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Abstract

LIME has emerged as one of the most com-
monly referenced tools in explainable AI (XAI)
frameworks that is integrated into critical ma-
chine learning applications–e.g., healthcare and
finance. However, its stability remains little ex-
plored, especially in the context of text data,
due to the unique text-space constraints. To
address these challenges, in this paper, we first
evaluate the inherent instability of LIME on
text data to establish a baseline, and then pro-
pose a novel algorithm XAIFOOLER to per-
turb text inputs and manipulate explanations
that casts investigation on the stability of LIME
as a text perturbation optimization problem.
XAIFOOLER conforms to the constraints to
preserve text semantics and original prediction
with small perturbations, and introduces Rank-
biased Overlap (RBO) as a key part to guide
the optimization of XAIFOOLER that satisfies
all the requirements for explanation similarity
measure. Extensive experiments on real-world
text datasets demonstrate that XAIFOOLER sig-
nificantly outperforms all baselines by large
margins in its ability to manipulate LIME’s
explanations with high semantic preservabil-
ity. The code is available at https://github.
com/cburgerOlemiss/XAIFooler

1 Introduction

Machine learning has witnessed extensive research,
leading to its enhanced capability in predicting
a wide variety of phenomena (Pouyanfar et al.,
2018). Unfortunately, this increased effectiveness
has come at the cost of comprehending the inner
workings of the resulting models. To address this
challenge, explainable AI (XAI), also known as in-
terpretable AI (Tjoa and Guan, 2020), has emerged
as a discipline focused on understanding why a
model makes the predictions it does. XAI contin-
ues to grow in importance due to both legal and
societal demands for elucidating the factors con-
tributing to specific model predictions.
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(6) worse
(13) rash

(2) rash
(3) worse

(5) winter
(11) joint
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“I have a skin rash that gets becomes worse in the winter. I
have to moisturize more regularly consistently and have [...].

I also have joint pain.”
Figure 1: With only two perturbations, XAIFOOLER
significantly demoted “joint pain” symptom from top-3
to 11th-rank (left→right figure) while maintaining the
original prediction label of “peptic ulcers” and retaining
the clarity and meaning of the original text.

While explainability in AI as a general concept
has yet to fully coalesce to an accepted set of defini-
tions (Ghorbani et al., 2019), the concept of Stabil-
ity starts to occur throughout the discussions and re-
mains prominent (Molnar, 2022; Doshi-Velez and
Kim, 2017; Zhang et al., 2020). A stable explana-
tion refers to one where small changes to the input
should have a corresponding small effect on the
output. In other words, similar inputs to a model
should produce similar explanations. Lack of stabil-
ity in an explanatory method undermines its trust-
worthiness (Ghorbani et al., 2019), and renders all
subsequent explanations suspect. This lack of trust-
worthiness is one reason why the adoption of AI
in disciplines like healthcare has progressed slower
than in other disciplines (Markus et al., 2021).

Previous work on XAI stability has focused on
models where function-based continuity criteria
naturally apply to tabular and image-based data
(Alvarez-Melis and Jaakkola, 2018; Zhang et al.,
2020; Ghorbani et al., 2019). However, text data in
natural language is not so amenable to such direct
quantification. Therefore, the process of generat-
ing appropriate perturbations to test stability in text
explanations remains little explored (Ivankay et al.,
2022). Unlike perturbations in tabular or image-
based data, text perturbations pose unique chal-
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lenges to satisfy necessary constraints of semantic
similarity and syntactic consistency. Violation of
these constraints can create a fundamentally differ-
ent meaning conveyed by the document. Under the
assumption the explanatory algorithm works cor-
rectly, these perturbations may alter the resulting
explanation, where quantifying difference between
explanations also needs to characterize their prop-
erties, such as feature ordering and weights within
explanations presented in Fig. 1.

In this paper, we explore the stability of expla-
nations generated on text data via LIME (Ribeiro
et al., 2016), which is a widely used explanatory al-
gorithm in XAI frameworks. We first examine the
inherent stability of LIME by altering the number of
samples generated to train the surrogate model. Us-
ing this baseline, we then propose XAIFOOLER, a
novel algorithm that perturbs text inputs and manip-
ulates explanations to investigate in depth the sta-
bility of LIME in explaining text classifiers. Given
a document, XAIFOOLER proceeds with iterative
word replacements conforming to the specified con-
straints, which are guided by Rank-biased Over-
lap (RBO) that satisfies all the desired characteris-
tics for explanation similarity measure. As such,
XAIFOOLER yields advantages that only small per-
turbations on the least important words are needed,
while the semantics and original prediction of the
input are preserved yet top-ranked explanation fea-
tures are significantly shifted. Fig. 1 shows an
example that XAIFOOLER only performs two per-
turbations (i.e., “gets” → “becomes” and “regu-
larly”→ “consistently”), but effectively demotes
the top-3 features–e.g., “joint” (3rd-rank)→(11th-
rank), that explains the “joint pain” symptom with-
out changing the prediction of peptic ulcers disease.
Our contributions are summarized as follows.

• We assess the inherent instability of LIME as a
preliminary step towards better understanding of
its practical implications, which also serves as a
baseline for subsequent stability analysis.

• We cast investigation on the stability of LIME as
a text perturbation optimization problem, and in-
troduce XAIFOOLER with thoughtful constraints
and explanation similarity measure RBO to gener-
ate text perturbations that effectively manipulates
explanations while maintaining the class predic-
tion in a cost-efficient manner.

• We conduct extensive experiments on real-world
text datasets, which validate that XAIFOOLER

significantly outperforms all baselines by large

margins in its ability to manipulate LIME’s expla-
nations with high semantic preservability.

