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Abstract
Today’s language models can be remarkably
intelligent yet still produce text that contains
trivial commonsense errors. Therefore, we
seek a retrospective verification approach that
can reflect on the commonsense plausibility
of the machine text, and introduce VERA, a
general-purpose model that learns to estimate
the commonsense plausibility of declarative
statements. To support diverse commonsense
domains, VERA is trained on ∼7M common-
sense statements that are automatically con-
verted from 19 QA datasets and two common-
sense knowledge bases, and using a combi-
nation of three training objectives. When ap-
plied to solving commonsense problems in the
verification format, VERA substantially out-
performs existing models that can be repur-
posed for commonsense verification, even in-
cluding GPT-3.5/ChatGPT/GPT-4, and it fur-
ther exhibits generalization capabilities to un-
seen tasks and provides well-calibrated outputs.
We find that VERA excels at filtering machine-
generated commonsense knowledge and is use-
ful in detecting erroneous commonsense state-
ments generated by models like ChatGPT in
real-world settings.

1 Introduction

We introduce VERA, a general-purpose common-
sense statement verification model. This model
is designed to estimate the plausibility of declar-
ative, natural language statements based on com-
monsense knowledge.

We build VERA in response to the absence of
good detectors of commonsense errors in text gen-
erated by language models (LMs). LMs have been
advancing rapidly and have demonstrated remark-
able success in various tasks, including question
answering, natural language inference, sequence
classification, and text generation. Yet these mod-
els still make simple commonsense mistakes. As
shown in Figure 1, as of February 23, 2023, Chat-
GPT (OpenAI, 2022a) reportedly output the text

Figure 1: VERA estimates the correctness of declarative
statements. Example adapted from a contribution made
by Henry Minsky to Marcus and Davis (2023) on Febru-
ary 23, 2023.

“since the density of a marble is much less than the
density of mercury, the marble would sink to the
bottom of the bowl if placed in it”, which is clearly
incorrect. This kind of failure raises concerns about
the reliability and trustworthiness of these models
(Lin et al., 2022).

VERA estimates a plausibility score for a com-
monsense statement based on its commonsense
knowledge about the world. It contrasts with fact
verification methods (Thorne et al., 2018; Wadden
et al., 2020), which verify the correctness of claims
based on evidence from a text corpus. VERA en-
ables plausibility estimation where direct evidence
is often not retrievable from some corpus, and usu-
ally some implicit, fuzzy reasoning is needed. It
operates solely with the commonsense knowledge
stored in its model parameters, and does not have a
retrieval component.

VERA is built on top of T5 (Raffel et al., 2020),
a generic pretrained LM, by finetuning on a vast
collection of correct and incorrect commonsense
statements sourced from knowledge bases (KBs)
and question answering (QA) datasets. The 21 data
sources (Table 5, appendix) amount to ∼7M state-
ments encompassing a wide spectrum of domains,
including general, scientific, physical, and social
commonsense, as well as quantitative (reasoning
about numbers) and qualitative (reasoning about
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qualitative relationships such as smaller) common-
sense. We propose a novel two-stage training pro-
cess that takes into account the scale and quality
of data from different sources. In addition to the
standard multiple-choice binary classification ob-
jectives, we adopt a supervised contrastive loss
(Khosla et al., 2020) to magnify the distinction be-
tween similar statements with different correctness
labels. Furthermore, we propose an automatic way
of augmenting the training data by eliciting LMs to
generate incorrect answers to commonsense ques-
tions and empirically find it helps generalization.

We evaluate VERA in the following applications:

• Excelling in commonsense problems over
GPT-series when repurposed for verifica-
tion (§5.1). VERA can be applied to solve
multiple-choice and boolean commonsense
problems when expressed in the verification
format, by scoring and ranking candidate hy-
potheses. It substantially outperforms existing
models repurposed for commonsense verifica-
tion (including GPT-3.5, ChatGPT and GPT-
4), improving upon the best existing baseline,
Flan-T5, with absolute improvement of 6% on
seen benchmarks and 4% on unseen ones.

• Filtering LM-generated commonsense
knowledge (§5.2). VERA can filter noisy com-
monsense knowledge statements generated
by other LMs, improving the effectiveness
of LM-generated knowledge in downstream
knowledge-augmented inferences. VERA

is well-calibrated, enabling filtering at
customized thresholds.

• Detecting commonsense errors in ChatGPT
outputs (§5.3). Through a preliminary analy-
sis, we find that VERA can identify common-
sense errors made by ChatGPT in-the-wild,
with a precision of 91% and a recall of 74%.
An example of VERA in action is shown in
Figure 1.

We hope VERA can be a useful tool for improv-
ing the commonsense correctness of existing gen-
erative LM output and inspire more effort toward
general-purpose and robust verification methods.

