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Abstract

Kendall’s τ is frequently used to meta-evaluate
how well machine translation (MT) evaluation
metrics score individual translations. Its focus
on pairwise score comparisons is intuitive but
raises the question of how ties should be han-
dled, a gray area that has motivated different
variants in the literature. We demonstrate that,
in settings like modern MT meta-evaluation,
existing variants have weaknesses arising from
their handling of ties, and in some situations
can even be gamed. We propose instead to
meta-evaluate metrics with a version of pair-
wise accuracy that gives metrics credit for cor-
rectly predicting ties, in combination with a
tie calibration procedure that automatically in-
troduces ties into metric scores, enabling fair
comparison between metrics that do and do
not predict ties. We argue and provide experi-
mental evidence that these modifications lead
to fairer ranking-based assessments of metric
performance.1

1 Introduction

Kendall’s τ is a widely used correlation statistic
(Kendall, 1938). It is easy to grasp intuitively, be-
ing based on pairwise rank ordering. This makes it
complementary to other well-known statistics such
as Pearson or Spearman.

In the context of machine translation (MT),
Kendall plays a key role assessing the performance
of evaluation metrics, a process known as meta-
evaluation: it has been the main statistic for measur-
ing a metric’s ability to score segment-level trans-
lations in the Workshop on Machine Translation
(WMT) metrics shared tasks over the years (Freitag
et al., 2022b, inter alia).

Several recent developments in MT—common
to other areas of generative AI—have highlighted
an important weakness in Kendall’s τ , namely how

1The code to run our proposed methods and repro-
duce our results can be found at https://github.com/
google-research/mt-metrics-eval.

it deals with ties (§4). First, as MT systems get
better, they (1) produce more “perfect” outputs,
which get assigned the same score by human raters;
and (2) necessitate error-based analyses such as
MQM (Lommel et al., 2014; Freitag et al., 2021a),
which often produce tied scores due to integer error
counts. Second, on the metric side, the use of
recently-proposed LLM-based metrics (Kocmi and
Federmann, 2023) and metrics that model MQM
annotations (Perrella et al., 2022) can also lead to
small and discrete score ranges that assign many
ties.

In this paper, we examine the problems caused
by ties in Kendall’s τ , using data from the WMT
metrics tasks. We first show that there are simple
phenomena that are not handled properly by any of
the existing Kendall variants, which mostly differ
in how they treat ties (§5.1). We also demonstrate
the possibility of gaming the meta-evaluation by
exploiting how ties are handled by existing τ ’s, re-
sulting in large improvements in certain evaluation
settings (§5.2).

We propose instead to meta-evaluate metrics
with a version of pairwise accuracy that is robust
to these problems, assigning proper credit for cor-
rectly predicting ties (§6). Although there is a
modification to τ that is closely related to pairwise
accuracy, we argue that the accuracy formulation
is easier to interpret, being just the proportion of
correctly ranked pairs (including tied pairs).

However, pairwise accuracy comes with its own
problem, namely that it can discriminate against
metrics that rarely assign ties. To counter this, we
also propose an algorithm called tie calibration that
automatically introduces ties into metric scores in
order to optimize its correlation (§7). We argue,
and show empirically, that these two modifications
result in a fairer assessment of MT metric perfor-
mance (§8.1).

Finally, we analyze different aspects of pairwise
accuracy and tie calibration, including assessing
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Figure 1: Pearson’s r, Spearman’s ρ, and Kendall’s τb
calculated between hypothetical human scores and met-
ric scores. Lines between data points are shown for vi-
sualization purposes.

the generalization of tie calibration across datasets
(§8.2), the score ranges where ties are introduced
(§8.3), and how more fine-grained statistics can be
used to better understand metric behavior (§8.4).

While our experimental setting is limited to MT
metrics, our work should be applicable to meta-
evaluation for other generative AI metrics with
similar characteristics.

2 Background & Related Work

We begin by justifying our exclusive focus on
ranking-based statistics, like Kendall’s τ , then
provide some background on MT metric meta-
evaluation, and finally contextualize our work by
discussing Kendall variants.

2.1 Why not Pearson or Spearman?

Pearson’s r and Spearman’s ρ are two other widely-
used correlation coefficients. The Pearson coeffi-
cient captures linear correspondence between two
input vectors, defined as their covariance divided
by the product of their variances. Spearman is
equivalent to Pearson applied to the ranks of the
inputs. As shown in Figure 1, Pearson is comple-
mentary to Kendall; it assigns a much higher score
to the noisy but globally linear metric1, but a much
lower score to the perfectly-ordered but non-linear
metric2. Spearman is a compromise, siding with
Pearson for metric1 and for Kendall for metric2.

For applications where linear correspondence
with a gold standard and correct ranking decisions
are both important, it is advisable to measure both
Pearson and Kendall, as is typically done in the MT
evaluations described below.2

2Although we focus on problems with Kendall here, it is
worth noting that Pearson has problems of its own, notably
sensitivity to outliers (Mathur et al., 2020). For instance,
adding the point (100, 100) to metric1 produces an almost
perfect correlation of 0.99 compared to 0.82 for Kendall.

2.2 Metric Meta-Evaluation
For over 10 years, the Workshop on Machine Trans-
lation (WMT) has run a metrics shared task that
meta-evaluates automatic metrics. Meta-evaluation
quantifies a metric’s performance by calculating
the agreement or correlation between the metric’s
scores and human-annotated scores on a large num-
ber of translations. In WMT, metrics are meta-
evaluated at either the system- or segment-level, as
follows.

First, metric and human scores are collected for
translations produced by N systems for M source
segments. System-level correlations are calculated
between the N metric and human scores per sys-
tem, typically calculated by averaging over the M
segment scores. In WMT, the system-level correla-
tion is often Pearson, or more recently, a ranking-
based pairwise agreement that is similar to our pro-
posed statistic (§6), except that it does not need
to account for ties since ties are very rare at the
system-level (Kocmi et al., 2021).

Segment-level correlations evaluate metric
scores on individual translations rather than ag-
gregated system scores. They can be calculated in
several different ways (see Appendix A for equa-
tion definitions):

• No-Grouping: Calculate the correlation be-
tween the N ×M translation scores

• Group-by-Item: Calculate the average cor-
relation between the N translation scores
grouped by source segment3

• Group-by-System: Calculate the average
correlation between the M translation scores
grouped by system

Segment-level correlations are better than system-
level correlations at discriminating between metrics
(Freitag et al., 2022b), and they are more closely
related to applications where metrics can be used to
improve generation, such as Minimum Bayes Risk
decoding (Freitag et al., 2022a; Fernandes et al.,
2022).

Historically, WMT has evaluated metrics at the
segment-level using the group-by-item method,
however no-grouping was used in WMT’21 and
all three were used in WMT’22. The standard cor-
relation function that is used is some variant of
Kendall’s τ , described next.

3“Item” is used to keep the terminology generic so it can
be applied to other generation tasks. Here, “item” refers to the
source segment.
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Definition Proposed By WMT Shared Task Years

τa = (C −D)/(C +D + Th + Tm + Thm) Kendall (1938) -
τb = (C −D)/

√
(C +D + Th)(C +D + Tm) Kendall (1945) 2021–2022

τc = (C −D)/(n2(k−1k )) Stuart (1953) -
τ10 = (C −D − Tm)/(C +D + Tm) Callison-Burch et al. (2010) 2010–2012, 2017–20204

τ13 = (C −D)/(C +D) Macháček and Bojar (2013) 2013
τ14 = (C −D)/(C +D + Tm) Macháček and Bojar (2014) 2014–2016
τeq = (C + Thm −D − Th − Tm)/(C +D + Th + Tm + Thm) This work (§6) -
acceq = (C + Thm)/(C +D + Th + Tm + Thm) This work (§6) -

Table 1: Each variant of τ handles ties differently, and the WMT metrics shared task has not consistently used the
same τ over the years. The acceq and τeq statistics are proposed in this work (§6). See Table 2 for the notation
definition for this table.

Symbol Description

n The number of inputs
h The vector of human scores
m The vector of metric scores
C The number of concordant pairs
D The number of discordant pairs
Th The number of pairs tied only in h
Tm The number of pairs tied only in m
Thm The number of pairs tied in both h and m
k The minimum of the number of unique values in h or m

Table 2: The notation used for defining different τ ’s.

2.3 The Landscape of Kendall’s τ

Kendall’s τ is a ranking-based correlation coeffi-
cient. Although there are many different variants of
τ , intuitively, it counts how frequently the metric
and human scores agree (concordant) or disagree
(discordant) on the ranking of all possible pairs of
translations. Importantly, there cannot be a tie in
either the metric or human score for a pair to be con-
sidered concordant or discordant. Each τ ranges
from -1 to 1, with the extremes resulting from the
metric and human scores being perfectly discor-
dant/concordant and 0 meaning random chance.

Some variants of τ are generic and included in li-
braries like SciPy, whereas others were proposed by
WMT metrics shared task organizers and tailored to
the application of MT metric meta-evaluation. Ta-
ble 1 shows the definitions of the different variants
of τ using the notation in Table 2.

The main differences between the variants are
how they handle ties. The standard variants, τb and
τc, are modifications of τa designed to ensure the
values can reach -1 and 1 in the presence of ties. In
contrast to our proposal, the versions proposed by
WMT do not include ties in the human scores, and
penalize ties in the metric scores. This is due to the

4See note about the error in the WMT’17 report in the
WMT’18 report (Ma et al., 2018).

fact that the metrics shared task organizers either
did not want to penalize small differences in met-
ric scores when the human score is tied (Callison-
Burch et al., 2010) or only evaluated on pairs that
had a large difference in DA score in order to en-
sure the pair’s ranking was reliable (Bojar et al.,
2017).

Overall, none of the τ ’s directly rewards the met-
ric for correctly predicting ties in the human score.
We view our work as a next step in updating the
meta-evaluation to account for properties of today’s
metrics and human scores.