2 Background

2.1 LIME

In this paper, we adopt Local Interpretable Model-
agnostic Explanations (LIME) (Ribeiro et al., 2016)
as our target explanatory algorithm. LIME has
been a commonly researched and referenced tool in
XAI frameworks, which is integrated into critical
ML applications such as finance (Gramegna and
Giudici, 2021) and healthcare (Kumarakulasinghe
et al., 2020; Fuhrman et al., 2022). To explain a pre-
diction, LIME trains a shallow, explainable surro-
gate model such as Logistic Regression on training
examples that are synthesized within the vicinity of
an individual prediction. The resulting explanation
is a subset of coefficients of this surrogate model
that satisfies the fundamental requirement for in-
terpretability. In NLP, explanations generated by
LIME are features–e.g., words, returned from the
original document, which can be easily understood
even by non-specialists.

2.2 XAI Stability

Existing research work on XAI stability has a pre-
dominant emphasis on evaluating models using
tabular and/or image data across various interpreta-
tion methods, which often use small perturbations
to the input data to generate appreciable different
explanations (Alvarez-Melis and Jaakkola, 2018;
Ghorbani et al., 2019; Alvarez-Melis and Jaakkola,
2018), or generate explanations that consist of arbi-
trary features (Slack et al., 2020).

LIME specifically has been analyzed for its effi-
cacy. Garreau et al. first investigated the stability of
LIME for tabular data (Garreau and Luxburg, 2020;
Garreau and von Luxburg, 2020), which showed
that important features can be omitted from the re-
sulting explanations by changing parameters. They
extended the analysis to text data later (Mardaoui
and Garreau, 2021) but only on the fidelity instead
of stability of surrogate models. Other relevant
works in text domain include (Ivankay et al., 2022),
which utilized gradient-based explanation methods,
assuming white-box access to the target model and
hence not realistic because model parameters are
often inaccessible in practice; and (Sinha et al.,
2021), which revealed that LIME’s explanations
are unstable to black-box text perturbations. How-
ever, it adopts a very small sampling rate for LIME
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Figure 2: Inherent explanation instabilities for each model and dataset.

(n=500) which we later demonstrate to signifi-
cantly overestimate LIME’s instability. Moreover,
its experiment settings are not ideal as it allows
the perturbations of top-ranked predictive features,
which naturally change the resulting explanations.

Although existing works have showed that LIME

is sensitive to small perturbations in the target
model’s inputs or parameters, they do not answer
the fundamental question of whether LIME itself is
inherently unstable without any changes to the in-
put or model’s parameters. Answers to this “what
is the inherent instability of LIME” question would
establish a meaningful baseline that helps us better
evaluate our stability analysis.

3 Preliminary Analysis

Inherent Instability of LIME. This section first
assesses the inherent instability of LIME. Our aim
is to determine if LIME produces inconsistent re-
sults even when no changes are made to the target
model’s inputs or parameters. Let d be a docu-
ment whose prediction under a target model f(·)
is to be explained. A simplified process of LIME’s
explanation generation for f(d) is as follows.
• Step 1: Generate perturbed document di by ran-

domly selecting k words from d and remove all
of their occurrences from d.

• Step 2: Repeat Step 1 to sample n different per-
turbations {di}ni=1.

• Step 3: Train an explainable model g(·) via super-
vised learning with features di and labels f(di).

Here n is the sampling rate which determines the
number of local training examples needed to train
the surrogate model g(·). Sampling rate n greatly
influences the performance of LIME. Intuitively, a
small n often leads to insufficient amount of data
for training a good g(·). In contrast, a large n may
result in better g(·) but also adversely increase the

Dataset Mean Median Min

GB 82.0% (↓ ∆18%) 82.0% 75.5%
S2D 84.0% (↓ ∆16%) 84.4% 72.9%

IMDB 71.5% (↓ ∆28.5%) 70.4% 67.3%

Table 1: Statistics of explanation similarities when using
different alternate sampling rates compared against the
base explanation with default sampling rate n=5K.

runtime due to a large number of inference passes
required to collect all f(di).

To test the inherent instability of LIME, we first
select an arbitrary number of documents and gener-
ate explanations at different sampling rates n from
1K–7K for three state-of-the-art classifiers, includ-
ing BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), DistilBERT (Sanh et al., 2019),
trained on three corpus varying in lengths. Then,
we compare them against the base explanation gen-
erated with the default sampling rate (n=5K). Ta-
ble 1 shows that altering the sampling rate from its
default value results in significant dissimilarities in
the explanations (↓16%–↓28.5% in similarity on
average), which observe to be more significant on
longer documents. This happens because longer
documents generally require more training exam-
ples to refine the local model g(·) to better approxi-
mate f(·). Fig. 2 gives us a closer look into such
instability, which further shows evidence that in
all datasets, both bounded variation and diminish-
ing returns converge as the sampling rate increases.
However, with small sampling rates n–e.g., n<4K
in IMDB dataset, slight changes in n produce sig-
nificantly dissimilar explanations.

Overall, LIME itself is inherently unstable, es-
pecially when n is small, even without any modifi-
cations to the target model or its inputs. Contrast
to small sampling rates–e.g., n=500, adopted in
existing analytical works, our analysis implies that
n should be sufficiently large according to each
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dataset to maximize the trade-off between compu-
tational cost and explanation stability. However,
the source of the instability within LIME is yet un-
determined. We emphasize the importance of this
question but leave its investigation for future work.
Motivation This inherent instability is significant
in practice due to the fact that many important
AI systems–e.g., ML model debugging (Lertvit-
tayakumjorn and Toni, 2021) or human-in-the-loop
system (Nguyen and Choo, 2021), use surrogate
methods such as LIME as a core component. This
instability also has implications on software secu-
rity where malicious actors can exploit this insta-
bility and force AI models to produce unfaithful
explanations. Given that there exists some level of
instability within the explanations by default, we
now ask if alterations to the input text can demon-
strate instability beyond that of the baseline levels
already seen. That is, can perturbations to the input
that are carefully chosen to retain the underlying
meaning of the original text result in appreciably
different explanations. If so, the concerns about in-
stability mentioned above become that much more
pressing. To do this, we propose to investigate the
robustness of LIME by formulating this perturba-
tion process as an adversarial text attack optimiza-
tion problem below.

