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Abstract

Adversarial training is the dominant strategy
towards model robustness. Current adversarial
training methods typically apply perturbations
to embedding representations, whereas actual
text-based attacks introduce perturbations as
discrete tokens. Thus there exists a gap be-
tween the continuous embedding representa-
tions and discrete text tokens that hampers the
effectiveness of adversarial training. Moreover,
the continuous representations of perturbations
cannot be further utilized, resulting in the sub-
optimal performance. To bridge this gap for
adversarial robustness, in this paper, we devise
a novel generative adversarial training frame-
work that integrates gradient-based learning,
adversarial example generation and perturbed
token detection. Our proposed framework con-
sists of generative adversarial attack and ad-
versarial training process. Specifically, in gen-
erative adversarial attack, the embeddings are
shared between the classifier and the generative
model, which enables the generative model to
leverage the gradients from the classifier for
generating perturbed tokens. Then, adversarial
training process combines adversarial regular-
ization with perturbed token detection to pro-
vide token-level supervision and improve the
efficiency of sample utilization. Extensive ex-
periments on five datasets from the AdvGLUE
benchmark demonstrate that our framework sig-
nificantly enhances the model robustness, sur-
passing the state-of-the-art results of ChatGPT
by 10% in average accuracy.

1 Introduction

Pre-trained language models (PLMs) and large
language models (LLMs) (Ouyang et al., 2022)
have made remarkable advancements in natural lan-
guage processing (NLP). Given their increasing im-
pact on science, society and individuals, adversarial
robustness has become a crucial task for building
trustworthy NLP systems (Kaur et al., 2022).
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The adversarial vulnerability of deep learning
models is a long-standing problem (Goodfellow
et al., 2015). Various attack methods have demon-
strated that even LLMs can be deceived with small,
intentionally crafted perturbations (e.g., typos and
synonym substitution) (Jin et al., 2020; Li et al.,
2020; Chen et al., 2021; Wang et al., 2022; Liu
et al., 2022a; Wang et al., 2023b). In response to
adversarial attacks, many adversarial defense meth-
ods have been proposed to enhance model robust-
ness. Among them, adversarial training (Miyato
et al., 2019; Wang and Bansal, 2018; Zhu et al.,
2020; Wang et al., 2021c; Ni et al., 2022; Xi et al.,
2022) is widely recognized as the most effective
approach, which involves continuous perturbations.
In adversarial training, the gradient-based perturba-
tions are introduced at the embedding layer while
solving a min-max problem. Another form of ad-
versarial training is adversarial augmentation (Jin
et al., 2020; Li et al., 2020; Si et al., 2021; Ivgi and
Berant, 2021; Maheshwary et al., 2021; Liu et al.,
2022a), which utilizes discrete perturbations. In ad-
versarial augmentation, the search for adversarial
examples is treated as a combinatorial optimiza-
tion problem and the model is trained using the
augmented adversarial examples.

However, existing adversarial training methods
have encountered non-trivial challenges in real-
world applications. In adversarial training, the per-
turbations applied at the embedding layer create
a gap between the continuous perturbations used
during training and the discrete perturbations that
real attack applies in the testing phase (Xu et al.,
2020). On the other hand, adversarial augmenta-
tion demands high computational cost, typically
with hundreds to thousands of queries per example
(Maheshwary et al., 2021). Consequently, the con-
tinuous representations of perturbations cannot be
further utilized in adversarial training, leading to
the suboptimal performance.

In this work, we aim to address the afore-
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mentioned issues and make a substantial step
towards adversarial robustness. We propose a
novel Generative Adversarial Training (GenerAT)
framework that consists of generative adversarial
attack and adversarial training process. To bridge
the gap between continuous perturbations and dis-
crete text tokens, generative adversarial attack gen-
erates discrete perturbed tokens based on gradients.
Specifically, our gradient-based attack calculates
adversarial gradients with the classifier through for-
ward and backward propagations, which is more
efficient than search-based adversarial augmenta-
tion. The accumulated gradients are then shared
at the embedding layer between the classifier and
the generative model, so that they can be leveraged
to guide the perturbed token generation. Besides,
to get more robust representations, our generative
adversarial attack is built upon the discriminative
PLM (He et al., 2023), which is capable of dis-
tinguishing subtle semantic differences between
similar words compared to other PLMs like BERT
that most defense methods concentrate on.

Adversarial training process utilizes adversarial
regularization to further improve robustness, by
restricting the representations between the origi-
nal and corresponding adversarial examples. As
the generated perturbed tokens can provide fine-
grained token-level supervision, adversarial regu-
larization is integrated with perturbed token detec-
tion in the training process to improve sample us-
age efficiency. We conduct robustness experiments
on the challenging AdvGLUE benchmark (Wang
et al., 2021b), which applies multiple types of ad-
versarial attacks on five datasets from GLUE (Wang
et al., 2018). Extensive experiments show that our
framework significantly improves adversarial ro-
bustness on all the datasets, surpassing ChatGPT
(Wang et al., 2023b) by 10% in average accuracy
and establishing new state-of-the-art results.