3 Analysis Setup

Datasets Our analysis is performed on the Mul-
tidimensional Quality Metrics (MQM; Lommel
et al., 2014; Freitag et al., 2021a) ratings collected
by the WMT’22 metrics shared task (Freitag et al.,
2022b) for three language pairs: en→de, zh→en,
and en→ru. We use the MQM scores as the ground-
truth human scores that the automatic metrics’
scores are evaluated against. The language pairs
have 13-15 systems and around 1300-1900 seg-
ments per system with MQM ratings.

Automatic Metrics We explore how the choice
of meta-evaluation statistic affects the rankings of
the primary metric submissions to the WMT’22
shared task, in addition to the recently proposed
GEMBA metrics (Kocmi and Federmann, 2023).
We also discuss and examine various different met-
rics in more detail, including the top 2 perform-
ing metrics in the WMT’22 shared task, Metric-X
and COMET-22 (Rei et al., 2022), in addition to
BLEURT-20 (Sellam et al., 2020), MaTESe (Per-
rella et al., 2022), and GEMBA. The former three
metrics are regression-based metrics that predict
floating point translation quality scores. MaTESe
predicts span-level errors that are combined into an
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LP #Segments Group-by-Item

#Pairs #Ties #Zero-Ties

en-de 18k 120k 64k (53%) 48k (40%)
zh-en 28k 197k 82k (42%) 63k (32%)
en-ru 20k 138k 61k (44%) 40k (29%)

Table 3: The number of segments, pairs, tied pairs,
and pairs tied at MQM=0 (error free) across the dif-
ferent WMT’22 language pairs for group-by-item cor-
relations. The statistics for other segment-level correla-
tions can be found in Appendix C.

overall score based on an error severity weighting.
The GEMBA metrics predict quality scores using
0-shot prompting with GPT-3.5 and GPT-4 (Brown
et al., 2020). Importantly, the predicted scores from
MaTESe and GEMBA tend to come from a small
set of values rather than a large range of possible
floating point scores, which has significant impli-
cations for the number of ties they predict (see §4)
and how they are treated by different variants of τ .

4 Why Ties are Important

There are several motivations for incorporating ties
into a ranking-based meta-evaluation statistic like
Kendall’s τ .

First, ties in human scores from recent WMT
shared tasks are much more trustworthy than they
were previously. Since WMT’20, the human scores
are MQM scores instead of direct assessment (DA)
scores. The MQM scores come from expert trans-
lators and are more reliable than the crowdsourced
DA scores. As such, ties (or minor differences)
between scores are more likely representative of
actual ties (or minor differences) in translation qual-
ity.

Second, ties in MQM scores are very common.
For instance, up to 53% of possible pairs in en-de
have tied MQM scores (see Table 3), the majority
of which have MQM scores of 0, meaning there
are no errors in the translations. As the quality of
MT systems improves, the number of tied transla-
tions is likely to increase since there will be fewer
differences between systems. If ties in the MQM
scores are removed from the meta-evaluation (as is
done by some Kendall variants), we throw away a
valuable metric quality signal and lose the ability
to discriminate between metrics that reliably detect
ties and those that do not (see next section).

Finally, recently proposed metrics, such as
MaTESe or those based on large language mod-

Metric en-de zh-en en-ru

Metric-X 0.7% 0.2% 0.5%
COMET-22 1.3% 0.1% 0.5%
MaTESe 71.9% 39.6% 80.8%
GEMBA-GPT-3.5 60.3% 56.6% 50.9%
GEMBA-GPT-4 69.6% 46.9% 60.1%

Table 4: The percent of pairs that are tied when group-
ing by source segment is drastically different for regres-
sion metrics (Metric-X and COMET) versus metrics
that effectively act as multi-class classifiers (MaTESe
and GEMBA).

h = [0, 0, 0, 0, 1, 2]

m1 = [0, 0, 0, 0, 2, 1]

m2 = [0, 1, 2, 3, 4, 5]

Metric τa τb τc τ10 τ13 τ14 τeq acceq

m1 .47 .78 .29 .78 .78 .78 .87 .93
m2 .60 .77 .38 1.0 1.0 1.0 .20 .60

Figure 2: When considering ties, m1 only incorrectly
ranks 1 out of the

(
6
2

)
pairs, whereas m2 incorrectly

ranks 6. However, due to how each τ handles ties, only
acceq and τeq strongly prefer m1 over m2. Notably, τ10,
τ13, and τ14 are unable to distinguish a perfect metric
(m = h) from m2. The acceq and τeq statistics are
proposed in this work (§6).

els (GEMBA) predict a large number of ties (see
Table 4). These metrics should be directly rewarded
for correctly predicting ties in the human scores,
which is not the case with existing Kendall variants.

5 Shortcomings of Kendall’s Variants

The way ties are handled by existing variants of
Kendall’s τ introduces blind spots in the meta-
evaluation and opens the door for metrics to ex-
ploit τ -specific properties to improve correlations.
We demonstrate the shortcomings of existing τ ’s
through a motivational example and experimental
analysis.

5.1 A Motivating Example
Due to how existing τ ’s handle ties, they are unable
to discriminate between metrics that accurately pre-
dict ties and those that do not. Figure 2 contains an
example of such an instance.

When considering ties, metric m1 only incor-
rectly ranks 1 out of the 15 possible pairs, whereas
m2 incorrectly ranks 6 pairs. However, because
existing τ ’s do not give credit to metrics for cor-
rectly predicting ties, the correlation coefficients
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Figure 3: Dividing the Metric-X scores into equal
width buckets can increase the group-by-item correla-
tion by a large margin. However, at the same time,
the number of groups used in the correlation (with non-
NaN scores) decreases, meaning the corresponding cor-
relations are not fairly comparable since they are com-
puted on different sets of data.

either considerm1 to be either approximately equal
or worse than m2. This blind spot of existing τ ’s
means they are inadequate for meta-evaluating met-
rics in the presence of ties.

5.2 The NaN Problem
Another consequence of how the τ correlations
handle ties is what we refer to as the “NaN prob-
lem.” In the event that either the metric or human
scores are a constant vector (therefore, all pairs are
tied), many of the τ values are not defined, or NaN.
When the segment-level correlation is calculated
by grouping by either item or system and one of the
groups’ correlations is NaN, the correlation is re-
moved from the average in practice. This happens
most often when grouping by item because the size
of the input vectors is the number of systems, N ,
which is generally rather small (≈15).

A metric could take advantage of this property
of the segment-level correlation by introducing
ties for difficult-to-score groups, resulting in NaN
scores. This has the effect of removing the chal-
lenging groups from the meta-evaluation, resulting
in higher correlations.5,6 Indeed, we find that this
is possible.

To introduce ties, we mapped Metric-X’s scores
5Another possibility would be to assign a neutral cor-

relation value of 0. However, this has the disadvantage of
penalizing metrics that assign ties when all human scores are
also tied or are close to being tied.

6Note that both Pearson and Spearman are also NaN for
constant vectors and therefore are also susceptible to gaming.

to integers by assigning each score to an equal-
width bucket. This bucketing results in ties in chal-
lenging pairs because similar quality translations
likely have close metric scores, so when the scores
are converted to integer buckets, their scores be-
come the same value. Figure 3 plots the group-by-
item τb (the τ coefficient used in WMT’22) and
the number of non-NaN groups as a function of the
number of buckets.

When the number of buckets is small, the num-
ber of non-NaN segments is reduced, and the result-
ing correlations improve over the original values
by very large margins. Because the correlations
with different numbers of buckets are computed
over different non-NaN subsets of the full dataset,
their values are not fairly comparable. Indeed, in
§8, we demonstrate that WMT’22 metrics submis-
sions were evaluated on different non-NaN groups,
and directly comparing their correlations leads to
erroneous conclusions.

A metric could have taken advantage of the NaN
problem in order to game the WMT’22 metrics
shared task since the number of non-NaN seg-
ments is not taken into account in the metric meta-
evaluation. A method for handling ties that made
correlations for constant vectors well defined would
close this loophole.

6 Evaluating with Pairwise Accuracy

Instead of using Kendall’s τ as the ranking-based
meta-evaluation statistic, we propose to use a ver-
sion of pairwise accuracy that includes ties. We
define the pairwise accuracy to be the proportion
of all pairs that the metric either ranks correctly or
correctly predicts are tied. The equation for our
proposal, denoted acceq (“eq” for equality, as in
ties), is included in Table 1. This statistic now di-
rectly incorporates ties in the human and metric
scores.

Although there is a modification of Kendall’s τ
that corresponds to acceq (denoted τeq in Table 1),
we advocate for reporting accuracy instead. Accu-
racy is more intuitive than τ since its value is be-
tween 0 and 1 and it can be read as the proportion of
pairs that the metric correctly ranks/predicts as ties.
This stands in contrast to τ that is between -1 and
1, which does not have an easy-to-communicate
interpretation. Pairwise accuracy has the additional
benefit of aligning how metrics are meta-evaluated
at the system- and segment-levels (Kocmi et al.,
2021). The results related to metric rankings in this
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Metric Definition

tiesprecision Thm/(Thm + Tm)
tiesrecall Thm/(Thm + Th)
correct-rankprecision C/(C +D + Th)
correct-rankrecall C/(C +D + Tm)

Table 5: Definitions of precision and recall on correctly
predicting tied pairs or the correct ranking of non-tied
pairs. See Table 2 for the notation definition.

work apply equally to acceq and τeq.
Pairwise accuracy (and τeq) does not suffer from

the same issues as the τ ’s that were presented in §5:
acceq strongly prefers m1, the metric with fewer
incorrectly ranked pairs (Figure 2; §5.1). Because
its value is never NaN, it does not suffer from the
NaN problem (§5.2); all examples are always used
for evaluation.

6.1 Evaluating Ties and Non-Ties
Pairwise accuracy effectively evaluates the auto-
matic metrics as 3-way classifiers that decide be-
tween predicting a tie or one of the two possible
rankings for each pair. This formulation nicely al-
lows for further decomposition into class-specific
precision, recall, and F1, which can be used to fur-
ther understand metric performance. Class-specific
evaluations help to address a potential class imbal-
ance problem between tied and non-tied pairs that
may be hidden by accuracy.