4 Problem Formulation

Our goal is to determine how much a malicious ac-
tor can manipulate explanations generated by LIME

via text perturbations–i.e., minimally perturbing a
document such that its explanation significantly
changes. Specifically, a perturbed document dp
is generated from a base document db, such that
for their respective explanations edp and edb we
minimize their explanation similarity:

dp = argmin
dp

Sime(edb , edp), (1)

where Sime(·) is the similarity function between
two explanations. To optimize Eq. (1), our method
involves a series of successive perturbations within
the original document as often proposed in adver-
sarial text literature. In a typical adversarial text
setting, malicious actors aim to manipulate the tar-
get model’s prediction on the perturbed document,
which naturally leads to significant changes in the
original explanation. But this is not meaningful for
our attack; thus, we want to preserve the original
prediction while altering only its explanation:

f(db) = f(dp), (2)

Trivially, changing words chosen arbitrarily and
with equally arbitrary substitutions would, even-
tually, produce an explanation different from the
original. However, this will also likely produce a
perturbed document dp whose semantic meaning
drastically differs from db. Thus, we impose a con-
straint on the semantic similarity between db and
dp to ensure that the perturbed document dp does
not alter the fundamental meaning of db:

Sims(db, dp) ≥ δ, (3)
where Sims(·) is the semantic similarity between
two documents and δ is a sufficiently large hyper-
parameter threshold.

Even with the semantic constraint in Eq. (3),
there can still be some shift regarding the context
and semantics of db and dp that might not be im-
peccable to humans yet cannot algorithmically cap-
tured by the computer either. Ideally, the malicious
actor wants the perturbed document dp to closely
resemble its original db. However, as the number
of perturbations grows larger, the document retains
less of its original context and meaning. To ad-
dress this issue, we impose a maximum number of
perturbations allowed through the use of a hyper-
parameter ϵ as follows:

i ≤ ϵ ∗ |f |, (4)
where an accepted i-th perturbation will have re-
placed i total number of words (as each perturba-
tion replaces a single word) and |f | is the total
number of unigram bag-of-words features in f .

We can now generate perturbations in a way that
maintains the intrinsic meaning of the original doc-
ument. If we are to manipulate the explanation
(Eq. (1)) while maintaining both Eq. (2), Eq. (3)
and Eq. (4), it is trivial to just replace some of the
most important features of f . However, in practice,
changing the most important features will likely
result in a violation to constraint in Eq. (2). More-
over, this will not provide meaningful insight to
the analysis on stability in that we want to measure
how many changes in the perturbed explanation
that correspond to small (and not large) alterations
to the document. Without the following constraint,
highly weighted features will often be perturbed,
even with a search strategy focused towards fea-
tures of minimal impact on the base explanation.
This happens due to the strength of the previous
constraints focused on maintaining the quality of
the document. Thus, the set of top k feature(s) be-
longing to the base explanation edb must appear in
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the perturbed explanation edp :
edp ∩ c ̸= ∅ ∀ c ∈ edb [: k]. (5)

Overall, our objective function is as follows.

OBJECTIVE FUNCTION: Given a document db,
a target model f and hyper-parameter δ, ϵ, k,
our goal is to find a perturbed document dp by
optimizing the objective function:

dp = argmin
dp

Sime(edb , edp),

s.t. f(db) = f(dp),

Sims(db, dp) ≥ δ,

i ≤ ϵ ∗ |f |,
edp ∩ c ̸= ∅ ∀ c ∈ edb [: k]

(6)

5 XAIFOOLER

To solve the aforementioned objective function (Eq.
(6)), we propose XAIFOOLER, a novel greedy-
based algorithm to manipulate the explanations of
a text-based XAI method whose explanations are
in the form of a list of words ordered by importance
to the surrogate model. We then demonstrate that
XAIFOOLER can effectively alter the explanations
of LIME beyond the intrinsic instability (Sec. 3)
via carefully selected text perturbations.

5.1 XAIFOOLER Algorithm

Algorithm 1 describes XAIFOOLER in two steps.
First, given an input document, it decides which
words to perturb and in what order (Ln. 4). Next,
it greedily replaces each of the selected word with
a candidate that (i) best minimizes the explana-
tion similarity via Sime and (ii) satisfies all the
constraints in Sec. 4 until reaching the maximum
number of perturbations (Eq. (4)) (Ln. 5–13).

Step 1: Greedy Word Selection and Ordering.
We disregard all stopwords and the top-k important
features based on their absolute feature importance
scores returned from LIME. We then order the
remaining words in the original document db in
descending order according to how many changes
they make in the original prediction when they are
individually removed from db. Intuitively, we pri-
oritize altering features of lower predictive impor-
tance to signify the instability of LIME (Eq. 5).