2 Problem Definition and Scope

Our goal is to build a model that can estimate the
plausibility of any given commonsense statement.
The model takes as input a statement that (1) is
expressed in natural language; (2) is declarative,

as opposed to interrogative questions; (3) is self-
contained without requiring additional context to
comprehend; (4) has an objective, binary correct-
ness label; and (5) in principle can be labeled using
widely-held commonsense knowledge about the
world. Encyclopedic knowledge (e.g., Ljubljana is
the capital of Slovenia.) is out of scope. Moving
forward, unless explicitly noted, we use common-
sense statement to refer to statements within the
above scope. Though somewhat strict, this scope
covers a broad range of potential applications.

For an input commonsense statement x, the
model should output a real-valued score s ∈ [0, 1]
that represents its estimated plausibility of x. While
the gold correctness label is binary, we let the
model output a score to reflect its confidence. A
score of 1.0 means that it is completely confident
that x is correct, and a score of 0.0 means it is
completely confident that x is incorrect. When pre-
dicting correctness label from the score, we use 0.5
as the threshold.

3 Method

In this section, we describe the whole pipeline to
build VERA. We start from curating large-scale
training data including both correct and incorrect
statements from diverse commonsense tasks (§3.1).
Next, we learn a scoring model that takes a state-
ment and returns a continuous score by finetuning a
LM via 3 training objectives (§3.2). An additional
post hoc calibration strategy is applied to make the
output scores well-calibrated (§3.3).

3.1 Data Construction
Labeled commonsense statements usually do not
appear in text in the wild, while some common-
sense question answering (QA) datasets and com-
monsense knowledge bases (KBs) are good sources
for this kind of statements. We collect correct and
incorrect commonsense statements from the above
two types of data source. Table 1 shows some ex-
amples on how these statements can be converted
from QA problems and KB entries. In total, we
obtain ∼7M statements (for training) from 19 QA
datasets (§3.1.1) and two KBs (§3.1.2) that encom-
pass a wide spectrum of commonsense domains.
Table 5 (appendix) lists these datasets with statis-
tics. All datasets we use are publicly available.

3.1.1 From Commonsense QA Datasets
Numerous commonsense reasoning datasets have
been published in recent years (Davis, 2023), and
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Original example:
What would someone wear to protect themselves from a cannon?
(A) ungulate (B) bomber (C) body armor (D) tank (E) hat
Answer: (C)

Converted statement group:
One would wear an ungulate to protect themselves from a cannon. ✗

One would wear a bomber to protect themselves from a cannon. ✗

One would wear body armor to protect themselves from a cannon. ✓

One would wear a tank to protect themselves from a cannon. ✗

One would wear a hat to protect themselves from a cannon. ✗
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A Original example:
Can an average dog follow an instruction manual?
Answer: no

Converted statement group:
An average dog can follow an instruction manual. ✗

K
N
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G
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B

A
S

E Original example:
Rubber stamps provide a way to make messages stand out.

Converted statement group:
Rubber stamps provide a way to make messages stand out. ✓

Arabic numbers provide a way to make messages stand out. ✗

Bandages provide a way to make messages stand out. ✗

Meat tenderizers provide a way to make messages stand out. ✗

Table 1: Conversions from original commonsense QA
problems and knowledge base entries to statement
groups that are used for training.

many of them are in the format of multiple-choice
QA (selecting the correct answer out of a set of
choices) or boolean (yes/no) QA. These can be eas-
ily converted to correct and incorrect commonsense
statements. From multiple-choice QA problems,
we combine the question and each answer choice
to form declarative statements, which are correct
when using the correct answer, and incorrect oth-
erwise. From boolean QA problems, we convert
the question into a declarative statement, and keep
the original label as the correctness label. Concrete
examples can be found in Table 1.

Statement groups. We refer to statements orig-
inating from the same problem as a statement
group. Note that statement groups originating from
multiple-choice problems contain at least two state-
ments, of which one and only one is correct; state-
ment groups originating from boolean problems
contain only one statement, and it can be either
correct or incorrect.
We do conversion to declarative statements auto-
matically. From QA datasets, we create declarative
statements from QA problems using the following
method:

• If the problem contains a question, we con-
vert the question and choice into a declara-
tive statement using the question conversion
model created by Chen et al. (2021).

• If the question is cloze-style, we replace the
blank with the choice.

• If the question is an incomplete sentence and

the choice is a continuation to it, we concate-
nate the question and the choice.

• If there is no question and the problem only
asks to choose between some choices, we use
the choice as the declarative statement.

• For boolean problems, we always use yes as
the choice and create a single declarative state-
ment for each problem. We use the original
label as the correctness label of this statement.

In total, 19 commonsense QA datasets contribute
∼200k statement groups and ∼400k statements to
the training set of VERA.