Table 5 contains the definitions of precision and
recall with respect to “ties” and “correct ranking.”
The “ties” statistics calculate the precision of the
metric when predicting a tie and its recall of hu-
man ties. The “correct ranking” statistics calculate
the proportion of correctly ranked pairs out of all
pairs it predicts are not tied and the proportion of
all human non-tied pairs correctly ranked by the
metric. These additional statistics help provide a
more holistic view of metric performance.

7 Tie Calibration

Although we argue that acceq properly addresses
ties in human and metric scores, some metrics do
not frequently predict exact ties between transla-
tions. Regression metrics, such as BLEURT (Sel-
lam et al., 2020) and COMET (Rei et al., 2020),
practically never predict tied scores for two differ-
ent translations (see Table 4), so they will not able
to correctly predict a tie in the human score, putting
them at a disadvantage. This is undesirable because

it prevents a fair comparison between metrics that
do and do not predict ties.

To address this shortcoming, we propose an algo-
rithm called tie calibration for automatically intro-
ducing ties into metric scores so that metrics that do
and do not predict ties can be fairly compared. The
algorithm is based on the intuition that, although
regression metrics do not frequently predict ties,
the difference between two translations’ scores is
sometimes small enough to be considered a tie.

Tie calibration searches for an ε value that maxi-
mizes a rank-based correlation statistic (e.g., τ or
acceq) such that any two translations with a differ-
ence in score less than ε is considered to be a tie.7

Our implementation considers all possible differ-
ences between the

(
n
2

)
pairs of translations as can-

didates for ε and selects the one that maximizes the
desired ranking-based statistic. The algorithm runs
in O(n2 log n), where n is the number of transla-
tions.8 Detailed psuedocode for tie calibration is
included in Appendix D.

Because tie calibration introduces an optimal
number of tie predictions, metrics are not penalized
for under-predicting ties, and therefore metrics that
do and do not predict ties can be fairly compared.
An added benefit of tie calibration is that the result-
ing optimal ε improves the interpretability of metric
scores. Its value can be understood as the threshold
for which a difference in metric scores should be
considered significant (at least with respect to a
specific dataset; see §8.2).

Henceforth we use ∗ to denote a statistic that has
been calculated with tie calibration (e.g., acc∗eq) and
ε∗ the optimal tie threshold found by the algorithm.

Discussion. In principle, tie calibration can be
used to find an optimal value of any correlation
statistic in which the presence of ties changes the
value, acceq being one of them. However, care
needs to be taken to ensure that the statistic handles
ties in a desirable way. For example, τ13 omits
all ties from its formula, so tie calibration could
convert a discordant pair into a tie to improve the
value of τ13, which, if the human scores are not
tied, is undesirable (acceq would not reward this
change). The combination of tie calibration and a

7We experimented with relative differences between
scores and found little difference compared to absolute differ-
ences.

8In practice, when n is large, we downsample the number
of pairs to consider when searching for ε, which significantly
improves runtime. Experimentally, this appears to be a rather
good approximation (see Appendix E).
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Metric τb τ10 acc∗eq ε∗

Metric-X 0.270 ( 4) 0.381 ( 1) 0.605 ( 1) 0.04
UniTE 0.278 ( 3) 0.322 ( 3) 0.595 ( 2) 0.14
COMET-22 0.258 ( 5) 0.366 ( 2) 0.594 ( 3) 0.11
MaTESe 0.281 ( 2) -0.459 (16) 0.582 ( 4) 0.00
UniTE-src 0.205 ( 9) 0.221 ( 8) 0.582 ( 5) 0.12
GEMBA-GPT-4 0.322 ( 1) -0.367 (15) 0.573 ( 6) 4.00
MaTESe-QE 0.234 ( 7) -0.573 (17) 0.572 ( 7) 0.00
COMETKiwi 0.181 (12) 0.254 ( 6) 0.572 ( 8) 0.16
BLEURT-20 0.254 ( 6) 0.289 ( 4) 0.568 ( 9) 0.09
MS-COMET-22 0.169 (13) 0.241 ( 7) 0.565 (10) 4.65
COMET-QE 0.138 (14) 0.179 (10) 0.555 (11) 0.01
SEScore 0.182 (10) 0.269 ( 5) 0.554 (12) 1.30
MS-COMET-QE-22 0.080 (16) 0.116 (12) 0.550 (13) 6.50
HWTSC-Teacher-Sim 0.106 (15) 0.123 (11) 0.545 (14) 0.34
GEMBA-GPT-3.5 0.209 ( 8) -0.344 (14) 0.545 (15) 15.00
MEE4 0.182 (11) 0.201 ( 9) 0.539 (16) 0.13
REUSE -0.074 (18) -0.134 (13) 0.534 (17) 0.47
Constant-Metric 0.000 (17) -1.000 (18) 0.534 (18) 0.00

Table 6: The correlations (and ranks) of the metrics
as evaluated by τb, τ10, and acceq with tie calibration,
denoted acc∗eq, using the group-by-item segment-level
correlation on the WMT’22 en-de dataset. ε∗ is the op-
timal threshold found by tie calibration.

statistic that does not properly handle ties may lead
to unexpected results.

8 Analysis

In this section, we analyze several different aspects
related to our proposal of pairwise accuracy and tie
calibration. We address the following questions:

• §8.1: How does the choice of meta-evaluation
statistic affect metric ranking?

• §8.2: How does the selected value of ε gener-
alize across datasets?

• §8.3: Does the selected ε value introduce ties
uniformly across score values for a metric?

• §8.4: What insights can be drawn from eval-
uating metrics on predicting tied versus non-
tied pairs?

8.1 Comparing Metric Rankings

Table 6 shows group-by-item correlations calcu-
lated with various τ ’s and pairwise accuracy. We
also report the performance of a “constant metric”
that predicts a tie for every pair as a baseline com-
parison. From the existing τ ’s, we report τb and
τ10 since they are the most recent and used most
frequently by WMT.9 Clearly, the choice of meta-
evaluation statistic significantly affects the metric
rankings, with the largest changes happening to

9See Appendix C for the results for each language pair,
type of segment-level correlation, and correlation statistic.

MaTESe and GEMBA, the two metrics that output
the most ties.

Under τb, GEMBA-GPT-4 and MaTESe are the
top ranked metrics. However, this result can be
partially explained by the NaN problem (§5.2).
MaTESe’s correlation is calculated on 773 non-
NaN segments, compared to 1133 for Metric-X.
When both metrics are evaluated on the same 773
segments, Metric-X’s correlation is higher (0.296
versus 0.281). This result highlights how correla-
tions calculated on different source segments can-
not be fairly compared.

If τ10 is used to rank the metrics, MaTESe and
GEMBA fall to the bottom at of the ranking. This
result can be explained by the fact that τ10 is sys-
tematically biased against metrics that output a
large number of ties because ties are penalized as if
they are discordant pairs. Predicting a tie can only
decrease a τ10 correlation. In fact, the τ10 values of
MaTESe and GEMBA can be improved by large
margins simply by randomly breaking all ties since
around half of the pairs will now become concor-
dant, while the other half remain penalized as they
were before. For example, randomly breaking ties
improves MaTESe and GEMBA-GPT-3.5’s corre-
lations by around 0.5-0.6 points (MaTESe: −0.459
to ≈0.15, GEMBA: −0.344 to ≈0.15). In contrast,
COMET-22’s correlation only improves by≈0.005
due to the fact that it predicts few ties (see Table 4).

In contrast, when the metrics are ranked by acceq
with tie calibration, denoted acc∗eq, MaTESe and
the GEMBA metrics are ranked 4th, 6th, and 15th.
Because τeq and acceq are never NaN, all values are
fairly comparable. Further, there is no systematic
bias for or against ties; Randomly breaking or in-
troducing ties runs the risk of changing a correct
prediction of a tie or concordant pair into a discor-
dant pair or an incorrect tie prediction. Clearly, the
choice of correlation statistic matters, and we ar-
gue that acc∗eq is the most fair and reliable method
compared to the τ variants.

8.2 Generalization of Epsilon

The previous analysis selected ε∗ on the same
dataset that is used to rank the metrics. Here, we
examine what happens if the ε value is selected on
a held-out dataset. For this analysis, the MQM rat-
ings from the WMT’21 metrics shared task (Freitag
et al., 2021b) are used as a held-out set.

Figure 4 shows the different ε∗ and acc∗eq values
for BLEURT-20 when ε is selected on one dataset
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Figure 4: The generalization of the selected ε∗ (dashed
line) across datasets appears to depend on specific prop-
erties of the datasets. We suspect if the number of ties
in the datasets is very different (as in zh-en), the ε is
less likely to generalize well.

and applied to the other for en-de and zh-en. For en-
de, the epsilon value changes by 0.03, and the acceq
calculated on the held-out ε changes by relative 2%,
suggesting the results are rather stable.

However, zh-en behaves quite differently. From
the plots, it is clear that for WMT’21, there is al-
most never an incentive to predict a tie, as evi-
denced by the very low ε∗, and the corresponding
ε∗ does not generalize well to WMT’22 (or vice
versa). Our hypothesis is that this result is due to
the fact that the WMT’21 zh-en data has far fewer
ties than the WMT’22 data (23% versus 41%).

These results indicate that ε∗ values are not likely
to generalize across dissimilar datasets under cur-
rent metrics. Such a property would be desirable—
and an interesting challenge for metric developers—
since it would make score differences more inter-
pretable. However, we argue that treating ε∗ as
a latent variable calibrated on the current test set
allows for fair comparisons of metrics even in the
absence of this property. Other evaluation proto-
cols have also involved optimizations on the test
set, for example using an oracle sentence segmenter
to evaluate MT for speech (Matusov et al., 2005).

8.3 Where are Ties Introduced?
Since most of the human score ties are for error free
translations (see Table 3), it is worth understanding
if the tie threshold introduces ties for high scoring
translations to predict error-free translation ties or
if the ties are introduced more uniformly across the
score distribution.