Step 2: Greedy Search with Constraints. We
subsequently replace each word in the list returned
from Step 1 with a list of candidates and only keep
those that help decrease the explanation similarity
Sime (Alg. 1, Ln. 6–10). To satisfy Eq. ( 2, 3,

Algorithm 1 Adversarial Explanation Generation
1: Input: target model f , Original Document do, Base

Explanation eb, Maximum Perturbation Threshold pt,
Current Perturbations pc Current Similarity s

2: Output: Perturbed Document dp, Perturbed Explana-
tion ep, Updated Similarity s

3: Initialize: ep ← eb, i← 0, s← 1, pc ← 0
4: Initialize: I ← indices of replacement candidates that

satisfy C
5: while I ̸= ∅ and pc < pt do
6: si = RBO(dp, perturb(dp[I[i]])
7: if si < s then
8: s← si
9: ep ←perturb(dp[I[i]])

10: end if
11: I[i] = ∅
12: i← i+ 1
13: end while
14: return (dp, ep, s)

4, 5), we only accept a perturbation if it satisfies
these constraints, and at the same time improves
the current best explanation dissimilarity. To re-
duce the search space of replacements, we only se-
lect replacement candidates that maintain the same
part-of-speech function and also within a similarity
threshold with the word to be replaced in counter-
fitted Paragram-SL999 word-embedding space (Wi-
eting et al., 2015) as similarly done in prior adver-
sarial text literature (TextFooler (Jin et al., 2020)).
Since our perturbation strategy solely applies the
constraints at the word level, certain perturbations
may result in undesirable changes in textual qual-
ity, which is often observed in texts perturbed by
popular word-level methods such as TextFooler.
However, our proposed algorithm (Alg. 5.1) is
generic to any black-box text perturbation func-
tions perturb(·) (Alg. 5.1, Ln. 6, 9).

5.2 Explanation Similarity Characterization

The most important factor that guides the optimiza-
tion of XAIFOOLER is the explanation similarity
function Sime needed to compare two explanations
edb and edp . In selecting a good Sime function, we
need to first characterize it. The explanations edb ,
edp returned from LIME are ranked lists. That is,
they are an ordered collection of features. Specif-
ically LIME’s explanations consist of unique fea-
tures which are ordered w.r.t their importance to
the local surrogate model.While there is a substan-
tial amount of prior work discussing comparison
methods for ranked lists, the structure of LIME’s
explanations and our constraints are not ideal for
many common methods. Thus, for our purposes, a
desirable Sime has properties as follows.
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(A) Positional Importance (Kumar and Vassilvit-
skii, 2010). We require that a relative ordering
be imposed on the features–i.e., higher-ranked fea-
tures should be accorded more influence within
Sime(·). That is, moving the 1st-ranked feature
to rank 10 should be considered more significant
than moving the 10th-ranked feature to rank 20.
Moreover, this requirement also accounts the fact
that end-users often consider only the top k most
important and not all of the features (Stepin et al.,
2021) in practice, and thus Sime(·) should be able
to distinguish the ranking of different features.

(B) Feature Weighting. This is a strengthening of
the positional importance by considering not only
discrete positional rankings such as 1st, 2nd, 3rd,
but also their continuous weights such as the fea-
ture importance scores provided by LIME. This
provides us more granularity in the resulting expla-
nation similarities and also better signals to guide
our optimization process for Eq. (6).

(C) Disjoint Features. We require that disjoint lists
can be compared. Consider a single word replace-
ment of word w with word w′ in a document db
with base explanation edb and perturbed explana-
tion edp generated from d−w+w′. The perturbed
explanation edp cannot contain the word w or any
subset of db containing w as a possible feature. And
so each perturbation is likely to result in an expla-
nation that is disjoint. Many similarity measures
that have a requirement for non-disjoint lists often
have an implementation that relaxes this require-
ment. However, as the amount of disjoint features
increases, these measures will struggle to deliver
appropriate similarity values.

(D) Unequal List Lengths. Similarly to (C) but
if w′ already exists in the original explanation eb,
the length of ep will be different from eb due to dp
having one less unique unigram feature.

5.3 Existing Similarity Measures

With the above characterization, we proceed to
search for an ideal explanation similarity measure
for Sime from some of commonly used measures
on ranked lists. The first group of such is weight-
based. This includes (1) Lp: The standard Lp

distances discard the feature order entirely and in-
stead concentrate on their associated weights. Cer-
tain formulations exist that allow weighting the ele-
ments, but the Lp distances still lack the capacity to
handle differing ordered-list lengths. (2) Center of
Mass (COM): COM is an improvement upon Lp

Feature / Positional Feature Disjoint Unequal-
Measure ImportanceWeightingFeaturesLength List

Jaccard Index ✓* ✓ ✓
Kendall’s τ ✓ ✓*
Spearman’s ρ ✓ ✓*
Lp ✓ ✓
Center of Mass ✓ ✓
†RBO ✓ ✓ ✓ ✓
†RBO: Rank-biased Overlap; *: customized formulas exist

Table 2: Comparisons among explanation similarity
measures with RBO satisfying all the requirements.
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Figure 3: Simulation on 50K permutations of 50 fea-
tures: RBO outputs smoothed, richer signals while other
measures return zero similarity for over half the permuta-
tions and show poorer delineation among top-k features,
resulting in the non-smoothed, step-wise behavior.

as it not only indicates a change in the weights but
also provides information about where that weight
is being assigned. However, a change in COM does
not imply an actual change in the relative order of
features. The second group is feature-based. This
includes (1) Jaccard Index, which compares two
sets by computing the ratio of the shared elements
between the sets to the union of both sets. Being a
strictly set-based measure, the Jaccard index lacks
positional importance and feature weighting (exten-
sions exist to allow weight), making it unsuitable
for our problem. (2) Kendall’s τ & Spearman’s ρ
are commonly used for determining the similarity
of two ranked lists. The central idea of both is the
order of the features. However, they disregard any
ranking weights, the capacity to handle unequal list
lengths, and disjoint features. Remedies are also
available–e.g., Kumar and Vassilvitskii (2010) ,
but they do not fulfill all the requirements and can
result in information loss.

