pruning cost. Figure 1 depicts
the architecture of this method.

4.1 Rethink Robust Model Pruning
Given that the predominant challenge in robust
pruning primarily centers on robustness and prun-
ing cost, we mainly focus on these two aspects
in this paper. To enhance the robustness, we ex-
plore the root cause of the poor performance of
sparse language models under adversarial attacks.
We note that adversarial samples are often crafted
by replacing certain words in the sentence with
semantically similar substitutes. Thus it is essen-
tial to ensure that the representation of the original
words and their substitutes remain similar in the
embedding space and feature space even after prun-
ing. Based on the above observation, we propose
to maintain a highly close alignment between the
sparse and dense language models. In other words,
robust pruning is supposed to seek sparse parame-
ters Ŵl that minimize the discrepancy between the
outputs of dense and sparse layers. The problem
can be formally expressed as follows:

argminŴ l EXl L(fl(Xl,Wl), fl(Xl, Ŵl))

s.t. ∥Ŵl∥0 ≤ k
(3)

Here, each layer of language models is represented
by a mathematical function fl(Wl, Xl), and Xl

denotes inputs, k designates the total number of
weights that remain non-zero after the pruning
process. Predominantly, the Mean Squared Error
(MSE) is usually employed to measure the pruning
error of each layer. Therefore, the preceding prob-
lem can be further reformulated using the MSE, as
expressed in the subsequent equation:

argminŴl
||WlXl − ŴlXl||2 s.t. ∥Ŵl∥0 ≤ k (4)

To reduce the pruning cost, we adopt a post-
training setting in our strategy. Specifically, we
only utilize a small subset of data to calibrate the
weights and generate sparse substitutes to replace
them. In summary, our pruning method does not
need a rigorous retraining process.

4.2 Weight Averaging for Robust Dense Model
We also realize that language models may rely
on surface-level or spurious features in the data
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Figure 1: Architecture of Main Strategy. A: First, we generate a robust and dense language model in two steps: 1

we fine-tune the pre-trained weight with various hyperparameters and settings, resulting in multiple models with
different knowledge; 2 we then employ a greedy algorithm to only average the weights of models that contribute to
the final performance. B: Second, 3 we apply our adaptive pruning method to generate robust and sparse language
models in a layer-wise setting. Specifically, we optimize the 1 original independent pruning process of each layer
to 2 an adaptive way. This requires subsequent layers to update the Hessian Matrix and the optimal dense weight
according to the sparse outputs of preceding layers, thereby inheriting and correcting the accumulated error together.

rather than capturing sophisticated semantic fea-
tures. Thus, when sparse language models fail
to defend against adversarial attacks, it becomes
challenging to determine whether the failure stems
from the pruning methods or inherent issues within
the dense model. We circumvents this risk by con-
structing a robust and dense model before pruning.

Inspired by Croce et al. (2023) and Wortsman
et al. (2022), we generate a robust language model
via weight averaging. The key idea is to train mul-
tiple models with different hyperparameters and
settings, allowing each model to capture distinct
nuances of the data and generalize in diverse ways.
By averaging their weights, we can create a ro-
bust model that benefits from collective knowledge.
Specifically, we order these models in descending
order based on the accuracy under attack. Then, we
selectively average the weights that contribute to
the final robustness. Finally, we obtain a robust and
dense model as the foundation of subsequent op-
erations. This approach ensures that any detected
vulnerabilities in sparse language models result
from the pruning process, eliminating the possibil-
ity of them arising from spurious features. More

details can be found in Algorithm 3.

4.3 Ada-Pruning for Robust Sparse Model

4.3.1 Notation
To accurately replicate the dense model’s behavior
regarding embedding space and feature space of
each layer, we use the method described in Sec-
tion 3.2 as the backbone. However, its layer-wise
setting, which treats each layer as an independent
pruning problem, introduces limitations in realiz-
ing a globally optimal solution. To elaborate, let’s
consider a single layer as an example in the follow-
ing sections. We’ll use Xl, Wl, and Yl to represent
the input, weight, and output of the layer, respec-
tively, with the subscript l indicating lth layer. The
use of a hat, as seen in X̂l, Ŵl, or Ŷl, represents the
input, weight, or output within a sparse context.

4.3.2 Adaptive Hessian Matrix
After completing the pruning of the lth layer, a
certain amount of error stemming from the sparse
matrix operation inevitably arises. No matter how
minor this error might be, it’s important to realize
that the output of this layer, denoted as Ŷl, influ-
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Algorithm 1 Prune linear layers {l1..ln} of BERT
with target sparsity s and calibration data X

Require: Collect original X,W, Y for l
1: procedure LAYERWISE PRUNING({l1..ln})
2: for i← 1 to n do
3: Wi, Xi, Yi← li
4: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5: # Adaptive update
6: H−1

i ← (XiX
T
i )−1

7: if i ̸= 0 then
8: Wi ← H−1

i XT
i Yi

9: end if
10: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
11: # Pruning with Hessian Matrix
12: din ← input dimension
13: k ← int (din · s)
14: for j ← 1 to k do ▷ parallel in rows
15: p← argminp∈din

1

[H−1
i ]pp

· [Wi]
2
p

16: Wi ←Wi − [Hi]
−1
:,p

1

[H−1
i ]pp

· [Wi]p

17: tmp← [Hi]
−1
:,p [Hi]

−1
p,:

18: H−1
i ← H−1

i − 1

[H−1
i ]pp

tmp

19: Wi ←Wi remove [Wi]p
20: end for
21: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
22: # Adaptive update
23: Yi ←WiXi

24: Xi+1 ← post-process(Yi)
25: end for
26: return {Wi..Wn}
27: end procedure

ences the input of the subsequent layer, denoted as
X̂l+1. As a result, the initial Hessian Matrix for
the (l + 1)th layer, defined as Hl+1 = Xl+1X

T
l+1,

becomes outdated. Thus it’s crucial to recalculate
the Hessian Matrix to obtain more precise pruning-
dependent information. We suggest adaptively up-
dating the Hessian Matrix for the subsequent layer
after pruning the preceding layers.