Figure 5 plots the distribution of the average
score per pair where ties are introduced by ε∗ for
Metric-X on the WMT’22 zh-en dataset. In com-
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Figure 5: The distribution of average pair scores where
ties are introduced for Metric-X on WMT’22 zh-en us-
ing ε∗ as the tie threshold is skewed right with respect
to the distribution of all pairs, suggesting the ε is biased
toward introducing ties to predict perfect translations.
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Figure 6: The F1 scores for predicting ties or cor-
rect pair rankings for COMET-22 on WMT’22 en-de
demonstrate the metric is better at predicting ties than
correct pair rankings.

parison to the distribution of all pairs’ average
scores, the tied distribution is skewed toward higher
predicted scores. Since Metric-X has a relatively
strong correlation to MQM scores, this suggests
that the newly introduced ties mostly predict per-
fect translations, which are assigned high scores
according to the metric. An extension of our tie cal-
ibration procedure could first identify a threshold to
predict a perfect translation, then run tie calibration
on the remaining pairs.

8.4 Class-Specific Statistics

Figure 6 plots the ties-F1, correct-rank-F1 (see
§6.1), and pairwise accuracy for COMET-22 on
en-de. The ties-F1 is much higher than the correct-
rank-F1 for almost every ε, demonstrating that the
metric more reliably predicts tied pairs than the cor-
rect rank for non-tied pairs. This is likely due to the
fact that the number of perfect translations is large,
and the ε values are biased toward introducing ties
to predict perfect translations (§8.3).

If a statistic other than pairwise accuracy is better
aligned to how a metric is being used in practice,
the tie calibration procedure can be used to select
an ε that strikes the desired balance of performance
with respect to the class-specific statistics.
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9 Conclusion

In this work, we demonstrated the importance of
taking ties into account when calculating rank-
based correlation statistics. We argued existing
variants of Kendall’s τ are inadequate for the cur-
rent state of meta-evaluation. We advocated to
instead use pairwise accuracy, which rewards met-
rics for both predicting correct pair rankings and
correctly predicting ties, in combination with a tie
calibration procedure that allows for comparing
metrics that do and do not predict ties. Although
our experiments were specific to MT, the methods
proposed are generally applicable to any metric
meta-evaluation in NLP.

Limitations

The tie calibration algorithm introduced in §7
makes an assumption that absolute differences in
metric scores reflect the same amount of change
in quality for any value of the metric. That is, the
difference in predicted quality between translations
with scores 0.2 and 0.1 is the same as with scores
100.2 and 100.1. An alternative version of the tie
calibration algorithm could introduce ties based on
relative differences between scores instead of ab-
solute differences. We experimented with relative
differences and did not see a significant different
in results. However, it may be that a metric that
we did not experiment with performs better with
relative ε instead of an absolute difference.

Since the tie decision operates at the pair level,
the ε value does not induce a global ordering of
translations. For example, if there are scores 1, 2,
and 3 with ε = 1, pairs (1, 2) and (2, 3) are tied
but (1, 3) is not. A similar limitation can also be
observed in pairwise statistical significance testing.

Finally, although we argue that our meta-
evaluation proposal is more fair, we are unaware
of any way to prove that this is true. Instead, we
rely on experimental results and the fact that our
proposals are not susceptible to known issues with
existing methodologies.
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A Correlation Definitions

This section more explicitly defines the three dif-
ferent types of segment-level correlations.

Let hij and mij denote the human and met-
ric scores for the translation produced by system
i ∈ 1, . . . , N on source segment j ∈ 1, . . . ,M .
Define Corr(·) to be a correlation coefficient, such
as Pearson’s r, Spearman’s ρ, Kendall’s τ , or any
such function that calculates an agreement score
over a set of paired observations, like the pairwise
accuracy statistic proposed in this work. There are
three different segment-level correlations that can
be computed.

1. No-Grouping:

Corr
(
{(hij ,mij)}N,M

i=1,j=1

)
(1)

2. Group-by-Item:

1

M

M∑

j=1

Corr
(
{(hij ,mij)}Ni=1

)
(2)

3. Group-by-System:

1

N

N∑

i=1

Corr
(
{(hij ,mij)}Mj=1

)
(3)
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Metric
Notation < = >

H
um

an < C Tm D
= Th Thm Th
> D Tm C

Table 7: A mapping between the notation in this paper
and the tabular notation from WMT’14.

Metric
τ10 < = >

H
um

an < 1 -1 -1
= X X X
> -1 -1 1

Metric
τ13 < = >

H
um

an < 1 X -1
= X X X
> -1 X 1

Metric
τ14 < = >

H
um

an < 1 0 -1
= X X X
> -1 0 1

Table 8: The tabular versions τ10, τ13 and τ14.

B WMT Tabular Notation

WMT’14 (Macháček and Bojar, 2014) developed a
tabular notation to describe how Kendall’s τ was
calculated. For completeness, we include a map-
ping of the notation from this work in Table 2 to the
tabular notation in Table 7. The tabular versions
of τ10, τ13, and τ14 are reproduced in Table 8. The
tabular versions of τeq and acceq are included in
Table 9.

Re-using the notation from WMT’14, a τ value
can be computed using the tabular notation via the
following equation:

τ =

∑
h,m∈{<,=,>}

Ch,m 6=X

Ch,m|Sh,m|

∑
h,m∈{<,=,>}

Ch,m 6=X

|Sh,m|
(4)

Ch,m is defined as the coefficient in the tabular
notation and Sh,m is the number of pairs that fall
into the corresponding bucket.

Metric
τeq < = >

H
um

an < 1 -1 -1
= -1 1 -1
> -1 -1 1

Metric
acceq < = >

H
um

an < 1 0 0
= 0 1 0
> 0 0 1

Table 9: The tabular versions of τeq and acceq.

C Additional Results

Table 10 contains more statistics related to the num-
ber of tied pairs in the WMT’22 MQM scores, in-
cluding the number of pairs that are tied with a
score of 0 (i.e., an error free translation).

The full correlation results and metric ranks ac-
cording to the different τs across different language
pairs and segment-level correlations is included in
this section. See Table 11 for the listing of the
individual tables.

D Tie Calibration Psuedocode

Algorithm 1 contains the pseudocode for the tie cal-
ibration procedure (§7) when applied to two vectors
of human and metric scores. The algorithm runs
in O(n2 log n) where n is the number of scored
translations. The bottleneck is sorting all of the

(
n
2

)

possible pairs. When
(
n
2

)
is too large, we approxi-

mate the search for the optimal ε by downsampling
the number of pairs. See Appendix E for an analy-
sis of how lossy this approximation is.

In practice, the tie calibration is applied to ma-
trices of human and metric scores, where each row
corresponds to a group (see §2). The algorithm is
very similar to Algorithm 1 except there is addi-
tional bookkeeping required to match each (i, j)
pair to the group that it came from. The extra book-
keeping only adds an O(1) overhead.

E Epsilon Search Approximation

Finding the exact ε value that maximizes pair-
wise accuracy requires considering all possible

(
n
2

)

choices of ε. For specific segment-level correla-
tions, such as the no-grouping variant,

(
n
2

)
can be

prohibitively large, on the order of hundreds of
millions of pairs (see Table 3).
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LP #Translations No Grouping Group-by-Item Group-by-System

#Pairs #Ties #Zero-Ties #Pairs #Ties #Zero-Ties #Pairs #Ties #Zero-Ties

en-de 18k 169m 58m (34%) 49m (29%) 120k 64k (53%) 48k (40%) 12m 4m (35%) 4m (29%)
zh-en 28k 395m 103m (26%) 87m (22%) 197k 82k (42%) 63k (32%) 26m 7m (26%) 6m (22%)
en-ru 20k 195m 44m (22%) 35m (18%) 138k 61k (44%) 40k (29%) 13m 3m (23%) 2m (19%)

Table 10: The number of translations, pairs, tied pairs, and pairs tied at MQM=0 (perfect translations) across the
different WMT’22 language pairs and segment-level correlations.

LP Correlation Table

en-de
No-Grouping Table 12
Group-by-Item Table 13
Group-by-System Table 14

en-ru
No-Grouping Table 15
Group-by-Item Table 16
Group-by-System Table 17

zh-en
No-Grouping Table 18
Group-by-Item Table 19
Group-by-System Table 20

Table 11: Pointers to the full correlation and metric
ranking results under different τs for each language
pair and type of segment-level correlation.

When the number of pairs is too large, we in-
stead find an approximate best ε by sampling from
all possible pairs. Figure 7 plots the ε∗ values cal-
culated on a subset of the data and the value of
acceq for those ε∗ values. Even with as little as
10% of the possible pairs, the approximations are
quite precise. The largest observed differences over
30 iterations for ε∗ were 2.5e-3 and for acceq were
4.3e-5. Overall, downsampling appears to be a safe
approximation to improve the run time of the tie
calibration algorithm.

F Unbabel Normalization

The experiments in this paper calculate MQM
scores for translations using the normalization tech-
nique advocated for by Google: a translation’s
MQM score is the sum of the weights of each of
the errors. The alternative method used by Un-
babel normalizes the sum of error weights by the
length of the translation. The Unbabel normaliza-
tion will thus result in fewer human score ties than
the Google normalization.