5.4 RBO: The Best of both Worlds

So far, none of the mentioned measures satisfies
all requirements. Fortunately, there exists Rank-
biased Overlap (RBO) (Webber et al., 2010) that
well fits to our criteria. RBO is a feature-based
comparison measure that combines the benefits of
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Dataset/Method DistilBERT BERT RoBERTa

ABS↑ RC↑ INS↓ SIM↑ PPL↓ ABS↑ RC↑ INS↓ SIM↑ PPL↓ ABS↑ RC↑ INS↓ SIM↑ PPL↓

IM
D

B

Inherency 4.92 0.34 0.83 1.00 33.17 5.66 0.48 0.83 1.00 34.51 5.90 0.52 0.82 1.00 33.88
Random 5.90 0.50 0.84 0.89 71.07 6.80 0.58 0.80 0.88 75.74 7.33 0.52 0.78 0.89 73.89
LOM 3.94 0.33 0.89 0.96 40.35 4.92 0.41 0.87 0.95 43.85 6.08 0.47 0.83 0.95 43.41
Lp 9.07 0.52 0.81 0.89 69.54 8.76 0.57 0.79 0.89 71.16 9.96 0.65 0.78 0.89 72.87
XAIFOOLER 10.43 0.65 0.75 0.89 67.01 11.44 0.69 0.72 0.89 67.79 12.65 0.76 0.72 0.90 63.15

S2
D

Inherency 1.30 0.23 0.88 1.0 12.3 1.65 0.24 0.85 1.0 12.30 3.09 0.36 0.76 1.00 12.30
Random 1.72 0.27 0.85 0.84 77.69 2.49 0.41 0.80 0.85 79.22 3.66 0.48 0.77 0.84 83.04
LOM 1.18 0.20 0.91 0.95 19.59 1.38 0.29 0.88 0.94 19.88 2.44 0.30 0.82 0.94 20.04
Lp 2.98 0.52 0.75 0.85 82.90 3.76 0.54 0.77 0.84 97.81 4.99 0.52 0.69 0.85 66.98
XAIFOOLER 3.95 0.62 0.73 0.88 47.49 4.75 0.54 0.74 0.89 48.76 6.11 0.62 0.67 0.89 38.79

G
B

Inherency 0.53 0.16 0.89 1.00 167.35 0.55 0.15 0.87 1.00 171.88 0.44 0.16 0.93 1.00 169.19
Random 1.31 0.32 0.72 0.81 618.18 1.38 0.30 0.75 0.81 616.60 0.99 0.23 0.79 0.82 637.65
LOM 0.60 0.22 0.89 0.91 322.85 0.55 0.11 0.90 0.91 312.81 0.47 0.10 0.91 0.91 295.33
Lp 2.06 0.39 0.66 0.86 583.15 1.99 0.47 0.71 0.86 547.91 1.47 0.43 0.77 0.87 553.80
XAIFOOLER 2.02 0.48 0.71 0.89 358.88 2.10 0.52 0.71 0.89 368.53 1.56 0.45 0.78 0.91 353.98

bold and underline statistics denote the best and second best results except “Inherency"

Table 3: Experiment results in terms of explanation changes (ABS, RC, INS) and semantic preservation (SIM, PPL)

the set-based approaches while retaining the posi-
tional information and capacity for feature weight-
ings. The weights assigned to the features are con-
trolled by a convergent series where the proportion
of weights associated with the first k features is de-
termined by a hyper-parameter p∈[0, 1]. As p→0
more weight is assigned to the topmost features,
while as p→1 the weight becomes distributed more
evenly across all possible features.

Fig. 3 illustrates the comparison between RBO,
Jaccard, and Kendall/Spearman measures, which
highlights two advantages of RBO. First, RBO al-
lows features outside the top k some small influ-
ence on the resulting similarity. Second, the weight-
ing scheme associated with RBO allows more gran-
ularity when determining similarity by applying
weight to the top k features (Fig. 3), which is lack-
ing with the other measures. In other words, RBO
provides richer signals to guide the greedy opti-
mization step of XAIFOOLER. Moreover, RBO
allows us to decide how much distribution mass to
assign to the top-k features (Fig. 3 with 90% &
80% mass)). This enables us to focus on manipu-
lating the top-k features that the end-users mostly
care about while not totally ignoring the remaining
features. We refer the readers to Appendix B for
detailed analysis on RBO and other measures.

6 Experiments

6.1 Set-up
Datasets and Target Models. We experiment with
three datasets: sentiment analysis (IMDB) (Maas
et al., 2011), symptom to diagnosis classification
(S2D) (from Kaggle) and gender bias classifica-

tion (GB) (Dinan et al., 2020), of varying averaged
lengths (230, 29, 11 tokens), and number of labels
(2, 21, 2 labels) (see Table B.7-Appendix). Each
dataset is split into 80% training and 20% test sets.
We use the training set to train three target models,
namely DistilBERT (Sanh et al., 2019), BERT (De-
vlin et al., 2019) and RoBERTA (Liu et al., 2019),
achieving around 90%–97% in test prediction F1
score.

Baselines. We compare XAIFOOLER against four
baselines, namely (1) Inherency: the inherent in-
stability of LIME due to random synthesis of train-
ing examples to train the local surrogate model
(Sec. 3); (2) Random: randomly selects a word
to perturb and also randomly selects its replace-
ment from a list of nearest neighbors (3) Location
of Mass (LOM): inspired by Sinha et al. (2021),
similar to XAIFOOLER but uses COM (Sec. 5.3)
as the explanation similarity function; (4) Lp: sim-
ilar to XAIFOOLER but uses L2 (Sec. 5.3) as the
explanation similarity function.