4.3.3 Adaptive Dense Weight
We also note that the loss generated by removing
a single weight depends on the current weight Wl

from corresponding layer, as derived from Equa-
tion 1. However, an inevitable fact is that the origi-
nal dense weight Wl is not optimal for the expected
dense output Yl after pruning the preceding layers
(0̂th . . . ˆ(l − 1)th). Given that the input Xl has been
altered to X̂l due to the accumulated error, it would
be suboptimal to continue using the original weight
Wl to calculate the pruning loss for the current
layer. To be more clear, the result of X̂lWl could
substantially deviate from the original output Yl.
This is incompatible with our goal of producing an
output Ŷl identical to the original Yl in the pruning
process. Thus, it’s essential to update the dense
weight so that X̂lW̄l can approximates the original

output Yl more closely. Here, W̄l denotes the up-
dated dense weight, and we design the following
equations to derive W̄l:

W̄l = (X̂T
l X̂l)

−1X̂T
l Yl (5)

where T represents the transpose operation, and
−1 denotes the inverse operation. To ensure that
X̂T

l X̂l is invertible, we also introduce a regulariza-
tion term, such as 1e − 4, to the diagonal entries
of the matrix. Finally, we can compute the pruning
loss more accurately with the updated weight W̄l.

We also calibrate the optimal weights for non-
pruned layers (such as the pooler layer and classi-
fication layer in BERT) with Equation 5, aligning
the dense layers’ output with the altered input. Al-
gorithm 1 provides detailed steps for the code im-
plementation, offering a comprehensive overview
of our methodology. We also provide a comprehen-
sive analysis of the computational complexity of
our method in the Appendix.

5 Experiments

We first compare our method against several base-
line methods, assessing accuracy, robustness, spar-
sity, and cost. Then, an ablation study is performed
to elucidate the contributions of each part in our
method. Finally, we augment our core findings
with additional experiments and analyses to further
illuminate our method.

5.1 Baselines and Datasets
Consistent with the previous works (Devlin et al.,
2018; Du et al., 2023; Xu et al., 2021; Zheng et al.,
2022; Xi et al., 2022), BERTbase serves as the
foundational model for all our experiments. We
compare our approach with various baselines in-
cluding:RobustT (Zheng et al., 2022), which opti-
mizes the pruning mask and input perturbation si-
multaneously for robust tickets; Bag-of-Ticks (Xu
et al., 2021), which improves sparse model robust-
ness via Knowledge Distillation and Post-Training
Quantization; RMC (Du et al., 2023), a technique
preventing sparse language models from overfit-
ting on easy samples using sample difficulty; Su-
perTicket (Liang et al., 2021), which identifies
a super mask during pruning to reduce variance
while preserving bias. Our evaluation primarily
involves three text classification datasets: Internet
Movie Database (IMDB, Maas et al. 2011), AG
News Corpus (AGNEWS, Zhang et al. 2016), and
Stanford Sentiment Treebank for binary classifica-
tion (SST-2, Socher et al. 2013).
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Methods #Param Re-T SST2 AGNEWS IMDB
Acc Aua Asr Acc Aua Asr Acc Aua Asr

Fine-tune 85M Y 92.3 12.7 86.2 94.7 19.1 80.0 95.1 7.4 92.2
FreeLB 85M Y 91.5 28.3 69.1 94.8 37.8 60.1 94.3 36.2 61.6
Weight Average 85M Y 91.4 30.4 66.75 94.4 48.5 48.6 95.2 44.4 53.4
sparsity ≤ 30%
SuperTicket 72M Y 93.2 14.3 84.7 94.8 9.7 89.8 95.0 17.3 81.8
Bag-of-Tricks 60M N 86.3 25.7 70.3 87.3 31.8 63.6 85.4 24.6 71.2
RMC 60M Y 91.2 17.6 80.7 94.2 21.4 77.3 93.9 22.3 76.3
RobusT 60M Y 90.8 28.9 68.2 94.9 33.4 64.8 92.1 55.7 39.5
Ours 60M N 90.2 42.3 53.1 93.8 48.6 48.2 94.6 57.3 39.4
sparsity = 50%
Bag-of-Tricks 43M N 87.2 21.6 75.2 90.6 33.5 63.0 91.3 21.2 76.8
RMC 43M Y 90.8 9.7 89.3 94.1 21.2 77.5 94.1 14.7 84.4
RobusT 43M Y 90.5 24.8 73.9 94.8 28.8 69.7 93.2 31.5 66.2
Ours 43M N 88.31 43.1 51.2 93.4 48.5 48.1 94.2 53.2 43.6
sparsity = 87.5%
Bag-of-Tricks 11M N 85.9 17.8 85.7 89.4 11.3 87.4 87.7 8.9 89.9
RMC 11M Y 86.3 3.6 95.8 92.1 4.5 95.5 91.3 11.2 87.7
RobusT 11M Y 85.2 7.8 90.8 91.8 8.3 91.0 89.2 6.5 92.7
Ours 11M N 85.6 37.6 56.1 92.4 41.3 55.3 91.6 35.6 61.1

Table 1: Summary of Adversarial Robustness Assessment on BERTbase. The entry highlighted with an orange
background denotes our robust and dense model, which serves as the initialization for a range of robust pruning
methods except RobustT (RobustT is generated from the pre-trained weight). Obviously, our method consistently
outperforms all baselines in terms of the Aua% and Asr% metrics. Regarding Acc%, there is a minor decrease in
our method’s performance at lower sparsity levels, yet it regains superiority at higher sparsity levels. The highest
performance is highlighted in bold. The column Re-T indicates whether the method necessitates model retraining.
Consistent with previous research, we exclude embedding matrices from the calculation of parameter count.