We repeated the analysis from §8.1 using the
Unbabel normalization method and calculated the
rankings of the different metrics under acceq and
τ variants for the en-ru language pair. The results

Algorithm 1 An O(n2 log n) algorithm that intro-
duces metric ties to select an optimal τ value.
1: function TIECALIBRATION(h, m, τ )
2: C,D, Th, Tm, Thm ← SUFFSTATS(h,m, 0)
3: P = [(i, j) : i, j = 1, . . . , n; i < j]
4: Sort P by |mi −mj |
5: τ∗ ← −∞
6: τcurr ← τ(C,D, Th, Tm, Thm)
7: εcurr ← 0
8: for (i, j) ∈ P do
9: if |mi −mj | 6= εcurr then

10: τ∗ ← max(τ∗, τcurr)

11: Remove (i, j) from C,D, Th, Tm, Thm

12: if hi = hj then
13: Thm ← Thm + 1
14: else
15: Tm ← Tm + 1
16: τcurr ← τ(C,D, Th, Tm, Thm)
17: εcurr ← |mi −mj |
18: τ∗ ← max(τ∗, τcurr)
19: return τ∗
20: end function
21: function SUFFSTATS(h, m, ε)
22: C,D, Th, Tm, Thm ← 0, 0, 0, 0, 0
23: for (i, j) ∈ {(i, j) : i, j = 1, . . . , n; i < j} do
24: if hi = hj and |mi −mj | ≤ ε then
25: Thm ← Thm + 1
26: else if hi = hj then
27: Th ← Th + 1
28: else if |mi −mj | ≤ ε then
29: Tm ← Tm + 1
30: else if Sign(hi − hj) = Sign(mi −mj) then
31: C ← C + 1
32: else
33: D ← D + 1
34: return C,D, Th, Tm, Thm

35: end function

for the group-by-item segment-level correlation are
shown in Table 21.

Overall, the fewer ties did not make a significant
impact on whether or not it was possible to demon-
strate that the meta-evaluation statistics are biased
toward or against ties. For instance, τb favors met-
rics with ties, such as GEMBA-GPT-4, and τ10 is
still biased against metrics that predict ties. We sus-
pect this is due to the fact that the majority of ties
occur for perfect translations, which will remain
tied in either normalization method. Further, the
number of non-perfect ties (MQM score of 0) only
decreased by 7% (from 44% to 37%). Therefore,
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Metric τa τb τc τ10 τ13 τ14 acceq acc∗eq ε∗

Metric-X 0.289 ( 2) 0.356 ( 2) 0.293 ( 2) 0.440 ( 2) 0.440 ( 4) 0.440 ( 2) 0.473 ( 4) 0.525 ( 1) 0.05
UniTE 0.288 ( 3) 0.356 ( 3) 0.292 ( 3) 0.438 ( 3) 0.438 ( 5) 0.438 ( 3) 0.473 ( 5) 0.519 ( 2) 0.11
COMET-22 0.292 ( 1) 0.361 ( 1) 0.296 ( 1) 0.445 ( 1) 0.445 ( 3) 0.445 ( 1) 0.475 ( 3) 0.518 ( 3) 0.14
MaTESe 0.170 (14) 0.323 ( 6) 0.181 (14) -0.241 (16) 0.516 ( 2) 0.258 (14) 0.500 ( 1) 0.494 ( 4) 0.00
GEMBA-GPT-4 0.199 (11) 0.347 ( 4) 0.214 (11) -0.153 (15) 0.555 ( 1) 0.302 (11) 0.481 ( 2) 0.493 ( 5) 4.00
BLEURT-20 0.274 ( 4) 0.338 ( 5) 0.278 ( 4) 0.417 ( 4) 0.417 ( 8) 0.417 ( 4) 0.466 ( 6) 0.490 ( 6) 0.06
MS-COMET-22 0.225 ( 7) 0.277 (10) 0.228 ( 7) 0.342 ( 8) 0.342 (11) 0.342 ( 7) 0.441 (11) 0.487 ( 7) 1.21
UniTE-src 0.229 ( 6) 0.283 ( 9) 0.232 ( 6) 0.349 ( 6) 0.349 (10) 0.349 ( 6) 0.444 (10) 0.479 ( 8) 0.10
COMETKiwi 0.230 ( 5) 0.283 ( 8) 0.233 ( 5) 0.349 ( 5) 0.349 ( 9) 0.349 ( 5) 0.444 ( 9) 0.473 ( 9) 0.13
GEMBA-GPT-3.5 0.208 (10) 0.301 ( 7) 0.222 ( 9) 0.058 (14) 0.426 ( 6) 0.316 (10) 0.452 ( 8) 0.461 (10) 5.00
COMET-QE 0.225 ( 8) 0.277 (11) 0.228 ( 8) 0.342 ( 7) 0.342 (12) 0.342 ( 8) 0.441 (12) 0.457 (11) 0.01
MaTESe-QE 0.119 (16) 0.242 (13) 0.129 (15) -0.391 (17) 0.422 ( 7) 0.181 (16) 0.457 ( 7) 0.456 (12) 0.00
MS-COMET-QE-22 0.184 (13) 0.226 (15) 0.186 (13) 0.279 (11) 0.279 (15) 0.279 (13) 0.421 (15) 0.456 (13) 1.46
SEScore 0.211 ( 9) 0.261 (12) 0.214 (10) 0.322 ( 9) 0.322 (13) 0.322 ( 9) 0.435 (13) 0.452 (14) 0.39
MEE4 0.191 (12) 0.236 (14) 0.194 (12) 0.290 (10) 0.291 (14) 0.290 (12) 0.425 (14) 0.429 (15) 0.01
HWTSC-Teacher-Sim 0.122 (15) 0.150 (16) 0.123 (16) 0.185 (12) 0.185 (16) 0.185 (15) 0.390 (16) 0.403 (16) 0.15
REUSE 0.046 (17) 0.057 (17) 0.047 (17) 0.070 (13) 0.070 (17) 0.070 (17) 0.352 (17) 0.354 (17) 0.01
Constant-Metric 0.000 (18) 0.000 (18) 0.000 (18) -1.000 (18) 0.000 (18) 0.000 (18) 0.342 (18) 0.339 (18) 0.00

Table 12: The correlations (and metric ranks) for the no-grouping correlation on the WMT’22 en-de dataset.

Metric τa τb τc τ10 τ13 τ14 acceq acc∗eq ε∗

Metric-X 0.174 ( 1) 0.270 ( 4) 0.269 ( 1) 0.381 ( 1) 0.385 ( 3) 0.384 ( 1) 0.325 (11) 0.605 ( 1) 0.04
UniTE 0.162 ( 3) 0.278 ( 3) 0.255 ( 2) 0.322 ( 3) 0.382 ( 4) 0.368 ( 3) 0.425 ( 6) 0.595 ( 2) 0.14
COMET-22 0.163 ( 2) 0.258 ( 5) 0.255 ( 3) 0.366 ( 2) 0.371 ( 5) 0.370 ( 2) 0.325 (12) 0.594 ( 3) 0.11
MaTESe 0.080 (12) 0.281 ( 2) 0.207 ( 6) -0.459 (16) 0.391 ( 2) 0.171 (13) 0.582 ( 1) 0.582 ( 4) 0.00
UniTE-src 0.123 ( 5) 0.205 ( 9) 0.190 ( 7) 0.221 ( 8) 0.277 ( 9) 0.266 ( 6) 0.406 ( 8) 0.582 ( 5) 0.12
GEMBA-GPT-4 0.106 ( 9) 0.322 ( 1) 0.241 ( 4) -0.367 (15) 0.487 ( 1) 0.237 (10) 0.567 ( 3) 0.573 ( 6) 4.00
MaTESe-QE 0.059 (15) 0.234 ( 7) 0.175 (10) -0.573 (17) 0.320 ( 8) 0.121 (15) 0.572 ( 2) 0.572 ( 7) 0.00
COMETKiwi 0.116 ( 6) 0.181 (12) 0.178 ( 9) 0.254 ( 6) 0.259 (11) 0.259 ( 7) 0.301 (14) 0.572 ( 8) 0.16
BLEURT-20 0.149 ( 4) 0.254 ( 6) 0.233 ( 5) 0.289 ( 4) 0.344 ( 6) 0.334 ( 4) 0.419 ( 7) 0.568 ( 9) 0.09
MS-COMET-22 0.107 ( 8) 0.169 (13) 0.166 (11) 0.241 ( 7) 0.244 (13) 0.244 ( 9) 0.294 (15) 0.565 (10) 4.65
COMET-QE 0.094 (11) 0.138 (14) 0.144 (14) 0.179 (10) 0.182 (14) 0.182 (12) 0.285 (17) 0.555 (11) 0.01
SEScore 0.114 ( 7) 0.182 (10) 0.180 ( 8) 0.269 ( 5) 0.270 (10) 0.270 ( 5) 0.291 (16) 0.554 (12) 1.30
MS-COMET-QE-22 0.051 (16) 0.080 (16) 0.076 (16) 0.116 (12) 0.118 (16) 0.118 (16) 0.264 (18) 0.550 (13) 6.50
HWTSC-Teacher-Sim 0.067 (14) 0.106 (15) 0.103 (15) 0.123 (11) 0.149 (15) 0.147 (14) 0.328 (10) 0.545 (14) 0.34
GEMBA-GPT-3.5 0.078 (13) 0.209 ( 8) 0.151 (13) -0.344 (14) 0.324 ( 7) 0.189 (11) 0.509 ( 5) 0.545 (15) 15.00
MEE4 0.100 (10) 0.182 (11) 0.157 (12) 0.201 ( 9) 0.252 (12) 0.246 ( 8) 0.394 ( 9) 0.539 (16) 0.13
REUSE -0.052 (18) -0.074 (18) -0.081 (18) -0.134 (13) -0.093 (18) -0.087 (18) 0.319 (13) 0.534 (17) 0.47
Constant-Metric 0.000 (17) 0.000 (17) 0.000 (17) -1.000 (18) 0.000 (17) 0.000 (17) 0.534 ( 4) 0.534 (18) 0.00

Table 13: The correlations (and metric ranks) for the group-by-item correlation on the WMT’22 en-de dataset.
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we argue that the results presented in this work
apply to either normalization technique, but larger
changes will likely be observed under using the
Google method due to the increase in number of
ties.
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Metric τa τb τc τ10 τ13 τ14 acceq acc∗eq ε∗