Evaluation Metrics. Similar to prior works, we
report the explanation changes of top-k features
using: Absolute Change in ranking orders (ABS↑);
Rank Correlation (RC↑), which is calculated by the
formula: 1−max(0,Spearman-Correlation(edb [:
k], edp [: k]); Intersection Ratio (INS↓)–i.e., ratio
of features remained in top k after perturbation.
Moreover, we also report the semantic similar-
ity between db and dp (SIM↑) by calculating the
cosine-similarity of their vectors embedded using
USE (Cer et al., 2018); and the naturalness of dp by
calculating its perplexity score (PPL↓) using large
language model GPT2-Large (Radford et al., 2019)
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Method Average across all Results

ABS↑SM↑INS↓SIM↑ PPL↓
Rnd Order+Rnd Search 3.51 0.40 0.79 0.85 259.23
Rnd Order+Greedy Search 4.63 0.51 0.79 0.91 123.45
Greedy Order+Greedy Search 6.11 0.59 0.73 0.89 157.15
“Greedy Order+Greedy Search”: Ours; “Rnd”: Random

Table 4: Both step 1 (Greedy Order) and step 2 (Greedy
Search) (Sec. 5.1) are crucial to XAIFOOLER.

as a proxy. Arrow ↑ and ↓ denote the higher, the
better and the lower, the better, respectively.

Implementation Details. We set ϵ←0.1 with a
minimum allowance of 3 tokens to account for
short texts. We use Fig. B.6 to select the hyper-
parameter p values of RBO that correspond to 90%,
95%, 95% mass concentrating in the top-5 (k←5),
top-3 (k←3) and top-2 (k←2) features for IMDB,
S2D and GB dataset, respectively. Based on Sec.
3, we set the sampling rate n such that it is suffi-
ciently large to maintain a stable change in LIME’s
inherent instability, resulting in n of 4.5K, 2.5K
and 1.5K for IMDB, S2D and GB dataset. During
perturbation, we constrain the final perturbed docu-
ment to result in at least one of the top k features
decreasing in rank to mitigate sub-optimal pertur-
bations being accepted ultimately increasing the
quality of the final perturbed document by allow-
ing us to set a lower threshold for the total number
of perturbations at the cost of more computational
effort. Appendix Sec. A.1 includes the full repro-
ducibility details.

6.2 Results

Overall. LIME is unstable and vulnerable against
text perturbations. Table 3 shows that XAIFOOLER

significantly outperformed all baselines by large
margins in its ability to manipulate LIME’s explana-
tions, showing average changes in ∆ABS↑, ∆RC↑
and ∆INS↓ of +128%, +101% and -14.63% com-
pared to Inherent Instability, and of +22%, +16%
and -3.15% compared to the 2nd best Lp baseline.
Moreover, it also delivered competitive results for
semantic preservation, consistently outperforming
all the baselines except LOM, which showed to
be very good at preserving the original seman-
tics. This happened because LOM scores often
reached 0.5–i.e., moving the location of centered
mass to over 50% of total length, very quickly
without many perturbations, yet this did not always
guarantee actual changes in feature rankings.

Ablation Test. Table 3 confirms the appropriate-

Ranking Changes Before and After Perturbation

"@user sick of liberals thinking it’s ok to dictate where they
think thinking israeli jews should be allowed to live,

including in israel"

liberals: 1st→ 2nd; israeli: 3nd→ 4rd; thinking: 5th→ 1st;

Table 5: Case Study: Perturbation Examples and the
Corresponding Changes in Explainable Feature Rank-
ings on Twitter Hate Speech Detection.

Model/ DistilBERT BERT RoBERTA

Dataset Doc Token Doc Token Doc Token

IMDB 331.5 9.1 505.2 13.9 564.9 15.5
S2D 242.5 12.0 518.5 25.7 482.1 23.9
GB 188.7 18.2 385.7 36.9 421.1 40.6

Table 6: Average attack runtimes in seconds per docu-
ment and token (NVIDIA RTX A4000).

ness of using RBO over other similarity function
such as Lp and LOM (Sec. 5.4). Evidently, replac-
ing any of the procedure steps of XAIFOOLER with
a random mechanism dropped its performance (Ta-
ble 4). This demonstrates the importance of both
Step 1 (greedy ordering of tokens to decide which
one to perturb first) and Step 2 (greedy search for
best perturbations) described in Sec. 5.1.

7 Discussion

Case Study: XAI and Content Moderation.
XAI systems are often used in conjunction with
human-in-the-loop tasks such as online content
moderation–e.g., detecting hate speech or fake
news, where quality assurance is paramount. Thus,
manipulations on such XAI systems will lead to hu-
man experts receiving incorrect signals and hence
resulting in sub-optimal results or even serious con-
sequences. Evaluation of XAIFOOLER on 300 pos-
itive examples from a Twitter hate speech detection
dataset with k←2 shows that XAIFOOLER often
demotes the 1st-rank feature out of top-2, reducing
RC to 0.4 and INS to 0.78, while still maintaining
the original semantics with SIM>0.9. This means
XAIFOOLER can force the AI system to output
correct predictions but for wrong reasons. Table
5 describes such a case where XAIFOOLER uses
the existing “thinking” to replace “think", promot-
ing this feature to 1st rank while demoting more
relevant features such as “liberals” and “israeli”.