5.2 Robustness Evaluation

We assess our model’s effectiveness against adver-
sarial attacks using the TextFooler, which substi-
tutes crucial words in sentences with semantically
similar synonyms (Jin et al., 2020). Following pre-
vious works (Zheng et al., 2022; Xi et al., 2022),
our evaluations utilize key metrics like Clean Accu-
racy Acc% (accuracy on clean test data), Accuracy
Under Attack Aua% (accuracy when subjected
to adversarial attacks), and Attack Success Rate
Asr% (ratio of successful text perturbations to to-
tal attempts). A robust method is expected to show
higher clean accuracy and accuracy under attack
coupled with a lower attack success rate. We also
evaluate more attack methods in the Appendix.

5.3 Implementation Details

To begin with, we employ the technique mentioned
in Section 4.2 to generate a robust language model
for each dataset. Subsequently, we use our method
to prune these robust language models with a small
calibration dataset. All experimental results are the
average of five trials, each initiated with different

seeds. Furthermore, we assess the performance
under three different levels of sparsity: 30%, 50%,
and 87.5%. Additional implementation details can
be found in Appendix.

5.4 Main Result on Robustness Evaluation
Table 1 provides a comprehensive comparison of
various robust pruning methods, evaluated across
three distinct datasets: SST2, AGNEWS, and
IMDB, and under varying degrees of model spar-
sity. Key observations can be made as follows: 1)
Our strategy even enhances the robustness of lan-
guage models after pruning. We believe this en-
hancement stems from the regularization effect of
sparse architecture. 2) Our strategy distinguishes
itself by consistently surpassing other methods in
the Aua% and Asr%s, regardless of the dataset or
the level of sparsity. These results imply that our
strategy effectively maintains robustness during the
pruning of language models. 3) Impressively, our
method achieves higher robustness even with fewer
parameters compared to several other approaches,
which further underscores the effectiveness of our
robust pruning method. 4) Although the Acc% of
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(a) (b) (c)

(d) (e) (f)

Figure 2: Attention Score Visualisation in BERTbase. We have selected an adversarial sample ("it’s a bewitching
and often repercussions journey.") from SST2 and visualized the attention scores in the robust and dense model (2b,
2e), the sparse language model generated with IMP+FreeLB (2a, 2d), and the sparse language model created using
our method (2c, 2f). Here, Figures 2a, 2b, and 2c depict the attention scores from the first transformer block of
BERTBase, while Figures 2d, 2e,and 2f show scores from the last transformer block. Evidently, the attention scores
produced by our method align more closely with those from the robust and dense model.

Methods #Param ReT SST2 AGNEWS IMDB
Acc Aua Asr Acc Aua Asr Acc Aua Asr

Fine-tune 85M Y 92.3 12.7 86.2 94.7 19.1 80.0 95.1 7.4 92.2
Weight Average 85M Y 91.4 30.4 66.75 94.4 48.5 48.6 95.2 44.4 53.4
IMP 43M Y 92.6 4.8 94.8 94.9 7.1 92.5 94.1 7.7 91.8
IMP + FreeLB 43M Y 92.4 7.9 91.5 94.3 9.2 90.2 93.8 14.3 84.8
LTH 43M Y 91.6 2.8 96.9 93.5 10.1 89.2 93.2 4.6 95.1
LTH + FreeLB 43M Y 91.7 9.8 89.3 93.2 12.3 86.8 93.1 9.5 89.8
Ours 43M N 88.31 43.1 51.2 93.4 48.5 48.1 94.2 53.2 43.6

Table 2: Ablation Study with Pruning Methods Replacement. We replace our pruning method with most famous
others (IMP and LTH) supplemented with adversarial training (FreeLB). Similarly, the orange entry is used for
model initialization. Once again, our method outperforms others in preserving or even enhancing robustness.

our method is generally lower than other baselines
at lower sparsity levels, the improvement of robust-
ness (reflected in Aua% and Asr%) far outweighs
the degree of accuracy degradation. 5) At higher
levels of sparsity, our method outperforms other
baselines across all metrics. 6) Our method does
not require model retraining, confirming that our
approach offers a better trade-off between accuracy,
robustness, sparsity, and pruning cost.

Beyond Bertbase, our methodology was also ex-
tended to Bertlarge, a model encompassing 330M
parameters. The resulting performance, as pre-
sented in Table 3, reaffirms the superiority of our

method when compared to the baselines. Moreover,
we explore the effectiveness of our methods within
a structured pruning context, and once again, our
approach outperforms the state-of-the-art method:
EarlyRobust (Xi et al., 2022). More details can be
found in Appendix.