Metric-X 0.285 ( 3) 0.351 ( 3) 0.293 ( 3) 0.434 ( 3) 0.434 ( 5) 0.434 ( 3) 0.469 ( 5) 0.524 ( 1) 0.05
COMET-22 0.290 ( 1) 0.357 ( 1) 0.299 ( 1) 0.441 ( 1) 0.441 ( 3) 0.441 ( 1) 0.472 ( 3) 0.515 ( 2) 0.16
UniTE 0.286 ( 2) 0.352 ( 2) 0.294 ( 2) 0.434 ( 2) 0.434 ( 4) 0.434 ( 2) 0.470 ( 4) 0.511 ( 3) 0.14
MaTESe 0.167 (14) 0.314 ( 6) 0.183 (14) -0.255 (16) 0.508 ( 2) 0.253 (14) 0.499 ( 1) 0.494 ( 4) 0.00
GEMBA-GPT-4 0.194 (11) 0.338 ( 4) 0.213 (11) -0.168 (15) 0.542 ( 1) 0.293 (11) 0.480 ( 2) 0.486 ( 5) 4.00
BLEURT-20 0.272 ( 4) 0.335 ( 5) 0.280 ( 4) 0.413 ( 4) 0.414 ( 8) 0.414 ( 4) 0.463 ( 6) 0.486 ( 6) 0.04
MS-COMET-22 0.223 ( 8) 0.274 (11) 0.230 ( 9) 0.338 ( 8) 0.338 (12) 0.338 ( 8) 0.439 (12) 0.482 ( 7) 1.30
UniTE-src 0.229 ( 6) 0.282 ( 9) 0.235 ( 6) 0.347 ( 6) 0.347 (10) 0.347 ( 6) 0.441 (10) 0.473 ( 8) 0.09
COMETKiwi 0.229 ( 5) 0.282 ( 8) 0.236 ( 5) 0.347 ( 5) 0.347 ( 9) 0.347 ( 5) 0.442 ( 9) 0.471 ( 9) 0.12
COMET-QE 0.225 ( 7) 0.276 (10) 0.231 ( 7) 0.341 ( 7) 0.341 (11) 0.341 ( 7) 0.439 (11) 0.459 (10) 0.02
MaTESe-QE 0.117 (16) 0.236 (13) 0.131 (15) -0.401 (17) 0.415 ( 7) 0.177 (16) 0.457 ( 7) 0.456 (11) 0.00
GEMBA-GPT-3.5 0.207 (10) 0.299 ( 7) 0.231 ( 8) 0.056 (14) 0.424 ( 6) 0.315 (10) 0.451 ( 8) 0.453 (12) 5.00
SEScore 0.209 ( 9) 0.258 (12) 0.215 (10) 0.318 ( 9) 0.318 (13) 0.318 ( 9) 0.432 (13) 0.448 (13) 0.43
MS-COMET-QE-22 0.185 (13) 0.228 (15) 0.190 (13) 0.280 (11) 0.280 (15) 0.280 (13) 0.419 (15) 0.445 (14) 1.33
MEE4 0.190 (12) 0.234 (14) 0.195 (12) 0.288 (10) 0.288 (14) 0.288 (12) 0.423 (14) 0.432 (15) 0.01
HWTSC-Teacher-Sim 0.121 (15) 0.149 (16) 0.125 (16) 0.184 (12) 0.184 (16) 0.184 (15) 0.388 (16) 0.405 (16) 0.15
REUSE 0.057 (17) 0.070 (17) 0.058 (17) 0.086 (13) 0.086 (17) 0.086 (17) 0.355 (17) 0.356 (17) 0.00
Constant-Metric 0.000 (18) 0.000 (18) 0.000 (18) -1.000 (18) 0.000 (18) 0.000 (18) 0.346 (18) 0.343 (18) 0.00

Table 14: The correlations (and metric ranks) for the group-by-system correlation on the WMT’22 en-de dataset.

Metric τa τb τc τ10 τ13 τ14 acceq acc∗eq ε∗

Metric-X 0.370 ( 1) 0.420 ( 1) 0.372 ( 1) 0.477 ( 1) 0.477 ( 4) 0.477 ( 1) 0.573 ( 1) 0.579 ( 1) 0.02
COMET-22 0.352 ( 2) 0.400 ( 2) 0.354 ( 2) 0.454 ( 2) 0.454 ( 5) 0.454 ( 2) 0.564 ( 2) 0.563 ( 2) 0.01
UniTE 0.329 ( 3) 0.374 ( 3) 0.331 ( 3) 0.425 ( 3) 0.425 ( 6) 0.425 ( 3) 0.553 ( 3) 0.553 ( 3) 0.03
COMETKiwi 0.316 ( 4) 0.359 ( 4) 0.318 ( 4) 0.408 ( 4) 0.408 ( 8) 0.408 ( 4) 0.546 ( 5) 0.548 ( 4) 0.02
BLEURT-20 0.316 ( 5) 0.359 ( 5) 0.318 ( 5) 0.408 ( 5) 0.408 ( 9) 0.408 ( 5) 0.546 ( 4) 0.542 ( 5) 0.00
MS-COMET-22 0.309 ( 6) 0.351 ( 7) 0.311 ( 6) 0.399 ( 6) 0.399 (10) 0.399 ( 6) 0.542 ( 6) 0.539 ( 6) 0.18
UniTE-src 0.301 ( 7) 0.342 ( 8) 0.303 ( 7) 0.388 ( 7) 0.388 (11) 0.388 ( 7) 0.538 ( 7) 0.536 ( 7) 0.01
COMET-QE 0.300 ( 8) 0.341 ( 9) 0.302 ( 8) 0.387 ( 8) 0.387 (12) 0.387 ( 8) 0.538 ( 8) 0.536 ( 8) 0.00
MS-COMET-QE-22 0.269 ( 9) 0.305 (11) 0.271 (10) 0.347 ( 9) 0.347 (13) 0.347 ( 9) 0.522 ( 9) 0.519 ( 9) 0.00
GEMBA-GPT-3.5 0.259 (10) 0.332 (10) 0.279 ( 9) 0.125 (12) 0.422 ( 7) 0.334 (10) 0.488 (10) 0.484 (10) 0.00
GEMBA-GPT-4 0.245 (11) 0.358 ( 6) 0.262 (11) -0.046 (14) 0.496 ( 2) 0.316 (11) 0.483 (11) 0.483 (11) 2.00
MEE4 0.185 (12) 0.210 (14) 0.186 (12) 0.238 (10) 0.239 (14) 0.239 (12) 0.481 (12) 0.477 (12) 0.00
HWTSC-Teacher-Sim 0.126 (14) 0.143 (15) 0.127 (14) 0.163 (11) 0.163 (15) 0.163 (14) 0.451 (13) 0.448 (13) 0.00
REUSE 0.069 (16) 0.078 (16) 0.069 (16) 0.088 (13) 0.088 (16) 0.088 (16) 0.422 (14) 0.418 (14) 0.00
MaTESe 0.128 (13) 0.279 (12) 0.140 (13) -0.523 (15) 0.529 ( 1) 0.165 (13) 0.380 (15) 0.389 (15) 0.00
MaTESe-QE 0.093 (15) 0.229 (13) 0.103 (15) -0.636 (16) 0.493 ( 3) 0.120 (15) 0.341 (16) 0.349 (16) 0.00
Constant-Metric 0.000 (17) 0.000 (17) 0.000 (17) -1.000 (17) 0.000 (17) 0.000 (17) 0.225 (17) 0.230 (17) 0.00

Table 15: The correlations (and metric ranks) for the no-grouping correlation on the WMT’22 en-ru dataset.

Metric τa τb τc τ10 τ13 τ14 acceq acc∗eq ε∗

Metric-X 0.239 ( 1) 0.329 ( 2) 0.323 ( 1) 0.444 ( 1) 0.445 ( 3) 0.445 ( 1) 0.402 (10) 0.606 ( 1) 0.03
COMET-22 0.230 ( 2) 0.315 ( 3) 0.309 ( 2) 0.420 ( 2) 0.421 ( 4) 0.421 ( 2) 0.396 (11) 0.577 ( 2) 0.07
UniTE 0.220 ( 3) 0.311 ( 4) 0.297 ( 3) 0.399 ( 3) 0.415 ( 5) 0.412 ( 3) 0.445 ( 8) 0.572 ( 3) 0.05
COMETKiwi 0.181 ( 5) 0.247 ( 8) 0.242 ( 7) 0.331 ( 5) 0.332 ( 9) 0.332 ( 6) 0.372 (13) 0.565 ( 4) 0.05
UniTE-src 0.180 ( 6) 0.267 ( 7) 0.245 ( 6) 0.322 ( 7) 0.347 ( 8) 0.343 ( 5) 0.463 ( 6) 0.554 ( 5) 0.07
GEMBA-GPT-4 0.155 ( 8) 0.356 ( 1) 0.273 ( 4) -0.203 (13) 0.519 ( 1) 0.290 ( 8) 0.548 ( 1) 0.550 ( 6) 4.00
MS-COMET-22 0.177 ( 7) 0.243 ( 9) 0.238 ( 8) 0.327 ( 6) 0.328 (10) 0.328 ( 7) 0.367 (14) 0.547 ( 7) 2.47
BLEURT-20 0.202 ( 4) 0.291 ( 6) 0.269 ( 5) 0.347 ( 4) 0.369 ( 7) 0.367 ( 4) 0.474 ( 5) 0.540 ( 8) 0.05
COMET-QE 0.148 (10) 0.200 (13) 0.197 (11) 0.262 ( 9) 0.262 (13) 0.262 (10) 0.352 (15) 0.534 ( 9) 0.01
MS-COMET-QE-22 0.131 (11) 0.180 (14) 0.177 (12) 0.243 (10) 0.243 (14) 0.243 (11) 0.344 (16) 0.528 (10) 3.14
MaTESe 0.075 (14) 0.293 ( 5) 0.224 ( 9) -0.630 (15) 0.472 ( 2) 0.126 (14) 0.520 ( 2) 0.520 (11) 0.00
MaTESe-QE 0.048 (15) 0.238 (10) 0.168 (13) -0.728 (16) 0.379 ( 6) 0.085 (15) 0.499 ( 3) 0.499 (12) 0.00
GEMBA-GPT-3.5 0.098 (13) 0.201 (12) 0.158 (14) -0.237 (14) 0.308 (11) 0.196 (13) 0.475 ( 4) 0.494 (13) 5.00
HWTSC-Teacher-Sim 0.098 (12) 0.147 (15) 0.137 (15) 0.185 (11) 0.199 (15) 0.198 (12) 0.387 (12) 0.481 (14) 0.05
MEE4 0.149 ( 9) 0.222 (11) 0.201 (10) 0.267 ( 8) 0.289 (12) 0.287 ( 9) 0.448 ( 7) 0.473 (15) 0.03
REUSE -0.076 (17) -0.090 (17) -0.097 (17) -0.119 (12) -0.099 (17) -0.097 (17) 0.335 (17) 0.446 (16) 0.14
Constant-Metric 0.000 (16) 0.000 (16) 0.000 (16) -1.000 (17) 0.000 (16) 0.000 (16) 0.444 ( 9) 0.444 (17) 0.00