The main contributions are as follows:

• We propose the first generative adversarial
training framework for adversarial robustness.
Based on discriminative PLM, our framework
provides a comprehensive means to integrate
gradient-based learning, adversarial example
generation and perturbed token detection.

• The generative adversarial attack in our frame-
work exploits gradient propagation through
sharing embeddings between the classifier and
the generator, which enables the generator to
effectively generate perturbed tokens.

• The adversarial training process in our frame-
work further combines adversarial regulariza-
tion with perturbed token detection, which
improves the efficiency of sample utilization.

• Extensive experiments on five datasets demon-
strate the effectiveness of our generative adver-
sarial training framework, which consistently
improves robustness by a large margin.

2 Related Works

2.1 Adversarial Defense and Detection

Adversarial training is acknowledged as the most
effective defense method. In text domain, adversar-
ial training (Sato et al., 2018; Zhu et al., 2020; Li
and Qiu, 2021; Wang et al., 2021a; Li et al., 2021;
Ni et al., 2021; Pan et al., 2022) solves the min-
max optimization problem and injects continuous
adversarial perturbations in the embedding layer,
which leaves a gap between real discrete text per-
turbations. Adversarial training in continuous rep-
resentation is an approximation of the real discrete
adversarial perturbations in text. Previously devel-
oped adversarial training methods try to improve
the approximation (Li et al., 2021; Pan et al., 2022).
However, this is a hard problem and the quality of
the approximation significantly affects model ro-
bustness. Our generative adversarial training takes
the approach to directly bridge the gap between
continuous embedding representations and discrete
text tokens, and generates adversarial replaced to-
kens based on gradients.

Adversarial augmentation (Jin et al., 2020; Li
et al., 2020; Si et al., 2021; Ivgi and Berant,
2021; Maheshwary et al., 2021; Liu et al., 2022a)
searches the most effective replacement of tokens
to generate adversarial examples by solving com-
binational problem and then using the augmented
examples to retrain the model. However, these
methods need over hundreds of iterations per ex-
ample to find the corresponding replacement which
brings high computational cost. To tackle these
challenges, we propose a novel generative adver-
sarial training framework that leverages gradients
for the generation of discrete perturbed tokens.

Another line of work is adversarial detection
(Zhou et al., 2019; Mozes et al., 2021; Nguyen-Son
et al., 2022; Li et al., 2023) which focuses on de-
tecting perturbed tokens. These methods typically
detect replaced tokens and subsequently restore
them to their original form, allowing the model
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to make predictions on clean, restored data. In
contrast to these methods, in our framework, we
incorporate perturbed token detection to provide
token-level supervision and enhance efficiency in
the training process.

2.2 Pre-trained Language Models

BERT (Devlin et al., 2019) is an encoder-only lan-
guage model that was trained with the masked lan-
guage modeling (MLM) task. It represents a sig-
nificant milestone in transformer-based PLMs and
reveals the great potential of PLMs. After that,
diverse forms of PLMs have emerged. One cate-
gory is decoder-only PLMs, such as GPT-3 (Brown
et al., 2020), OPT (Zhang et al., 2022) and BLOOM
(Scao et al., 2022). These auto-aggressive language
models are trained with causal language model-
ing (CLM). Another category is encoder-decoder
PLMs like T5 (Raffel et al., 2020) and FLAN-T5
(Chung et al., 2022). These models convert a va-
riety of text-based language problems into text-to-
text format and train the model as a sequence-to-
sequence generation problem.

In contrast, discriminative PLMs, such as ELEC-
TRA (Clark et al., 2020) and DeBERTa-v3 (He
et al., 2023) have received comparatively less at-
tention. A discriminative PLM contains two trans-
former encoders. One is the generator trained with
MLM, and the other is the discriminator trained
with replaced token detection (RTD) task, that de-
termines whether the tokens are replaced by the
generator. We argue that discriminative language
models learn the representations by distinguish-
ing the subtle semantic difference between simi-
lar words, leading to more robust representations
compared to BERT-style context-based cloze com-
pletion tasks. Therefore, our framework is built
upon discriminative PLMs. A detailed comparison
between these models is provided in Appendix A.

3 Proposed Method

Adversarial training typically applies perturbations
to embedding representations, whereas real-world
adversarial examples introduce perturbations at dis-
crete text tokens. To bridge the gap between contin-
uous embeddings and discrete tokens, we propose
a novel generative adversarial training framework
GenerAT that consists of generative adversarial at-
tack and adversarial training process. We present
the overall design of our framework as well as each
component in this section.