5.5 Ablation Study

To elucidate the contributions of each part of our ap-
proach, we conduct an ablation study with the fol-
lowing settings:We replace our pruning technique
with methods known as LTH and IMP (Frankle
et al., 2020; Frankle and Carbin, 2018), and supple-
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Methods #Param Re-T SST2 AGNEWS IMDB
Acc Aua Asr Acc Aua Asr Acc Aua Asr

Weight Average 309M Y 93.5 36.4 61.1 96.2 56.5 41.3 95.9 48.4 49.6
Bag-of-Tricks 155M N 90.3 27.6 69.4 93.1 35.5 61.9 93.4 29.3 68.6
RMC 155M Y 92.6 14.7 84.1 95.4 19.2 79.9 95.8 16.7 82.6
RobusT 155M Y 92.1 29.8 67.7 95.1 32.8 65.6 95.2 31.9 66.5
Ours 155M N 91.7 47.1 48.6 95.5 53.5 44.0 95.3 55.8 41.4

Table 3: Summary of Adversarial Robustness Assessment on BERTlarge. Similarly, the entry highlighted with an
orange background is used for model initialization. Once again, our method consistently outperforms all baselines
in terms of the Aua% and Suc% metrics.

ment them with the additional adversarial training
method FreeLB (Zhu et al., 2019). The results
are presented in Table 2. From the results, we can
make the following key observations: 1) Sparse
language models generated by traditional pruning
methods performs even worse than the vanilla fine-
tuned dense model. This highlights the challenges
associated with robust pruning. 2) Our approach
consistently generates more robust sparse language
models than conventional pruning methods, even
supplemented with adversarial training methods. 3)
We conjecture that the limited effect of adversar-
ial training here stems from the discrete nature of
word tokens and the substantial loss of pre-trained
knowledge during pruning.

5.6 Discussion

In this section, we design additional experiments
to illustrate our robust pruning method further.

5.6.1 Pretrained Knowledge Detection
To demonstrate the effectiveness of our robust prun-
ing mechanism in preserving pre-trained knowl-
edge, we’ve chosen adversarial samples that are
effectively defended by our method but not by oth-
ers. We then visualize the attention scores of them
in Figure 2. Our method demonstrates superior
performance, as evidenced by more reasonable at-
tention scores that align more closely with those
from the robust and dense model. In addition, we
visualize the distance of sentence representation
from sparse language models and their dense coun-
terparts in the feature space. As depicted in Ta-
ble 4 and Figure 5, our method results in smaller
distances between the dense and sparse representa-
tions. These findings indicate the superior ability
of our robust pruning method to preserve seman-
tic knowledge and maintain cognizance. In other
words, our method outperforms others in maintain-
ing robustness during pruning.

Table 4: Quantitative Analysis of Distance from Sen-
tence Embeddings. We compare the distances between
sentence embeddings derived from various layers of
dense and sparse language models. Our findings reveal
that our method aligns better with the dense model, re-
gardless of whether we use the original or adversarial
sentence. Refer to Figure 5 for a visualization of these
sentence embeddings.

Layer
Distance with dense

Data
IMP + ADT (2x) v.s. Ours (2x)

1
0.0086 > 0.0000 Ori
0.0086 > 0.0000 Adv

2
0.0144 > 0.0015 Ori
0.0142 > 0.0015 Adv

3
0.0156 > 0.0014 Ori
0.0258 > 0.0012 Adv

4
0.0193 > 0.0017 Ori
0.0407 > 0.0017 Adv

5
0.0324 > 0.0067 Ori
0.1319 > 0.0069 Adv

6
0.0763 > 0.0255 Ori
0.0967 > 0.0253 Adv

7
0.1299 > 0.0496 Ori
0.1478 > 0.0501 Adv

8
0.2530 > 0.1308 Ori
0.2547 > 0.1078 Adv

9
0.1880 > 0.0958 Ori
0.2767 > 0.0749 Adv

10
0.2804 > 0.1254 Ori
0.3909 > 0.1049 Adv

11
0.4932 > 0.2322 Ori
0.7317 > 0.0625 Adv

12
0.6872 > 0.2231 Ori
0.6903 > 0.0349 Adv

5.6.2 Impact of Calibration Data
The calibration data is crucial for our methodology
because it directly affects the computation of the
Hessian Matrix. As outlined in Algorithm 1, the
Hessian Matrix can be derived from H = XTX .
To further explore the impact of the number of
data points, we designed experiments that gradu-
ally increased the number of data points used in
our strategy. The results of these experiments are
detailed in Figure 3. Our observations indicate
that as the number of used data points increases,
the robustness and accuracy of the sparse language
modes increase, but only up to a certain threshold.
We hypothesize that the model can initially retain
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more general knowledge as data points increase.
However, once a threshold is crossed where the
new data cannot provide additional information for
general features, adding more data points from a
similar distribution no longer contributes to model
robustness and accuracy.

5.6.3 Impact of Sparsity
As illustrated in Figure 4, we explore the robustness
and accuracy of our sparse language models across
a range of sparsity levels. In a departure from
previous studies Zheng et al. (2022), our observa-
tions indicate that as sparsity increases, robustness
decreases with a similar pace like accuracy. This
trend suggests that the impact of increasing sparsity
on model robustness might be less severe than pre-
viously assumed. This disparate pattern may stem
from the post-training nature of our method. Fur-
thermore, our observations regarding the trend in
robustness align with the findings of previous stud-
ies by Zheng et al. (2022) and Liang et al. (2021).
We note that the robustness of our sparse language
models initially improves as sparsity escalates up
to a certain threshold. After crossing this thresh-
old, the robustness begins to decline. However, it
sustains a level of robustness that is higher than the
peak value observed in other models and does not
collapse even with 10x compression. This finding
further highlights the outstanding performance of
our method in robust pruning.