Instability Distribution. Fig. 4 illustrates the dis-
tributions of explanation shifts after perturbations
on IMDB (S2D, GB results are included in the
Appendix). This shows that LIME’s instability ex-
presses differently among documents, with some
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Figure 4: CDF plots of absolute change (ABS↑) and k-Intersection (INS↓) statistics on IMDB dataset.

are easier to manipulate than others. Fig. 4 also
shows that if one to calculate attack success rate
using a threshold, which is often customized to
specific applications, XAIFOOLER will still con-
sistently outperform the baselines.

Document Length v.s. Sampling Rate v.s. Run-
time. The majority of computation time is spent
generating explanations using LIME. Table 6 shows
that the average runtime slowly increases as the
document length grows while the time per token
decreases. Moreover, larger documents have more
possibilities for effective perturbations, resulting in
a more efficient search and ultimately fewer expla-
nations to generate. Shorter documents are faster
to run LIME, but require extensive searching to
find acceptable perturbations and so generate many
explanations. Furthermore, for shorter documents
the explanations are quite stable even at rates much
lower than the default, and as the document size
increases, lower sampling rate values begin to de-
grade stability (Fig. 2, Table 1).

8 Conclusion

This paper affirms that LIME is inherently unsta-
ble and its explanations can be exploited via text
perturbations. We re-purpose and apply RBO as a
key part of our algorithm XAIFOOLER, which we
have shown to provide competitive results against
other adversarial explanation generation methods,
and do so in a way that satisfies our criteria from
earlier when determining just how best to compare
an explanation. Future works include understand-
ing the interactions between the target model and
LIME that lead to such instability.

Limitations

Our method and the results collected from it used
the default settings and parameters for the ex-
planation generation framework within TEXTEX-
PLAINER* with the exception of the sampling rate
n. This departure is justified by the results shown

*https://eli5.readthedocs.io/

in Table 1 and especially Fig. 2, where we see a
rapid diminishing returns in explanation fidelity as
the sample rate n increases. Although our choice of
sampling rates are already significantly higher than
prior works, this reduction in sampling rate was
necessary due to the extensive computation time
required, with the explanation generating process
being the largest proportion of computation time.
The extensive computation time prevented exten-
sive testing with a large range of sampling rates,
especially those higher than the default of n=5K.
We leave the question of what effect, if any, “over-
sampling” with rates much higher than the default
has on stability to future work. It remains unex-
plored just how much effect the base model itself
has on the resulting explanation similarity. That
is, are certain type of models amplifying LIME’s
unstable results? This question also applies to the
LIME itself. Our choice of surrogate model was
the default, but this can be replaced. What are the
differences between the choices for local model
when it comes to stability?

Broader Impacts and Ethics Statement

The authors anticipate there to be no reasonable
cause to believe use of this work would result in
harm, both direct or implicit. Similar to existing
adversarial attack works in NLP literature, there
might be a possibility that malicious actors might
utilize this work to manipulate real life AI systems.
However, we believe that the merits of this work as
in providing insights on LIME’s stability outweigh
such possibility. Concerns about computational ex-
penditure, and the remedies taken to reduce impact,
are addressed in Sec. A.1.3. The authors disclaim
any conflicts of interest pertaining to this work.
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A Reproducibility

A.1 Implementation Details

This section provides all details needed to repro-
duce our experiment results. The open-source
implementation is available at: https://github.
com/cburgerOlemiss/XAIFooler

A.1.1 Hardware
Facts and figure relating to computation time were
generated using a single NVIDIA RTX A4000 on
a virtual workstation with 45 GiB RAM.

A.1.2 Frameworks / Software
We use an off-the-shelf LIME implementation,
TEXTEXPLAINER, itself a subset of the popular
explanability package ELI5†. TEXTEXPLAINER

provides extensive functionality for formatting and
printing explanation output. XAIFOOLER is imple-
mented using the TEXTATTACK framework (Mor-
ris et al., 2020), a full featured package designed
for adversarial attacks in natural language. TEX-
TATTACK’s design offers the ability to quickly ex-
tend or implement most aspects of the adversarial
example generation workflow.

A.1.3 Parameter Selection
Our values for the RBO weighting were 0.75, 0.49,
and 0.32 respectively for the IMDB, S2D, and GB
datasets. These values were determined based on
the attributes in Sec. 5.2 and the average length of
the explanation features. Shorter document lengths
generate smaller explanations, and so have more
importance associated with the smaller number of
features. We must treat altering the positions of
the top 5 features in an explanation with 7 total
features as more significant than for an explanation
with 150 features. This significance is controlled
by the RBO value with a smaller value assigning
more importance to the top features.

Our values for the sampling rates were 4,500,
2,500, and 1,500 respective for the IMDB, S2D,
and GB datasets. These values were derived based
on the analysis shown in Fig. 2 where the baselines
for the inherent stability were determined. Our goal
is to balance explanation fidelity and running time,
as is seen in Table 6 the computational expenditure
for this process is extensive.

The maximum perturbation budget was set to
20% of the total document length (rounded up as
to guarantee at least one perturbation). This budget

†https://eli5.readthedocs.io/
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is lower than some other work in adversarial expla-
nations, but the requirement for consistency in the
meaning of the perturbed document necessitated a
modest limit to the perturbations. This consistency,
especially for larger documents, began to degrade
appreciably beyond ∼20%.

B Motivating RBO

Our use of RBO follows from our choice of desired
attributes in Sec. 5.2. Here we provide examples
to justify our selection of similarity measure ex-
panding on the summary in Table 2. Note that the
weight-based distances Lp, and LOM are different
enough from the structure of the feature-based mea-
sures like RBO that direct comparison is difficult.
Their construction gives them particular strengths
but they fundamentally are unable to satisfy our
desired attributes. They remain included as impor-
tant metrics used for comparison against the other
similarity measures.