3.1 Preliminaries
Problem Formulation We consider a general
text classification problem with dataset D =
{xi, yi}Ni=1 consisting of inputs text xi ∈ X and
labels yi ∈ Y . Adversarial attack aims to deceive
the victim model by generating adversarial exam-
ples. Our goal is to train the model on D to max-
imize adversarial robustness, that is, to increase
model accuracy on adversarial examples.

Discriminative Pre-trained Models Discrimina-
tive PLMs such as ELECTRA (Clark et al., 2020)
and DeBERTaV3 (He et al., 2023) differ from
BERT (Devlin et al., 2019) in their pre-training task.
Instead of masked language modeling (MLM), dis-
criminative PLMs employ a replaced token detec-
tion (RTD) approach. In this setup, a generator and
a discriminator are jointly trained. The generator,
which is a transformer encoder, is trained on MLM
to generate ambiguous tokens that substitute the
original tokens in the input sequence. On the other
hand, the discriminator, a larger transformer en-
coder, is trained as a token-level binary classifier to
determine whether the tokens have been replaced
by the generator. The discriminator is then used for
fine-tuning in downstream tasks.

3.2 Generative Adversarial Attack
Adversarial attacks deceive the victim model by ap-
plying small but intentionally worst-case perturba-
tions to the original input. For example, in FGSM
(Goodfellow et al., 2015) attack, the adversarial
gradients are used as the perturbation:

η = ϵ sign (∇xJ(x, y)) (1)

where η is the perturbation, ϵ is the hyperparameter
that controls the perturbation size, and J denotes
the loss function used for training the victim model.

While pixels in an image are continuous values
that can be directly added with perturbations, text
data are discrete tokens in nature. As a result, exist-
ing gradient-based methods (Sato et al., 2018; Zhu
et al., 2020; Li and Qiu, 2021; Li et al., 2021; Pan
et al., 2022) apply adversarial gradients to embed-
ding representation of text:

xadv = E(x) + η (2)

where xadv is the virtual adversarial example of x,
E(x) is the embedding of x.

However, actual text perturbations introduced
by adversarial attacks, such as synonym replace-
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Figure 1: Overview of generative adversarial attack. The adversarial gradients are first calculated on the discriminator
and accumulated to the embedding layer. Through the shared embedding with the generator, the generator leverages
the gradients and generates perturbed tokens.

ment, are applied to discrete tokens. The gap be-
tween continuous perturbations and actual discrete
tokens limits the effectiveness of adversarial train-
ing. Therefore, to bridge the gap, we introduce a
novel generative adversarial attack.

As shown in Figure 1, we integrate one discrim-
inator as the victim model and one generator to
generate adversarial perturbed tokens. We first
calculate the gradients on the victim model. The
adversarial gradients are passed from the discrim-
inator to the generator through the shared embed-
ding layer. Then generator generates adversarial
perturbed tokens with adversarial gradients.

Calculate Adversarial Gradients We calculate
gradients on the discriminator. Input text x is
passed through the discriminator with a classifier
header to calculate the loss. Using binary classifica-
tion as an example, the loss function of the victim
model is cross entropy:

J(x, y) = −y log σ(x)− (1− y) log(1− σ(x))

g = ∇xJ(x, y)
(3)

where σ(·) denotes the sigmoid function, g is the
gradient respect to (x, y).

By integrating Eq.(3) with Eq.(1) and Eq.(2), the
gradients are accumulated at the embedding layer.
To enhance the training stability, we apply the per-
turbations to the normalized word embeddings.

Generate Adversarial Examples A generator
is employed to generate perturbed tokens. The
generator is a pre-trained language model with an
MLM header that is able to generate semantically
closed tokens of the masked tokens.

Similar to MLM, we first mask some percentage
of the input tokens at random.

x′ = fmask(x) (4)

where fmask(·) is the mask strategy and x′ is the
masked sample.

Then the generator predicts the masked tokens.
The probability for a particular masked token xt is:

pθG
(
xt | x′ + η

)
= softmax

(
HθG(x

′ + η)
)

(5)
where η is the perturbation and θG denotes the
parameter of the generator.

As mentioned before, we share the embedding
layer between the discriminator and the generator.
Consequently, gradients calculated on the discrimi-
nator are accumulated on the embedding layer and
can propagate through the masked token predic-
tion of the generator. In this way, we fill the gap
between continuous gradients and discrete text to-
kens.

Lastly, we merge the generated token with the
original tokens:

x̂i =

{
x̂i ∼ pθG (xi | x′ + η) , i ∈ C

xi, i /∈ C (6)
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Figure 2: Overview of adversarial training process. By utilizing the generated adversarial examples in attack, the
training process detects the perturbed tokens in the adversarial examples, and also regularizes the model behavior
between clean and adversarial examples.

where C is set of masked token positions, x̂ =
[x̂1, x̂2, ..., x̂n] is the generated adversarial exam-
ple corresponding to x.