Figure 3: Impact of # of Calibration Data from SST2.

6 Conclusion

In this paper, we investigate the application of ro-
bust pruning methods for language models. We
propose an adaptive pruning method and place a
special emphasis on replicating the embedding and
feature space of dense models to preserve as much
pre-trained knowledge as possible. The effective-
ness of this approach is confirmed through a series

Figure 4: Impact of Sparsity Levels on SST2

of experiments conducted across various tasks.

Limitations

This work introduces a post-training method that
can robustly prune the language models without
model retraining. Despite bypassing the rigorous
retraining process, the computational cost of our
method remains significant due to the calculation of
the Hessian Matrix and its inverse. Consequently,
this approach may not be feasible for language
models comprised of billions of parameters. As a
next step, we aim to refine our technique to devise a
more efficient strategy to replicate the feature space
and embedding space of language models
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thermore, these advancements could contribute to
reducing the computational resources required for
training and using large language models, which
aligns with efforts to reduce the environmental im-
pact of machine learning.

However, the increased robustness of models
against adversarial attacks could also be used mali-
ciously if the technology falls into the wrong hands.
Bad actors could potentially exploit robust models
for the generation of disinformation or manipula-
tion of public sentiment, for instance. Furthermore,
although our technique aims to faithfully replicate
the feature space of dense models, bias present
in the original training data could be preserved in
the pruned models. Consequently, decisions made
based on the output of these models could perpetu-
ate these biases.

We encourage the use of our findings and meth-
ods for applications that promote the public good
and contribute to human welfare. Further, we rec-
ommend that researchers and practitioners using
this technique take into account potential biases
in their training data and consider strategies for
minimizing their impact. In the future, we hope
to conduct more research on mitigating bias and
other ethical issues associated with our pruning
strategy. It is our belief that technology should be
developed and used in a way that is transparent,
fair, and beneficial to all.
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A Appendix-A

A.1 Pruning with Hessian Matrix

As described in Section 3.2, we prune each layer
of language models in a layer-wise setting. It in-
volves an iterative step that removes a single weight
for each step and updates the remaining weights
until the desired sparsity level is attained. While
this approach yields a locally optimal solution, it
involves a computationally expensive step: calcu-
lating the Hessian matrix at each iteration. It is
important to note that storing the information for a
Hessian Matrix, denoted as H , requires d×d mem-
ory, and updating it has a computational complexity
of O(d4), where d = drow · dcol.

A.2 Accelerated Pruning with Hessian Matrix

Previous research highlights that the Hessian val-
ues across different rows of the weight matrix
are independent. This is because the removal
of a single weight in each row of the matrix
only affects its corresponding row value. Conse-
quently, we can simplify the objective function with∑drow

i=1∥Wi,:X − Ŵi,:X∥22, and a separate Hessian
Matrix of appropriate size (dcol × dcol) for each
row is sufficient to locate the optimal weight for
removal. Additionally, since the output Y = WX
of the dense layer remains fixed, and the objective
function for each row takes the standard form of
least squares, its Hessian Matrix can be calculated
by H = 2XXT (Frantar and Alistarh, 2022).

As the Hessian Matrix H is no longer dependent
on the weight, we only need to compute H once.
After each pruning step, the Hessian Matrix HM

(M means the operation of removing or masking
one single weight) can be obtained by masking
the value at the corresponding location. However,
when it comes to H−1, the aforementioned trick
cannot be applied as (H−1)M ̸= (HM )−1, mak-
ing the computation still expensive. Frantar and
Alistarh (2022) uses the Gaussian elimination tech-
nique for a more efficient update of H−1. A math-
ematical exposition of this technique is provided
below:

H−1
−p = (H−1 − 1

[H−1]pp
H−1

:,p H
−1
p,: )−p (6)

where −p meas remove single weight at index p.
For more comprehensive details, please refer to the
work of Frantar and Alistarh (2022).

B Appendix-B

B.1 Efficiency Analysis of Hessian Matrix

We recognize the importance of addressing the
efficiency concern related to Hessian Matrix cal-
culation. However, grasping the intricate bal-
ance between computational complexities and their
broader implications is crucial. To provide clar-
ity, we offer an in-depth analysis of computational
complexities from both micro and macro view-
points, contrasting it with approaches that necessi-
tate model retraining.

B.2 Micro Perspective

When considering models like Bertbase and
Bertlarge, the computational requirements for the
Hessian Matrix of one layer do not exceed that of
model retraining in most cases. To clarify it, we
analyze the complexity of our method step by step
based on the Algorithm 2.

Algorithm 2 Prune a linear layer l of BERT with
target sparsity s and calibration data X

1: Input: Collect original X , W , Y for l.
2: procedure PRUNING(l)
3: Set W , X , Y ← l

Adaptive Update 1:
4: Calculate H−1← (XXT )−1

5: Set W ← H−1XTY
Pruning with Hessian Matrix:

6: Set din← input dimension.
7: Set k← int(din · s).
8: for j = 1 to k (parallel in rows) do
9: Set p← argminp∈din

1
[H−1]pp

· [W ]2p.