LM-augmented falsehoods. Existing common-
sense QA datasets are mostly manually constructed
or assembled from standard school exams. A model
trained on these datasets might overfit specific an-
notation patterns from humans which may limit
generalization. Therefore, we augment QA prob-
lems with LM-generated answers and construct
additional incorrect statements. Specifically, for
a multiple-choice question, we use a small LM to
sample 50 possible answers to the question, and
select the 3 least probable answers with generation
probability less than 0.15 (making these unlikely
to be correct answers). This threshold is chosen
based on manual inspection over a small portion
of examples. We observe generated answers with
probability larger than 0.15 are more likely to be
plausible. We create LM-augmented falsehoods for
the training set of 9 commonsense QA datasets, as
noted in Table 5 (appendix).

3.1.2 From Commonsense KBs
Commonsense KBs (e.g., Atomic2020 in Hwang
et al. (2020), and GenericsKB in Bhakthavatsalam
et al. (2020)) contain a large number of correct
commonsense statements. To create incorrect state-
ments, we automatically perturb KB entries by re-
placing the subject with three random subjects that
appear in the KB. Table 1 shows how to convert an
entry in GenericsKB to a statement group contain-
ing four statements, three of which are augmented
via perturbations. The perturbed statements are
relatively easy to identify and may contain false
negatives. As noted in §3.2.4, we use these KB-
constructed statements in a separate training stage
that precedes training with QA-constructed state-
ments. In total, two commonsense KBs contribute
∼1.6M statement groups and ∼6M statements to
the training set of VERA.
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3.2 Model Training
3.2.1 Model Architecture
Given a statement x, VERA outputs a real-valued
score s ∈ [0, 1]. As we will use a transformer-
based LM as the backbone of VERA, we first ex-
tract the input representation h by selecting the last
hidden state corresponding to the EOS input token.
We choose EOS because it is capable to encode the
entire input in both bidirectional encoder models
(e.g., T5’s encoder) and left-to-right decoder mod-
els (e.g., LLaMA). Then a linear layer projects h to
a scalar logit z, followed by a sigmoid function σ(·)
that transforms the logit into a score s. Formally,

h = fLM(x), z = flinear(h), s = σ(z).

For brevity, we use h(x), z(x) and s(x) to refer to
the representation, logit and score of an arbitrary
input x.

3.2.2 Batching
The data we construct consists of statements be-
longing to different statement groups. For rea-
sons we will describe in §3.2.3, we put all state-
ments belonging to the same statement group into
the same batch. Each batch may contain multiple
complete statement groups. We denote by BG the
number of statement groups and BS the number
of statements in total within a single batch. We
denote the statement groups as {Xj}BG

j=1, and the
statements as {xi}BS

i=1. {Xj}BG
j=1 is a partition of

{xi}BS
i=1. yi ∈ {0, 1} is the correctness label of xi.

3.2.3 Training Objectives
The model is trained with a linear combination of
three losses: a binary classification loss, a multi-
class loss, and a supervised contrastive loss, L =
αLbin + βLmc + γLctr, which we describe below.

Binary classification loss. Naively, common-
sense statement verification can be viewed as a
binary classification task. Under this setting, the
loss is

Lbin = −yi log s(xi)− (1− yi) log(1− s(xi)).

Multi-class loss. We expect the model to be ro-
bust against nuances in commonsense statements.
Ideally, the model should be able to recognize oppo-
site correctness labels for a group of seemingly sim-
ilar statements in surface forms, such as statements
created from different choices of the same question,
or perturbed from the same piece of knowledge in

a KB. To achieve this goal, we treat each state-
ment group as a multi-class classification problem,
maximizing the log-likelihood of the single correct
statement in the statement group after passing the
logits through a softmax. Formally,

Lmc = − log
exp z(xj∗)∑Cj

c=1 exp z(xjc)
,

where xj∗ is the correct statement in Xj . Note that
the multi-class loss is not applicable to statement
groups with only one statement (i.e., statement
groups from boolean QA datasets). We empiri-
cally find that the multi-class loss indeed improves
generalization towards unseen multiple-choice QA
datasets as indicated in Figure 3 (appendix).

Supervised contrastive loss. It has been shown
(Khosla et al., 2020) that supervised contrastive
learning helps to improve model robustness and
generalization against input variations. In light of
this, we further adopt supervised contrastive learn-
ing on top of the input representations h. We show
in Figure 3 (appendix) that the contrastive loss in-
deed improve generalization to unseen datasets.
For each anchor statement xi in a batch, the con-
trastive loss aims to maximize the similarity be-
tween xi and each other statement xp that has the
same correctness label as xi (i.e., positive example).
At the same time, we push apart xi and other state-
ments xn that has opposite correctness label as xi
(i.e., negative example). The supervised contrastive
loss is

Lctr =

− log

∑
k∈P(i) exp[cos(h(xi),h(xk))/τ ]∑

k∈P(i)∪N (i) exp[cos(h(xi),h(xk))/τ ]
,

where τ is a temperature hyperparameter, cos(·, ·)
refers to cosine similarity, P(i) ⊆ [BS ] is the index
set of statements that are positive examples for xi,
and N (i) ⊆ [BS ] is the index set of statements that
are negative examples for xi. Formally,

P(i) =
{
k | 1 ≤ k ≤ BS , yk = yi, k ̸= i

}
,

N (i) =
{
k | 1 ≤ k ≤ BS , yk ̸= yi

}
.