3.3 Adversarial Training Process

Figure 2 illustrates the adversarial training process.
After generating adversarial examples, the discrim-
inator is trained using adversarial regularization
and perturbed token detection techniques, which
improves the robustness of the model.

Firstly, same as the standard fine-tuning, the dis-
criminator is trained with cross-entropy loss to per-
form the classification task:

LTask = CE(pθD(x), y) = −
C∑

i

yi log (pθD(x))

(7)
where θD denotes the parameter of the discrimina-
tor.

Perturbed Token Detection With the adversarial
example x̂ is fed into the discriminator, a perturbed
token detection layer is trained to classify each
token in x̂ as either original or replaced.

LPTD = E

(
−
∑

i

log pθD (1 (x̂i = xi) | x̂, i)
)

(8)
where 1(·) is the indicator function, x̂ is the adver-
sarial example constructed with Eq.(6).

With LPTD, the model learns to distinguish in-
tentionally misleading tokens. This token-level
supervision facilitates robustness and enhances the
efficiency of sample utilization.

Adversarial Regularization To enhance adver-
sarial robustness, we employ the symmetric KL-
divergence as the adversarial regularization term,
which promotes consistency in model performance
between original x and adversarial examples x̂.

LSKL = DKL(pθD(x)|pθD(x̂))
+DKL(pθD(x̂)|pθD(x))

(9)

where DKL(·|·) is the KL-divergence between two
distributions.

Learning and Optimization The trainable pa-
rameters in the discriminator include the embed-
ding layer, discriminator encoder, classifier layer,
and perturbed token detection layer. The classifier
layer is implemented as a shallow MLP, while the
perturbed token detection layer is also implemented
as a shallow MLP. The discriminator encoder con-
sists of a stack of transformers.

Towards adversarial robustness, the overall loss
is obtained by integrating Eq.(7), Eq.(8) and Eq.(9):

L = LTask + λPTDLPTD + λSKLLSKL (10)

where λPTD and λSKL are hyperparameters that
control the balance between perturbed token detec-
tion and adversarial regularization. The hyperpa-
rameter search is provided in Appendix E.
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The training objective of the discriminator is to
minimize the overall loss L. During the adversarial
generative attack, the parameters are not updated.
The attack is responsible for generating adversarial
examples. And both the attack and training pro-
cesses are jointly applied within each batch. To
enhance training efficiency, parameters in GenerAT
are initialized using pre-trained weights from the
discriminative PLM.

4 Experiments

To evaluate the effectiveness of our framework, we
compare GenerAT with the SoTA methods on five
tasks. We also conduct additional experiments on
model parameter analysis and provide a case study.

4.1 Tasks and Datasets

We conduct our experiments on AdvGLUE (Wang
et al., 2021b), the most representative and widely
used robustness evaluation benchmark. It con-
sists of five challenging tasks in GLUE (Wang
et al., 2018): Sentiment Analysis (SST-2), Dupli-
cate Question Detection (QQP), and Natural Lan-
guage Inference (NLI, including MNLI, RTE, and
QNLI). In the construction of adversarial exam-
ples, AdvGLUE applies 14 textual adversarial at-
tacks including various word-level, sentence-level
perturbations, and human-crafted examples. The
constructed adversarial examples are validated by
human annotators. In experiments, we employ the
development set of AdvGLUE since its test set is
not publicly available.

4.2 Baselines and Evaluation Metric

We evaluate the performances of GenerAT by com-
paring it with the state-of-the-art (SoTA) adversar-
ial training methods, robust fine-tuning methods
and large language models (LLMs).

• Adversarial training: FreeLB (Zhu et al.,
2020) adds adversarial perturbations to em-
bedding and minimizing the risk in different
regions. CreAT (Wu et al., 2023) is an ad-
versarial training that finds perturbations in
contextual representation.

• Robust fine-tuning methods: R3F (Agha-
janyan et al., 2021) applies noise to the orig-
inal pre-trained representations with regular-
ization. ChildTuning (Xu et al., 2021) masks
a subset of parameters and only updates the
child network. Match-Tuning (Tong et al.,

2022) adds regularization between examples
in the same batch.

• LLMs: BART-L (Lewis et al., 2020), GPT-
J-6B (Wang, 2021), Flan-T5-L (Chung et al.,
2022), GPT-NEOX-20B (Black et al., 2022),
OPT-66B (Zhang et al., 2022), BLOOM (Scao
et al., 2022), GPT-3 (text-davinci-002 and text-
davinci-003) and ChatGPT.

Following the convention (Zhu et al., 2020; Li
and Qiu, 2021; Li et al., 2021; Pan et al., 2022; Wu
et al., 2023), the accuracy on adversarial examples
is the metric for robustness, with higher accuracy
indicates better robustness.