Table 16: The correlations (and metric ranks) for the group-by-item correlation on the WMT’22 en-ru dataset.
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Metric τa τb τc τ10 τ13 τ14 acceq acc∗eq ε∗

Metric-X 0.352 ( 1) 0.401 ( 1) 0.358 ( 1) 0.457 ( 1) 0.457 ( 4) 0.457 ( 1) 0.559 ( 1) 0.569 ( 1) 0.02
COMET-22 0.337 ( 2) 0.384 ( 2) 0.343 ( 2) 0.438 ( 2) 0.438 ( 5) 0.438 ( 2) 0.552 ( 2) 0.548 ( 2) 0.03
UniTE 0.316 ( 3) 0.360 ( 3) 0.321 ( 3) 0.410 ( 3) 0.410 ( 6) 0.410 ( 3) 0.541 ( 3) 0.543 ( 3) 0.04
COMETKiwi 0.308 ( 4) 0.350 ( 4) 0.313 ( 4) 0.399 ( 4) 0.399 ( 8) 0.399 ( 4) 0.537 ( 4) 0.538 ( 4) 0.02
COMET-QE 0.299 ( 6) 0.340 ( 6) 0.304 ( 6) 0.387 ( 6) 0.387 (10) 0.387 ( 6) 0.533 ( 6) 0.529 ( 5) 0.00
BLEURT-20 0.301 ( 5) 0.343 ( 5) 0.306 ( 5) 0.391 ( 5) 0.391 ( 9) 0.391 ( 5) 0.534 ( 5) 0.527 ( 6) 0.00
UniTE-src 0.291 ( 8) 0.332 ( 8) 0.296 ( 8) 0.378 ( 8) 0.378 (12) 0.378 ( 8) 0.529 ( 8) 0.526 ( 7) 0.02
MS-COMET-22 0.296 ( 7) 0.337 ( 7) 0.301 ( 7) 0.384 ( 7) 0.384 (11) 0.384 ( 7) 0.531 ( 7) 0.524 ( 8) 1.00
MS-COMET-QE-22 0.261 ( 9) 0.297 (11) 0.266 (10) 0.337 ( 9) 0.337 (13) 0.337 ( 9) 0.514 ( 9) 0.505 ( 9) 0.00
GEMBA-GPT-3.5 0.250 (10) 0.321 (10) 0.272 ( 9) 0.113 (12) 0.410 ( 7) 0.324 (10) 0.482 (10) 0.475 (10) 0.00
GEMBA-GPT-4 0.224 (11) 0.327 ( 9) 0.244 (11) -0.089 (14) 0.460 ( 3) 0.288 (11) 0.471 (11) 0.473 (11) 2.00
MEE4 0.171 (12) 0.195 (14) 0.174 (12) 0.222 (10) 0.223 (14) 0.223 (12) 0.470 (12) 0.461 (12) 0.00
HWTSC-Teacher-Sim 0.123 (13) 0.139 (15) 0.125 (14) 0.159 (11) 0.159 (15) 0.159 (13) 0.445 (13) 0.439 (13) 0.00
REUSE 0.084 (16) 0.095 (16) 0.085 (16) 0.108 (13) 0.108 (16) 0.108 (16) 0.425 (14) 0.422 (14) 0.00
MaTESe 0.120 (14) 0.258 (12) 0.139 (13) -0.544 (15) 0.504 ( 1) 0.153 (14) 0.381 (15) 0.387 (15) 0.00
MaTESe-QE 0.089 (15) 0.211 (13) 0.105 (15) -0.650 (16) 0.466 ( 2) 0.113 (15) 0.345 (16) 0.353 (16) 0.00
Constant-Metric 0.000 (17) 0.000 (17) 0.000 (17) -1.000 (17) 0.000 (17) 0.000 (17) 0.233 (17) 0.242 (17) 0.00

Table 17: The correlations (and metric ranks) for the group-by-system correlation on the WMT’22 en-ru dataset.

Metric τa τb τc τ10 τ13 τ14 acceq acc∗eq ε∗

Metric-X 0.362 ( 1) 0.421 ( 1) 0.364 ( 1) 0.489 ( 1) 0.489 ( 1) 0.489 ( 1) 0.551 ( 1) 0.565 ( 1) 0.06
COMET-22 0.361 ( 2) 0.420 ( 2) 0.363 ( 2) 0.488 ( 2) 0.488 ( 2) 0.488 ( 2) 0.551 ( 2) 0.555 ( 2) 0.14
MaTESe 0.295 ( 7) 0.382 ( 3) 0.307 ( 4) 0.244 (12) 0.471 ( 5) 0.399 ( 7) 0.541 ( 3) 0.536 ( 3) 0.00
COMET-QE 0.306 ( 3) 0.356 ( 6) 0.308 ( 3) 0.414 ( 3) 0.414 ( 6) 0.414 ( 3) 0.523 ( 4) 0.520 ( 4) 0.00
COMETKiwi 0.303 ( 6) 0.352 ( 9) 0.304 ( 7) 0.409 ( 6) 0.409 (10) 0.409 ( 6) 0.522 ( 7) 0.520 ( 5) 0.03
BLEURT-20 0.303 ( 5) 0.352 ( 8) 0.305 ( 6) 0.410 ( 5) 0.410 ( 9) 0.410 ( 5) 0.522 ( 6) 0.517 ( 6) 0.00
UniTE 0.305 ( 4) 0.354 ( 7) 0.306 ( 5) 0.412 ( 4) 0.412 ( 7) 0.412 ( 4) 0.523 ( 5) 0.516 ( 7) 0.05
GEMBA-GPT-4 0.268 (11) 0.370 ( 4) 0.284 (10) 0.108 (16) 0.486 ( 4) 0.362 (11) 0.513 (11) 0.513 ( 8) 4.00
MS-COMET-22 0.288 ( 8) 0.335 (10) 0.289 ( 8) 0.389 ( 7) 0.389 (11) 0.389 ( 8) 0.514 ( 8) 0.510 ( 9) 0.02
UniTE-src 0.286 ( 9) 0.332 (11) 0.287 ( 9) 0.386 ( 8) 0.386 (12) 0.386 ( 9) 0.513 (10) 0.508 (10) 0.00
SEScore 0.279 (10) 0.324 (13) 0.280 (11) 0.377 ( 9) 0.377 (13) 0.377 (10) 0.510 (12) 0.506 (11) 0.00
MaTESe-QE 0.251 (13) 0.328 (12) 0.261 (13) 0.164 (14) 0.411 ( 8) 0.339 (13) 0.513 ( 9) 0.506 (12) 0.00
GEMBA-GPT-3.5 0.254 (12) 0.360 ( 5) 0.273 (12) 0.047 (17) 0.486 ( 3) 0.343 (12) 0.499 (13) 0.499 (13) 0.00
MS-COMET-QE-22 0.238 (14) 0.277 (14) 0.239 (14) 0.322 (10) 0.322 (14) 0.322 (14) 0.489 (14) 0.486 (14) 0.00
HWTSC-Teacher-Sim 0.227 (15) 0.264 (15) 0.228 (15) 0.307 (11) 0.307 (15) 0.307 (15) 0.484 (15) 0.477 (15) 0.00
MEE4 0.163 (16) 0.189 (16) 0.164 (16) 0.220 (13) 0.220 (16) 0.220 (16) 0.452 (16) 0.449 (16) 0.00
REUSE 0.100 (17) 0.116 (17) 0.101 (17) 0.135 (15) 0.135 (17) 0.135 (17) 0.420 (17) 0.417 (17) 0.00
Constant-Metric 0.000 (18) 0.000 (18) 0.000 (18) -1.000 (18) 0.000 (18) 0.000 (18) 0.260 (18) 0.267 (18) 0.00

Table 18: The correlations (and metric ranks) for the no-grouping correlation on the WMT’22 zh-en dataset.