However, RBO can be compared directly to the
Jaccard and Kendall / Spearman similarities. We do
so in Fig. 3 where we demonstrate two of RBO’s
advantages. First, RBO provides some capacity
for determining similarity when using features not
within the selected top k. Second, the weighting
scheme associated with RBO allows more granu-
larity when determining similarity; in other words,
the similarity output is smoother due to the weight
assignment, which is lacking with the other mea-
sures. Here a fixed list of 50 features is generated,
which is then uniformly shuffled 50,000 times. The
results are plotted according to the similarity out-
put from each of the measures with respect to the
top 5 features. We see RBO allows some small
amount of similarity to remain desipte assigning
the significant majority of the mass to the top 5
features. The other measures return 0 similarity for
over half the permutations, as our requirement for
a concise explanation allows us only to concentrate
on the top few features. The other measures show
poorer delineation between important features (as
determined by position in the top 5), resulting in
the step-wise behavior (explained more in the mea-
sure’s respective subsections below).

B.1 Jaccard Index

The Jaccard Index, being entirely set-based,
preserves no order between two lists of feature
explanations. For collections of features F1

= [a, b, c] and F2 = [c, b, a] the Jaccard Index

of F1 and F2 J(F1,F2) = 1 despite no pair of
values having an equal position. These lists are
clearly different, but the Jaccard Index does not
have the capacity to differentiate between them.
Additionally, the Jaccard Index assigns an equal
value, related to the total number of elements, for
any dissimilarity between the lists. For example, let

F1 = [a, b, c, ..., x, y, z]

F2 = [α, b, c, ..., x, y, z]

F3 = [a, b, c, ..., x, y, ω]

With F1 being ordered by weight in decreasing
importance.

Finally let weight(α) < weight(a) and
weight(y) > weight(ω) > weight(z).

Then we have J(F1, F2) = J(F1, F3).

Clearly the similarity between F1 and F2 should
be considered less than F1 and F3 as we have ad-
ditional information pertaining to each feature’s
importance.

B.2 Kendall’s τ & Spearman’s ρ

Kendall’s τ & Spearman’s ρ are subject to
similar issues affecting the Jaccard Index. Both
τ and ρ can handle the first scenario, while the
Jaccard Index could not. That is, for F1 = [a, b, c]
and F2 = [c, b, a] then Kendall(F1,F2) ̸= 1 and
Spearman(F1,F2) ̸= 1. However, τ and ρ are
similar to Jaccard in that the difference between
weighted features has not been taken into account.
For example, let

F1 = [a, b, c, ..., x, y, z]

F2 = [b, a, c, ..., x, y, z]

F3 = [a, b, c, ..., x, z, y]

Then Kendall(F1, F2) = Kendall(F1, F3), and
Spearman(F1, F2) = Spearman(F1, F3).

The exchange between features a and b should
be considered more important than the exchange
between features y and z. The resulting value is
also related to the size of the lists, and a single
exchange of two adjacent becomes less important
as the size of the lists grows larger.
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Figure B.5: CDF plots of absolute change (ABS↑) and k-Intersection (INS↓) statistics on S2D (top) and GB (bottom)
dataset.

B.3 Lp

Lp discards positional importance and instead con-
centrates on the weights associated with the fea-
tures. We can encounter a scenario where the or-
der of the features is identical, but the weights
have shifted enough to provide a substantial Lp

distance. Consider a list of features F1 = [a, b, c]
and F2 = [a, b, c] with weights W1 = [3, 2, 1] and
W2 = [4, 3, 2]. Clearly the Lp distance here will be
non-zero, but the position of the features remains
identical. Does the change in total weight matter?
It may, and Lp is well specified if that is the case.
However, we may not necessarily understand just
how important the differences between weights are.
Because of this, we do not wish to set a thresh-
old for significance between the two explanations
purely on a distance between the weights. We in-
stead appeal to the position of the features, a coarse
form of weighting, and use our own scheme for
weight importance that concentrates the weights in
an easily tuned manner of our own choosing.

B.4 Location of Mass

While Lp determines that weight is shifting,
LOM provides insight into where it is moving. If
the location (usually center) of the cumulative
weights has shifted, then more weight has been
assigned to or away from certain features and so
the explanation must then be different. LOM has
issues similar to Lp in that the actual location of
mass may not shift despite weight being changed
significantly among many features. For example,
consider the lists of features

Dataset # # of DistilBERT BERT RoBERTaTokens Labels

IMDB 230 2 0.91 0.92 0.94
S2D 29 21 0.94 0.93 0.97
GB 11 2 0.90 0.90 0.89

Table B.7: Dataset statistics and prediction performance
(F1 Score) of target classification models on test set.

F1 = [a, b, c, d, e]
F2 = [a, b, c, d, e]

With weights W1 = [1, 0, 5, 0, 1]
W2 = [1.3, 1.2, 2, 1.2, 1.3]

Both collections of features possess the same
total weight, and the same location of mass (center).
But F2 has a significantly different assignment of
weights and it is reasonable to conclude that this
explanation is different.

Additionally, for certain explanations that are
highly concentrated in weight it may not be feasi-
ble to find perturbations that are able to distribute
this among other features to the extent necessary
to move the location of mass. For example, let W3

= [1, 2, 1, 1000, 2, 2, 1]. We would have to redis-
tribute the overwhelming majority of the weight to
the other features in order to move this location of
mass away from index 3.
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C Other Supplementary Materials

1. Statistics of experimental datasets and the per-
formance of target models on their test sets
(Table B.7)

2. Relationship between combined distribution
mass, k and hyper-parameter p of RBO (Fig.
B.6)

3. CDF plots for GB and S2D Datasets (Fig. B.5)
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