4.3 Implementation Details
We use DeBERTa-v3-large 1 as the pre-trained dis-
criminative language model. We train our model
on a single V100 GPU. Details of hyperparame-
ters and training costs are provided in Appendix E.
The results of comparative methods are based on
the results reported in Tong et al. (2022); Wu et al.
(2023); Wang et al. (2023a).

Our codes are provided in https://github.
com/Opdoop/GenerAT.

4.4 Main Results
Table 1 gives the adversarial robustness results of
our framework and the baselines on the AdvGLUE
benchmark. We can see from the table that across
all tasks, GenerAT significantly outperforms com-
parative baselines by a large margin.

In comparison to adversarial training and robust
fine-tuning approaches, GenerAT exhibits a signifi-
cant enhancement in adversarial robustness, nearly
doubling the accuracy on adversarial examples.
For instance, the SoTA of these methods (Match-
Tuning) only achieves an average accuracy of 45.7,
while GenerAT achieves an average accuracy of
80.1. This illustrates that adding perturbations to
continuous embedding layer is sub-optimal in text
domain, as the real attack adds perturbations at dis-
crete tokens. GenerAT bridges this gap between
continuous embedding representation and discrete
tokens, which significantly improves the adversar-
ial robustness of the model.

Compared to autoregressive language models,
it is observed that increasing the parameter size
slightly improves the model’s robustness. For in-
stance, transitioning from GPT-J-6B to GPT-3 (text-

1https://huggingface.co/microsoft/deberta-v3-large/
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Method advSST-2 advQQP advMNLI-m advQNLI advRTE Avg

Adversarial Training Methods with BERT-base Model (Wu et al., 2023)

Vanilla Fine-tuning (110 M) 32.3 50.8 32.6 40.1 37.0 38.6
FreeLB (110 M) 31.6 51.0 33.5 45.4 42.0 40.7
BERT MLM (110 M) 32.0 48.5 27.6 43.4 45.9 39.5
BERT CreAT (110 M) 35.3 51.5 36.0 44.8 45.2 42.6

Robust Fine-tuning Methods with BERT-large Model (Tong et al., 2022)

Vanilla Fine-tuning (340 M) 47.6 38.5 35.0 46.4 41.7 41.8
R3F (340 M) 38.5 40.6 35.8 47.5 50.1 42.5
ChildTuningF (340 M) 34.5 40.4 33.9 47.5 42.0 39.6
ChildTuningD (340 M) 39.2 40.7 34.1 49.6 46.2 41.9
Match-Tuning (340 M) 51.4 41.5 35.5 47.5 52.5 45.7

State-of-the-art Large Language Models (Wang et al., 2023a)

BART-L (407 M) 43.9 37.2 41.3 48.0 43.2 42.7
GPT-J-6B (6 B) 51.3 41.0 26.4 50.0 43.2 42.4
Flan-T5-L (11 B) 59.5 41.0 51.2 50.0 43.2 49.0
GPT-NEOX-20B (20 B) 47.3 43.6 40.5 46.0 51.9 45.9
OPT-66B (66 B) 52.4 46.1 39.7 47.3 42.0 45.5
BLOOM (176 B) 51.3 41.0 26.4 50.0 43.2 42.4
text-davinci-002 (175 B) 54.0 71.8 45.4 54.7 64.2 58.0
text-davinci-003 (175 B) 55.4 44.9 55.4 61.5 65.4 56.5
ChatGPT (175 B) 60.1 82.0 67.8 65.5 75.3 70.1

Robust Training Methods with DeBERTa-v3-large Model

GenerAT (436 M) 69.6 89.7 78.5 73.6 88.9 80.1

Table 1: Adversarial robustness results on the AdvGLUE benchmark. We report the accuracy values on adversarial
examples. The best performing scores are in bold. Models are ranked by parameter size. Avg stands for the average
accuracy on AdvGLUE. Our GenerAT surpasses the baselines by a large margin.

davinci-002) leads to an average accuracy increase
from 42.4 to 58.0. However, models with the same
parameter size exhibit considerable performance
variation, with BLOOM only achieving 42.4 in
average accuracy. Notably, the Encoder-decoder
structure of Flan-T5-L, incorporating instruction
tuning, outperforms other autoregressive language
models of similar scale, such as GPT-NEOX-20B,
underscoring the importance of model architecture
for adversarial robustness. Among LLMs, Chat-
GPT achieves the highest average accuracy of 70.1.
GenerAT utilizes DeBERTa-v3-large as its base
PLM. With less than 1% of parameters compared
to ChatGPT, GenerAT surpasses ChatGPT by 10%
in average accuracy. This result demonstrates the
effectiveness of our approach. Table 2 gives the
results of GenerAT on clean GLUE dev datasets. It
can be seen from the table that, in contrast to clas-
sical adversarial training, our GenerAT framework
does not sacrifice the performance on clean data.

4.5 Results on Ablation Study

To evaluate the effectiveness of GenerAT, we con-
duct the ablation study on its different variances:

- PTD: removing the perturbed token detection
(PTD) module from GenerAT.