10: Set W ←W − [H]−1
:,p

1
[H−1]pp

· [W ]p.
11: Set A← [H]−1

:,p

12: Set B ← [H]−1
p,:

13: Set H−1← H−1 − 1
[H−1]pp

AB

14: Remove [W ]p from W
15: end for

Adaptive Update 2:
16: Set Y ←WX .
17: Update X of next layer with post-

process(Y )
18: end procedure

Notations: To facilitate the understanding, we first
introduce the notations essential for the complexity
analysis. The sparsity ratio, a value lying between
0 and 1, is denoted by s. The input dimension of
the linear layer is represented by din, and the output
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Methods #Param Re-T SST2 AGNEWS IMDB
Fine-tune 85M Y 92.3 12.7 86.2 94.7 19.1 80.0 95.1 7.4 92.2
FreeLB 85M Y 91.5 28.3 69.1 94.8 37.8 60.1 94.3 36.2 61.6
Weight Average 85M Y 91.4 30.4 66.75 94.4 48.5 48.6 95.2 44.4 53.4
sparsity = 50%
EarlyRobust (Stru) 43M Y 91.2 15.6 82.9 94.1 28.4 69.8 90.7 33.2 63.3
Ours (w/o Stru) 43M N 88.31 43.1 51.2 93.4 48.5 48.1 94.2 53.2 43.6
Ours (Stru 32:64) 43M N 88.42 44.3 49.9 93.2 49.1 47.3 94.8 53.4 43.7

Table 5: Summary of Adversarial Robustness Assessment on BERTbase in Structured Pruning. "Stru 32:64" refers
to a pruning strategy where, for every 64 continuous weights (a bank) in a weight matrix, 32 of them are retained.

dimension, aligning with the weight matrix’s other
dimension, is symbolized by dout. We use d =
din × dout to illustrate the comprehensive size of
the weight matrix. The batch size and the sequence
length are, respectively, given by n and seq.

Adaptive Update (1): In this phase, the matrix
multiplication XXT plays a pivotal role. Given the
dimensions of X as n × seq, din and that of XT

as din, seq× n, the resulting matrix has a shape of
din × din. This multiplication alone possesses a
complexity of O(n× seq× d2in). Additionally, ma-
trix inversion is another vital step with a complexity
of O(d3in). The computation of H−1

i XT
i Yi further

contributes to the complexity, having a magnitude
of O(n× seq× din × dout).

Pruning with the Hessian Matrix: In this con-
text, the outer loop spans dout iterations. Within
each row of W , an inner loop determined by
k = int(din × s) is executed. This loop com-
prises various operations with O(d2in). Summing
up, the inner loop complexity is O(k×d2in). Conse-
quently, the combined complexity for the pruning
phase is O(din × s × d2in × dout), simplifying to
O(d3in × s× dout).

Adaptive Update (2): The matrix multiplication
Y = WX dominates with a complexity of O(n×
seq × din × dout). Summing complexities for a
single layer yields O(2n× seq× din× dout +n×
seq×d2in+2d3in+d3in×s×dout), with the dominant
terms being O(d3in × dout). Thus, pruning a layer
has a complexity of O(d3in × dout), which is also
proved by Frantar and Alistarh (2022).

Key observations: A pivotal observation is that
this complexity remains uninfluenced by the batch
size n because calibration data keeps n restricted
to a constant fall in [128, 1024]. The cubic rela-
tionship with din is the primary driver behind the
complexity, and for larger din, this can escalate

substantially.

B.3 Comparison with Re-Training Method

In contrast, when training a single layer using SGD,
the complexity is approximately O(n×seq×din×
dout). This complexity scales linearly with the
batch size n, which can increase markedly with
large datasets and the number of training epochs.
Although the complexity of the pruning operation
remains consistent regardless of n, the training
complexity escalates, posing computational chal-
lenges for extensive datasets, prolonged sequences,
and increased training epochs. We also dive deeper
into the comparative insights.

Batch Size: Our pruning method capitalizes on
calibration data, thus constricting n to moderate
values, notably between 128 to 1024. This sharply
diverges from the conventional training paradigm
where n can inflate significantly due to extensive
datasets and number of training epochs, thereby
magnifying its computational requisites.

Dimensionality Dependency: The intrinsic com-
plexity of our pruning algorithm reveals a cubic
dependency on din. This can render it computation-
ally onerous, especially for layers endowed with
an extensive din. Conversely, traditional training
exhibits a linear correlation with both din and dout.

In summary, the computational demands of our
pruning method, particularly for layers with a large
din, are unquestionably stringent. However, it’s im-
portant to recognize the significant computational
burden introduced by traditional training, mainly
because of its responsiveness to large dataset sizes.
Understanding this balance and trade-off is crucial
when comparing the effectiveness and suitability
of our pruning approach to traditional retraining.
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Method Dataset Attack Sparsity Accuracy Accuracy under attack
Ours SST2 TextBugger 2x 88.31% 50.34%
RobustT SST2 TextBugger 2x 90.5% 35.6%
EarlyRobust SST2 TextBugger 2x 91.2% 36.7%
Ours SST2 TextBugger 4x 86.93% 49.08%
Ours SST2 TextBugger 8x 85.6% 48.85%
Ours SST2 BERT-Attack 2x 88.31% 51.95%
RobustT SST2 BERT-Attack 2x 90.5% 28.3%
EarlyRobust SST2 BERT-Attack 2x 91.2% 30.2%
Ours SST2 BERT-Attack 4x 86.93% 50.57%
Ours SST2 BERT-Attack 8x 85.6% 49.32%
Ours IMDB TextBugger 2x 94.2% 58.2%
RobustT IMDB TextBugger 2x 93.2% 46.1%
EarlyRobust IMDB TextBugger 2x 90.7% 48.7%
Ours IMDB BERT-Attack 2x 94.2% 52.1%
RobustT IMDB BERT-Attack 2x 93.2% 43.1%
EarlyRobust IMDB BERT-Attack 2x 90.7% 43.5%
Ours AGNews TextBugger 2x 93.2% 62.0%
RobustT AGNews TextBugger 2x 94.8% 44.1%
EarlyRobust AGNews TextBugger 2x 94.1% 46.2%
Ours AGNews BERT-Attack 2x 93.2% 70.8%
RobustT AGNews BERT-Attack 2x 94.8% 36.8%
EarlyRobust AGNews BERT-Attack 2x 94.1% 39.3%

Table 6: Evaluation of various methods and datasets against different adversarial attacks.