Metric τa τb τc τ10 τ13 τ14 acceq acc∗eq ε∗

Metric-X 0.191 ( 3) 0.255 ( 5) 0.245 ( 4) 0.343 ( 2) 0.344 ( 5) 0.344 ( 3) 0.389 (10) 0.544 ( 1) 0.06
COMET-22 0.198 ( 1) 0.266 ( 2) 0.255 ( 1) 0.361 ( 1) 0.361 ( 3) 0.361 ( 1) 0.392 ( 9) 0.536 ( 2) 0.15
GEMBA-GPT-4 0.175 ( 4) 0.321 ( 1) 0.252 ( 2) -0.071 (13) 0.450 ( 1) 0.314 ( 4) 0.518 ( 1) 0.527 ( 3) 4.00
UniTE 0.191 ( 2) 0.261 ( 3) 0.246 ( 3) 0.335 ( 3) 0.350 ( 4) 0.347 ( 2) 0.420 ( 5) 0.516 ( 4) 0.29
MaTESe 0.127 (10) 0.225 ( 7) 0.180 (10) -0.108 (14) 0.289 ( 8) 0.220 (11) 0.498 ( 2) 0.512 ( 5) 1.00
COMETKiwi 0.159 ( 6) 0.213 ( 9) 0.204 ( 6) 0.288 ( 6) 0.289 ( 9) 0.289 ( 7) 0.372 (11) 0.509 ( 6) 0.16
UniTE-src 0.164 ( 5) 0.226 ( 6) 0.211 ( 5) 0.293 ( 5) 0.306 ( 6) 0.304 ( 5) 0.407 ( 7) 0.508 ( 7) 0.24
GEMBA-GPT-3.5 0.123 (12) 0.256 ( 4) 0.199 ( 8) -0.271 (16) 0.377 ( 2) 0.225 (10) 0.494 ( 3) 0.495 ( 8) 5.00
MaTESe-QE 0.097 (14) 0.181 (12) 0.141 (14) -0.195 (15) 0.226 (12) 0.169 (14) 0.484 ( 4) 0.494 ( 9) 1.00
COMET-QE 0.126 (11) 0.165 (13) 0.159 (12) 0.219 ( 9) 0.219 (13) 0.219 (12) 0.355 (15) 0.483 (10) 0.01
MS-COMET-22 0.144 ( 8) 0.196 (10) 0.187 ( 9) 0.270 ( 7) 0.270 (10) 0.270 ( 8) 0.365 (13) 0.483 (11) 3.49
MS-COMET-QE-22 0.117 (13) 0.158 (14) 0.150 (13) 0.214 (10) 0.214 (14) 0.214 (13) 0.351 (16) 0.479 (12) 1.99
SEScore 0.158 ( 7) 0.214 ( 8) 0.203 ( 7) 0.295 ( 4) 0.295 ( 7) 0.295 ( 6) 0.371 (12) 0.472 (13) 1.13
HWTSC-Teacher-Sim 0.086 (15) 0.116 (15) 0.110 (15) 0.148 (11) 0.156 (15) 0.155 (15) 0.357 (14) 0.440 (14) 0.14
MEE4 0.137 ( 9) 0.190 (11) 0.177 (11) 0.243 ( 8) 0.256 (11) 0.254 ( 9) 0.393 ( 8) 0.437 (15) 0.07
REUSE -0.025 (17) -0.019 (17) -0.026 (17) -0.022 (12) -0.010 (17) -0.010 (17) 0.312 (17) 0.420 (16) 0.11
Constant-Metric 0.000 (16) 0.000 (16) 0.000 (16) -1.000 (17) 0.000 (16) 0.000 (16) 0.416 ( 6) 0.416 (17) 0.00

Table 19: The correlations (and metric ranks) for the group-by-item correlation on the WMT’22 zh-en dataset.
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Metric τa τb τc τ10 τ13 τ14 acceq acc∗eq ε∗

Metric-X 0.353 ( 1) 0.411 ( 1) 0.358 ( 1) 0.478 ( 1) 0.478 ( 1) 0.478 ( 1) 0.544 ( 1) 0.557 ( 1) 0.05
COMET-22 0.350 ( 2) 0.408 ( 2) 0.355 ( 2) 0.475 ( 2) 0.475 ( 2) 0.475 ( 2) 0.543 ( 2) 0.546 ( 2) 0.08
MaTESe 0.288 ( 7) 0.373 ( 3) 0.300 ( 4) 0.231 (12) 0.462 ( 4) 0.390 ( 7) 0.536 ( 3) 0.530 ( 3) 0.00
COMET-QE 0.306 ( 3) 0.355 ( 4) 0.310 ( 3) 0.414 ( 3) 0.414 ( 6) 0.414 ( 3) 0.521 ( 4) 0.518 ( 4) 0.00
COMETKiwi 0.295 ( 4) 0.343 ( 7) 0.300 ( 5) 0.399 ( 4) 0.399 ( 8) 0.399 ( 4) 0.515 ( 5) 0.516 ( 5) 0.09
BLEURT-20 0.289 ( 6) 0.336 ( 9) 0.293 ( 7) 0.392 ( 6) 0.392 (10) 0.392 ( 6) 0.512 ( 7) 0.507 ( 6) 0.00
MaTESe-QE 0.247 (12) 0.323 (10) 0.257 (13) 0.154 (14) 0.405 ( 7) 0.333 (12) 0.510 ( 8) 0.506 ( 7) 0.00
UniTE 0.290 ( 5) 0.338 ( 8) 0.294 ( 6) 0.393 ( 5) 0.393 ( 9) 0.393 ( 5) 0.513 ( 6) 0.505 ( 8) 0.01
GEMBA-GPT-4 0.250 (11) 0.347 ( 5) 0.269 (11) 0.070 (16) 0.461 ( 5) 0.338 (11) 0.502 (11) 0.504 ( 9) 4.00
MS-COMET-22 0.277 ( 8) 0.322 (11) 0.281 ( 8) 0.376 ( 7) 0.376 (11) 0.376 ( 8) 0.506 ( 9) 0.502 (10) 0.00
SEScore 0.268 (10) 0.311 (13) 0.272 (10) 0.362 ( 9) 0.362 (13) 0.362 (10) 0.502 (12) 0.499 (11) 0.01
UniTE-src 0.276 ( 9) 0.321 (12) 0.280 ( 9) 0.374 ( 8) 0.374 (12) 0.374 ( 9) 0.506 (10) 0.498 (12) 0.00
GEMBA-GPT-3.5 0.241 (13) 0.345 ( 6) 0.264 (12) 0.022 (17) 0.470 ( 3) 0.326 (13) 0.492 (13) 0.491 (13) 0.00
MS-COMET-QE-22 0.231 (14) 0.268 (14) 0.234 (14) 0.312 (10) 0.312 (14) 0.312 (14) 0.483 (14) 0.479 (14) 0.01
HWTSC-Teacher-Sim 0.228 (15) 0.265 (15) 0.231 (15) 0.308 (11) 0.308 (15) 0.308 (15) 0.482 (15) 0.475 (15) 0.00
MEE4 0.150 (16) 0.174 (16) 0.152 (16) 0.202 (13) 0.202 (16) 0.202 (16) 0.443 (16) 0.441 (16) 0.00
REUSE 0.108 (17) 0.125 (17) 0.109 (17) 0.146 (15) 0.146 (17) 0.146 (17) 0.422 (17) 0.419 (17) 0.00
Constant-Metric 0.000 (18) 0.000 (18) 0.000 (18) -1.000 (18) 0.000 (18) 0.000 (18) 0.265 (18) 0.270 (18) 0.00

Table 20: The correlations (and metric ranks) for the group-by-system correlation on the WMT’22 zh-en dataset.

Metric τa τb τc τ10 τ13 τ14 acceq acc∗eq ε∗

Metric-X 0.239 ( 1) 0.312 ( 2) 0.295 ( 1) 0.402 ( 1) 0.403 ( 3) 0.403 ( 1) 0.439 ( 8) 0.594 ( 1) 0.03
UniTE 0.224 ( 3) 0.299 ( 3) 0.275 ( 3) 0.366 ( 3) 0.380 ( 5) 0.378 ( 3) 0.483 ( 4) 0.569 ( 2) 0.03
COMET-22 0.230 ( 2) 0.298 ( 4) 0.281 ( 2) 0.380 ( 2) 0.381 ( 4) 0.381 ( 2) 0.433 (10) 0.564 ( 3) 0.05
COMETKiwi 0.187 ( 5) 0.242 ( 7) 0.229 ( 6) 0.310 ( 4) 0.311 ( 8) 0.311 ( 5) 0.411 (11) 0.561 ( 4) 0.03
UniTE-src 0.187 ( 4) 0.262 ( 6) 0.231 ( 5) 0.302 ( 5) 0.324 ( 7) 0.320 ( 4) 0.504 ( 2) 0.547 ( 5) 0.02
MS-COMET-22 0.180 ( 6) 0.234 ( 8) 0.221 ( 8) 0.300 ( 6) 0.301 ( 9) 0.301 ( 6) 0.405 (12) 0.540 ( 6) 1.14
GEMBA-GPT-4 0.156 ( 7) 0.339 ( 1) 0.267 ( 4) -0.237 (12) 0.480 ( 1) 0.262 ( 8) 0.524 ( 1) 0.525 ( 7) 4.00
COMET-QE 0.151 ( 9) 0.192 (11) 0.184 (10) 0.241 ( 8) 0.241 (12) 0.241 ( 9) 0.390 (13) 0.513 ( 8) 0.00
MS-COMET-QE-22 0.133 (10) 0.173 (13) 0.163 (12) 0.223 ( 9) 0.224 (13) 0.223 (10) 0.382 (14) 0.512 ( 9) 1.42
MEE4 0.154 ( 8) 0.216 (10) 0.189 ( 9) 0.249 ( 7) 0.269 (10) 0.267 ( 7) 0.487 ( 3) 0.487 (10) 0.00
HWTSC-Teacher-Sim 0.120 (11) 0.165 (14) 0.149 (13) 0.196 (10) 0.208 (14) 0.208 (11) 0.435 ( 9) 0.480 (11) 0.02
MaTESe 0.075 (13) 0.278 ( 5) 0.225 ( 7) -0.646 (14) 0.433 ( 2) 0.114 (13) 0.469 ( 5) 0.469 (12) 0.00
GEMBA-GPT-3.5 0.093 (12) 0.179 (12) 0.146 (14) -0.264 (13) 0.261 (11) 0.171 (12) 0.456 ( 6) 0.460 (13) 5.00
MaTESe-QE 0.047 (14) 0.223 ( 9) 0.165 (11) -0.741 (15) 0.354 ( 6) 0.075 (14) 0.441 ( 7) 0.441 (14) 0.00
REUSE -0.064 (16) -0.069 (16) -0.074 (16) -0.085 (11) -0.066 (16) -0.064 (16) 0.378 (15) 0.401 (15) 0.02
Constant-Metric 0.000 (15) 0.000 (15) 0.000 (15) -1.000 (16) 0.000 (15) 0.000 (15) 0.371 (16) 0.371 (16) 0.00

Table 21: The group-by-item segment-level correlations on WMT’22 en-ru using the Unbabel MQM score normal-
ization largely follow the results in the main body of this work, which use the Google normalization.
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