- GAA: removing the generative adversarial at-
tack (GAA) and LSKL from GenerAT.

- GAA - PTD: removing both GAA and PTD
modules from GenerAT.

Table 3 gives ablation results on different com-
ponents of GenerAT in advGLUE datasets. It can
be seen from the table that the individual modules
of GAA and PTD each play a pivotal role in en-
hancing adversarial robustness. Specifically, when
GAA is removed, the average accuracy declines to
73.7. Similarly, in the absence of PTD, the aver-
age accuracy declines to 71.1. When both GAA
and PTD are removed simultaneously, the model
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GLUE dev SST-2 QQP MNLI-m MNLI-mm QNLI RTE Avg
GenerAT 96.3 89.7 91.4 91.5 95.5 89.9 92.4

Table 2: Accuracy results of GenerAT on clean GLUE dev datasets. MNLI-m is the matched version of MNLI and
MNLI-mm is the mismatched version of MNLI.

Finetuning GAA PTD advSST-2 advQQP advMNLI-m advQNLI advRTE Avg
✓ ✗ ✗ 59.2 69.3 64.2 63.2 79.0 66.9
✓ ✓ ✗ 62.1 75.6 68.5 65.5 83.9 71.1
✓ ✗ ✓ 65.4 78.2 71.9 67.8 85.2 73.7
✓ ✓ ✓ 69.6 89.7 78.5 73.6 88.9 80.1

Table 3: Ablation results on different components of GenerAT in advRTE dataset.

Base Model # Layers Parameters advSST-2 advQQP advMNLI-m advQNLI advRTE Avg
DeBERTa-v3-large 24 436M 69.6 89.7 78.5 73.6 88.9 80.1
DeBERTa-v3-xsmall 12 71M 52.0 50.4 61.7 56.8 61.5 56.5

Table 4: Effect of parameter scales on GenerAT, where Avg stands for the average accuracy on AdvGLUE datasets.

degrades to vanilla finetuning and the average ac-
curacy declines to 66.9. This indicates that both
GAA and PTD are important for enhancing model
robustness. The results of the ablation study further
verify the effectiveness of each component in our
framework.

4.6 The Effect of Parameter Size

In order to assess the impact of parameter size
on the performance of GenerAT, we conducted an
evaluation utilizing a reduced version of DeBERTa.
The average performance on AdvGLUE of Gen-
erAT based on DeBERTa-v3-xsmall and DeBERTa-
v3-large are shown in Table 4. We observe that
downscale the parameter size from 436M to 71M,
the average accuracy drops from 80.1 to 56.5,
which suggests a larger base model is important
for robustness. The experimental findings reveal
that employing larger parameter sizes in conjunc-
tion with deeper network architectures markedly
improves the model’s performance in the presence
of adversarial examples and highlight the impor-
tance of having a sufficiently large parameter space
to learn robust representations. And DeBERTa-v3-
large is a suitable choice in this regard.

We also visualize the relationship between
model size and performance in Figure 3. We can
see that GenerAT based on DeBERTa-v3-xsmall
achieves comparable robustness to GPT-3. Gen-
erAT based on DeBERTa-large achieves nearly
twice the robustness compared to models with sim-
ilar parameter scales, such as BERT-large. More-
over, GenerAT also surpasses other LLMs like
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Figure 3: Illustration of model robustness results.

ChatGPT. These findings suggest that simply in-
creasing the model size does not inherently mitigate
the issue of adversarial vulnerability. Instead, the
structure and training strategy of the model em-
ployed in downstream tasks play a crucial role in
adversarial robustness.

4.7 Case Study: Perturbed Token Detection
We further visualize the perturbed token detection
results on adversarial examples in Table 5. In the
table, perturbed positions are marked in the origi-
nal example with gray shadows and the detection
results of the corresponding adversarial example
are marked with yellow shadows. The shade of the
color represents the normalized perturbed proba-
bility. For instance, in the advSST-2 example, the
word ’wildly’ in the original example is replaced
with ’strangely’ in the adversarial example. The
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Dataset Type Text Content

advSST-2

Original
Example

’ s too much forced drama in this wildly uneven movie , about a young
man ’ s battle with his inescapable past and uncertain future in a very
sha pable but largely un fulfilling present

Adversarial
Example

’ s so much forced drama in this strangely uneven movie , about a young
man ’ s battles with his inescapable past and uncertain future in the
very sha pable but often un fulfilling present

advQQP

Original
Example

What would happen if an astronaut dies in space while on ISS ? [SEP]
What would it be like if an astronaut died aboard the International
Space Station ?