B.4 Macro Perspective

Predicable Processing Time and Promised Out-
put: Notably, from a broader view, while our ap-
proach introduces a dependency for each layer and
potentially increases processing times, the number
of layers in common language models is limited.
This suggests that we can accurately predict the
time needed to complete the pruning process, and
expect positive results in return.

Layer-by-Layer Computation for Resource Effi-
ciency: While the sum of Hessian Matrix computa-
tions of the entire language model is time-intensive,
our approach uniquely addresses this by employing
a layer-by-layer resolution strategy. This methodol-
ogy means there’s no necessity to simultaneously
load the entire model into the memory of compu-
tational resources. Consequently, from a memory
allocation standpoint, our pruning with the Hes-
sian Matrix can be viewed as a resource-saving
measure.

Efficient Post-training Pruning: A post-training
pruning strategy is at the heart of our methodol-
ogy. Unlike many other approaches that might
require recurrent training sessions or exhaustive
reiterations, ours stands out in its ability to save
significant resources by strategically avoiding these

processes.

Computational Commitment: While it’s ac-
knowledged that pruning with the Hessian Ma-
trix does possess computational time costs, it’s
paramount to understand our larger vision. The
ultimate objective isn’t merely to save time but to
sculpt a model characterized by three pillars: spar-
sity, robustness, and high performance. Such a
model offers considerable advantages in real-world
scenarios. Thus, the computational expenses en-
countered in the training phase can be viewed less
as costs and more as strategic investments.

C Appendix-C

C.1 More Adversarial Attacks
To demonstrate the superiority of our method, we
have incorporated further experiments targeting
two more recognized adversarial attacks: BERT-
Attack and TextBugger (Li et al., 2020b, 2018).
BERT-Attack, powered by BERT, guarantees flu-
ency and retains semantics in its adversarial outputs.
Conversely, TextBugger integrates both character
and word-level perturbations to yield adversarial
instances, thereby introducing a new set of chal-
lenges for our defense mechanism. We use state-
of-the-art methods (RobustT and EarlyRobust) as
baselines and describe the results in Table 6 (Zheng
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et al., 2022; Xi et al., 2022). Our approach consis-
tently demonstrated superiority in the robustness
of sparse language models across various sparsity
levels and datasets.

C.2 More Pruning Baseline

As recommended by the reviewer, we have in-
cluded Movement Pruning (Sanh et al., 2020) as
an additional baseline in our experiments. Our
original selection of baselines was grounded on
their capacity to simultaneously address accuracy,
sparsity, robustness, and pruning cost. It should
be noted that Movement Pruning predominantly
emphasizes accuracy and sparsity.

Nevertheless, to offer a complete perspective,
we have included Movement Pruning in our exper-
imental evaluation. The comparative results are
presented in Table 7. It is evident that, while our
method may trail slightly in terms of clean accu-
racy, it significantly outperforms Movement Prun-
ing under adversarial conditions, highlighting the
robustness of our approach.

D Appendix-D

D.1 More Implementation Details

We utilize various hyperparameters and settings
to fine-tune multiple downstream models for each
dataset. The hyperparameters and settings em-
ployed are presented in Table 8. Subsequently, we
apply the technique of weight average in a greedy
manner to derive robust and dense models. The
detailed procedure is outlined step-by-step in Algo-
rithm 3.

Algorithm 3 Greedy Weight Averaging
1: procedure GREEDYWA({h1, . . . , hk})
2: {θ1, . . . , θk} ← {h1, . . . , hk}
3: {m1, . . . ,mk} ← {θ1, . . . , θk}
4: Sort({θ1, . . . , θk}) with {m1, . . . ,mk} ↓
5: ingredients← ∅
6: for i = 1 to k do
7: if Eval(average(ingredients ∪ {θi})) ≥
8: Eval(average(ingredients)) then
9: ingredients← ingredients ∪ {θi}

10: end if
11: end for
12: return average(ingredients)
13: end procedure

We adopt Textattack (Morris et al., 2020) to im-
plement the method of adversarial attacks. More-
over, Aua% and Suc% are evaluated on all 872 test
examples for SST-2, 500 randomly selected test
samples for IMDB and AG NEWS.

The number of calibration data in our main ex-
periments ranges from 256 to 1024 sentences. Dur-
ing pruning, we conduct our experiments on a
server with a single NVIDIA 3090 GPU. Due to
the layer-wise setting, we do not need to occupy
substantial GPU memory, and our adaptive rule en-
ables us to obtain an end-to-end rectification effect
similar to SGD optimization.

D.2 Impact of Structured Pruning

Drawing inspiration from the work by Xi et al.
(2022), we also investigate the impact of structured
pruning in our strategy. In particular, we evaluate
our method’s performance under N:M structured
patterns and summarize the results in Table 4. We
made several key observations from these experi-
ments: 1) our method consistently produces better
robust pruning results than other robust pruning
methods in the context of structured pruning. 2)
As proven by Xi et al. (2022), structured pruning
enhances the robustness of subnetworks in com-
parison to unstructured pruning. Our experiments
confirm the positive impact of structured patterns in
pruning, solidifying the effectiveness of our robust
pruning method.

E Appendix-E

E.1 Model Pruning

Pruning aims to eliminate redundant elements in
neural networks, traditionally targeting elements
of the smallest magnitude, which includes weights,
output sensitivity, gradients, and Hessian matrices
of training loss, among others. Pruning pre-trained
language models like BERT has been an active field
of research. Prasanna et al. (2020) demonstrated
that unstructured pruning yields more sparse and
accurate models. Pruning at the pre-training stage
has been favored by researchers like Gordon et al.
(2020) and Chen et al. (2021), due to its efficiency
and effective knowledge transfer to downstream
tasks. Sanh et al. (2020) adds penalty terms to
the loss function to eliminate redundant weights.
Frantar and Alistarh (2022) introduce an effective
post-training pruning method, which is the first ap-
proach that prunes a language model in a one-shot
manner without significant degradation in accuracy.
However, these studies neglect robustness, focus-
ing mainly on the accuracy-sparsity trade-off. Re-
cent work has begun to note the issue of robustness
for sparse language models, but the challenge of
enhancing robustness with increased sparsity per-
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Table 7: Comparison between our method and Movement Pruning under various attacks and sparsity levels.

Method Dataset Attack Sparsity Accuracy Accuracy under attack
Ours SST2 TextFooler 2x 88.31% 43.12%
Movement Pruning SST2 TextFooler 2x 90.6% 14.85%
Ours SST2 TextFooler 4x 86.93% 40.15%
Movement Pruning SST2 TextFooler 4x 90.5% 8.27%
Ours SST2 TextFooler 8x 85.6% 37.63%
Movement Pruning SST2 TextFooler 8x 90.0% 9.14%
Ours SST2 TextBugger 2x 88.31% 50.34%
Movement Pruning SST2 TextBugger 2x 90.6% 24.85%
Ours SST2 TextBugger 4x 86.93% 49.08%
Movement Pruning SST2 TextBugger 4x 90.5% 21.35%
Ours SST2 TextBugger 8x 85.6% 48.85%
Movement Pruning SST2 TextBugger 8x 90.0% 15.13%

ids lr opt seed epoc wd adt
#1 2e-5 Adam 42 10 1e-2 Y
#2 3e-5 AdamW 426 20 1e-2 N
#3 5e-5 SGD Random 30 1e-2 Y
#4 2e-5 AdamW 302 10 1e-3 N
#5 4e-2 AdamW Random 30 1e-2 Y
#6 5e-5 SGD 42 3 1e-2 N
#7 1e-5 AdamW 107 20 1e-3 Y
#8 3e-5 Adam Random 5 1e-2 N
#9 2e-5 AdamW 302 30 1e-3 Y
#10 2e-5 SGD Random 15 1e-2 N

Table 8: A Range of Hyperparameters and Settings for
Weight Averaging

sists (Zheng et al., 2022; Du et al., 2023; Xu et al.,
2021; Liang et al., 2021; Xi et al., 2022), and the
underlying causes of low robustness in language
models remain elusive.

E.2 Post-Training Pruning

Pruning methods can be categorized into Post-
Training Pruning and In-Training Pruning accord-
ing to if the pruning methods need extra model
retraining. In the former, we are given a trained but
uncompressed model, together with a small amount
of calibration data. we must produce an accurate
compressed model in one shot, i.e., a single com-
pression step, without retraining and with limited
computational costs. This is motivated by practical
scenarios such as the large language models, which
are hard to train or even finetune because of the
complicated training process. In this paper, our
method is a Post-Training pruning method.

E.3 Layer-wise Pruning
Layerwise Pruning is an important approach to
optimizing language models, offering a distinct
methodology compared to end-to-end pruning. Un-
like end-to-end pruning, which simultaneously
evaluates and prunes the entire model as a whole,
layerwise pruning tackles each layer of the neural
network individually. This means pruning deci-
sions are based on a layer-specific analysis, often
using a metric like the magnitude of the weights
to determine which parameters within that layer
are least significant and can be removed without
substantially impacting the layer’s output. By selec-
tively reducing the number of parameters in each
layer, layerwise pruning can effectively decrease
the computational requirements and memory foot-
print of language models while maintaining their
accuracy. The layerwise approach offers an ad-
vantage in that it provides a more granular level
of control over the pruning process, which can be
beneficial in preserving model performance while
achieving efficiency gains.
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(a)

(b)

Figure 5: Visualization of Sentence Embeddings. We’ve compared the distance of sentence embeddings between
the robust and dense model (red), the sparse language models generated with IMP+FreeLB (green), and the sparse
language models created using our method (blue). Figure 5a displays the two-dimensional representation of the
embeddings from different layers of various models for sentence i ("allows us to hope that nolan is prepped
to embark on a major career as a commercial yet shrewd scriptwriter"). Similarly, Figure 5b showcases the
two-dimensional representation of the embeddings from different layers of various models for sentence ii ("allows
us to hope that nolan is poised to embark on a major career as a commercial yet inventive filmmaker"). Note
that sentence i originates from SST2 dataset, and all three models accurately predict its label. On the other hand,
sentence ii, an adversarial sample generated from sentence i, is only correctly predicted by the robust and dense
model and our sparse language model. We use the embedding of the first token ([CLS]) as the representation of
sentences, as the model uses this for the final classification. Clearly, our method can generate embeddings and
features that align more closely with the robust and dense model under adversarial attacks.
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