Adversarial
Example

What would happen if one astronaut dies in space while on Mars ? [SEP]
What would it feel like if an astronaut died within the International
Flight Station ?

advMNLI-m

Original
Example

[CLS] Because of the limited money available , the first grants were
restricted to funding for civil legal services and hotline s . [SEP] Due to
limited money available companies had to cut spending

Adversarial
Example

[CLS] Because of scarce limited money available , the first efforts were
restricted in funding for civil legal services and hotline support . [SEP]
Due to inadequate money available companies had to cut spending

advQNLI

Original
Example

A large - scale solar distillation project was first constructed in 1872 in
the Chilean mining town of Las Salinas . [SEP] When was the first large
solar distillation plant created ?

Adversarial
Example

A large - scale water distillation project was first established in 1872
near the Chilean mining town of Las Salinas . [SEP] When was the first
large solar distillation plant constructed ?

advRTE

Original
Example

Companies are working to reduce the interval between drug discovery
and marketing . [SEP] Companies are working to shorten the new drug
development period to an average of eight to nine years in the US .

Adversarial
Example

Companies are working to shorten the roadblocks between drug
discovery and marketing . [SEP] Investigators are working to shorten
the new drug development period from an average of eight to nine years
in the US .

Table 5: Qualitative results of perturbed token detection. In the original example, the token position of perturbations
are marked in gray. In the adversarial example, the detection results are marked in yellow. The darker the color, the
more likely the token is replaced.

darker the color, the more likely the token is re-
placed. We can see from the table that perturbed
token detection is skeptical of most tokens and
discovers the real perturbed tokens with high con-
fidence. This indicates that further enhancing the
accuracy of perturbed token detection may lead
to the increase of robustness. Thus the ability to
detect perturbed tokens can provide valuable token-
level supervision signals, making it a crucial task
for improving model robustness.

5 Conclusion

This paper presents a novel generative adversarial
training framework to bridge the gap between em-
bedding representations and discrete text tokens

in existing adversarial training methods. Our pro-
posed framework integrates gradient-based learn-
ing, adversarial example generation, and perturbed
token detection for improving adversarial robust-
ness. The generative adversarial attack shares the
embeddings between the classifier and the gener-
ative model, which allows the generative model
to utilize gradients from the classifier for generat-
ing perturbed tokens. Then the adversarial training
process incorporates perturbed token detection into
adversarial regularization, which provides token-
level supervision and enhances sample usage effi-
ciency. Extensive experiments on five datasets in
AdvGLUE benchmark demonstrate that our frame-
work significantly boosts the model robustness.
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Limitations

In our generative adversarial attack, we omit se-
mantic constraints for the sake of efficiency. Al-
though some prior research suggests that semantic
constraints are important for preserving the origi-
nal semantic meaning when generating adversarial
perturbations, we observed that the automatic con-
straint metric is sensitive across different datasets.
And establishing an appropriate threshold for se-
mantic constraints often necessitates significant hu-
man involvement to ensure rationality. However,
our experimental results show that even without
explicit semantic constraints, our approach is still
effective. The impact of semantic constraints is left
for future research.

As we focus on adversarial robustness in down-
stream tasks, the evaluation of our GenerAT frame-
work has been limited to robustness benchmarks.
The potential of this framework in scenarios in-
volving data shift, out-of-distribution samples, and
other situations remains a topic for future research.

Ethics Statement

Our work focuses on enhancing the adversarial
robustness of models in downstream tasks. The
proposed GenerAT framework has demonstrated
significant improvements in adversarial robustness.
Careful investigations are needed to understand the
impact of enhancing robustness on existing biases
and fairness issues in machine learning systems.
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Model
Architecture Pre-training Task

Encoder Encoder-Decoder Discriminator Decoder MLM SD RTD NSP CLM IF
BERT ✓ ✓ ✓

T5 ✓ ✓

FLAN-T5 ✓ ✓ ✓

ELECTRA ✓ ✓ ✓ ✓

DeBERTa V1 ✓ ✓

DeBERTa V3 ✓ ✓ ✓ ✓

GPT ✓ ✓

OPT ✓ ✓

BLOOM ✓ ✓

Table 6: Comparison of different language models.

Model advSST-2 advQQP advMNLI-m advQNLI advRTE Avg
gpt-3.5-turbo (zero-shot) 66.9 29.5 63.6 43.9 39.5 48.7
gpt-3.5-turbo (five-shot) 75.5 35.6 56.9 43.4 35.5 49.4
gpt-3.5-turbo (ten-shot) 76.8 39.7 55.9 44.9 40.9 51.6
GenerAT 69.6 89.7 78.5 73.6 88.9 80.1

Table 7: Robustness results on AdvGLUE of GPT-3.5

A Comparison between LLMs

Table 6 provides a comprehensive comparison of
different language models, with a primary focus on
the analysis of architecture and pre-training tasks,
both of which have a significant impact on the ac-
quired representations. In terms of architecture, dif-
ferent designs are considered, including Encoder-
only, Decoder-only, Encoder-decoder, and Encoder
with an additional Discriminator. The choice of
pre-training task is closely aligned with the se-
lected architecture. Specifically, the pre-training
task options encompass Masked Language Model-
ing (MLM), Span-Mask Denoising (SD), Replaced
Token Prediction (RTD), Next Sentence Predic-
tion (NSP), Causal Language Modeling (CLM)
and Instruction Finetuning (IF). Our proposed gen-
erative adversarial training framework GenerAT
builds on the DeBERTa-v3, where the discrimina-
tor is trained using the RTD and the generator is
trained using MLM. In contrast to MLM or CLM
approaches that rely on contextual information for
representation learning, we argue that the discrim-
inator serves as a superior backbone network for
adversarial robustness, as it acquires representa-
tions by discerning similar words. Therefore, we
select DeBERTa-v3 as the backbone network of
our framework.

B Robustness of GPT-3.5

Table 7 shows the results of GPT-3.5. We use the
prompt provided in (Wang et al., 2023b) with ran-
domly selected examples. It can be seen from the
table that few-shot examples marginally improve

the robustness of GPT-3.5.

C Robustness under Textfooler Attack

Method IMDB AG NEWS
BERT 2.8 19.4
RoBERTa 25.2 25.2
Adv-HotFlip (BERT) 8.0 18.2
FreeLB (BERT) 7.3 20.1
FreeLB++ (BERT) 45.3 -
RanMASK (RoBERTa) 23.7 -
TAVAT 27.6 39.7
InfoBERT 27.4 29.2
Flooding 39.5 38.8
Flooding-X 40.5 42.4
Text Purification(BERT) 51.0 34.9
Text Purification(RoBERTa) 54.3 34.2
GenerAT 75.6 44.0

Table 8: Robustness Results under Textfooler Attack on
IMDB and AG NEWS datasets.

Table 8 gives the results under Textfooler attack.
We focus on IMDB and AGNEWS for experimen-
tation (as SST-2 and QNLI have been tested under
multiple attacks in AdvGLUE). The results of base-
lines are derived from (Li et al., 2023) and (Liu
et al., 2022b). It can be seen that our generative ad-
versarial training method GenerAT still surpasses
the compared baselines by a large margin.

D Additional Results

To ensure fairness and consistency in comparison,
Table 1 only presents those results that all the base-
lines have reported. Here, we provide additional
experiment results in Table 9.
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Method advQQP advMNLI-mm
(F1) (accuracy)

Adversarial Training Methods with BERT-base Model
Vanilla Fine-tuning (110 M) - 19.3
FreeLB (110 M) - 21.9
BERT MLM (110 M) - 20.8
BERT CreAT (110 M) - 22.0
Robust Fine-tuning Methods with BERT-large Model
Vanilla Fine-tuning (340 M) 27.59 30.00
R3F (340 M) 35.23 30.26
ChildTuningF (340 M) 35.82 26.53
ChildTuningD (340 M) 39.80 27.84
Match-Tuning (340 M) 32.62 31.07
State-of-the-art Large Language Models
BART-L (407 M) - -
GPT-J-6B (6 B) - -
Flan-T5-L (11 B) - -
GPT-NEOX-20B (20 B) - -
OPT-66B (66 B) - -
BLOOM (176 B) - -
text-davinci-002 (175 B) - -
text-davinci-003 (175 B) - -
ChatGPT (175 B) - -
Robust Training Methods with DeBERTa-v3-large Model
GenerAT 86.95 70.52

Table 9: Results on advQQP and advMNLI-mm.

E Model Hyperparameters

Table 10 provides the hyper-parameters for the
best performance of GenerAT on each advGLUE
dataset. In hyper-parameter search process, the
select space of λPTD is {0.5,1,1.5,2,2.5} and the
select space of λSKL is {1.5,3.5,4,4.5,5,6,6.5,7}.
λPTD and λSKL are selected on the advRTD
dataset, and the best hyperparameter values are
subsequently applied to the other datasets. The
learning rate is set within the range of {1e-5,2e-
6,5e-6,7e-6}. The total training time is calculated
based on a single V100 (32GB) GPU. For the com-
plete parameter setup, please refer to our code.

Hyper-parameter advSST-2 advQQP advMNLI-m advQNLI advRTE
Number of Layers 24 24 24 24 24
Hidden Size 1024 1024 1024 1024 1024
Attention Heads 16 16 16 16 16
Attention Head Size 64 64 64 64 64
Dropout 0.1 0.1 0.1 0.1 0.1
Learning Rate 2e-6 1e-5 7e-6 7e-6 7e-6
Batch Size 16 8 8 16 8
Epoch 2 2 2 3 3
λPTD 1.5 1.5 1.5 1.5 1.5
λSKL 4 4 4 4 4
Training Time

01:57 43:43 25:52 09:54 00:17
(Total, hh:mm)

Table 10: Hyper-parameters of GenerAT on AdvGLUE.
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