3.2.4 Two-Stage Training
Since data sourced from KBs are larger in scale but
more noisy than data sourced from QA datasets,
we take a two-stage training approach. In training
stage A, we start from a pre-trained LM and train
with data sourced from KBs. In training stage B,
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we start from the model obtained in stage A and
train with data sourced from QA datasets. During
experiments we found that this setting is better than
single-stage training with either data source or a
mixture of the two.

3.3 Inference and Calibration
An ideal plausibility estimation model should be
calibrated, that is, its confidence in its predictions
should be approximately equal to the actual fre-
quency of correctness. During early experiments,
we found that VERA tends to be overconfident.
Therefore, we apply a post hoc calibration on
VERA’s output. Following the temperature scal-
ing method introduced in Guo et al. (2017), during
inference we divide the model-predicted logit by a
temperature T before computing the score, that is,

h = fLM(x), z = flinear(h), z̃ = z/T, s = σ(z̃).

Note that no temperature scaling is applied during
model training.

With predictions on a validation set D =
{(xi, yi)}Di=1, we estimate T that gives the mini-
mal expected calibration error (ECE) (Naeini et al.,
2015) on this validation set. Equation 1 in §C.1
shows how ECE is computed. In practice, we use
the combined development sets of the seen datasets
(§4.2) to estimate T , and the optimal T becomes a
parameter of VERA. Note that temperature scaling
does not change the relative ordering of prediction
scores, and thus the other performance metrics (e.g.,
accuracy) are not affected (see detailed explanation
in §B.2).

4 Experimental Setup

In this section, we provide more details of model
training, the evaluation protocol and metrics, and
describe the baseline models we benchmark.

4.1 Training Details
Datasets. For training stage A, we use the ∼1.6M
statement groups (∼6M statements) sourced from
two commonsense KBs; for training stage B, we
use the ∼200k statement groups (∼400k state-
ments) sourced from 19 commonsense QA datasets.
For each training stage, we mix the training sets of
all datasets together, without any re-weighting.

Models. We use two types of pretrained LMs
as the backbone of VERA: (1) the encoder of
T5 (Raffel et al., 2020), which is a bidirec-
tional encoder model; (2) LLaMA (Touvron et al.,

2023), which is a left-to-right decoder model.
For the T5 encoder, we start from the pretrained
T5-v1.1-XXL1 whose encoder has about 5B pa-
rameters, and refer to the resulting model as VERA-
T5. (During experiments we found that starting
from Flan-T5-XXL2 performs slightly worse than
starting from T5-v1.1-XXL.) For LLaMA, we start
from the pretrained LLaMA-7B and refer to the
resulting model as VERA-LLaMA. As we will
see, VERA-T5 has better performance than VERA-
LLaMA, so unless explicitly specified, when we
say VERA we mean VERA-T5. See Table 8 (ap-
pendix) for the complete hyperparameter settings
and §C for the implementation details.

4.2 Evaluation and Baselines

Evaluation protocol. We divide our evaluation
into two parts: (1) Seen benchmarks, whose train-
ing set is used for model training. (2) Unseen
benchmarks, whose training set is not used for
model training. We futher divide up the unseen
benchmarks into type 1 and type 2, where in type
1 benchmarks the task is similar to those in the
seen benchmarks, while type 2 benchmarks are a
bit further away in terms of the nature of the task.
Examples of type 2 unseen benchmarks include
HellaSwag which is contextualized with event de-
scriptions, and CREAK which involves reasoning
among different entities.
Depending on the nature of the evaluation bench-
mark, we use different metrics to evaluate our
model’s performance. Unless explicitly said other-
wise, we report performance on the development
set, where the gold labels are available, and we do
not use the development sets of unseen datasets
for model selection. The overall metric reported
over multiple benchmarks is the unweighted aver-
age of the metric over all these benchmarks, which
accounts for the differently-sized evaluation sets.

Metrics. We report accuracy for multiple-choice
and balanced boolean benchmarks. For those un-
balanced boolean benchmarks (e.g., LM-generated
knowledge filtering datasets), we report area under
the ROC curve (AUROC) and average precision
(AP). To measure how well the model-predicted
scores reflect confidence, we measure the ECE
(Naeini et al., 2015) on the boolean benchmarks,
following Equation 1.

1https://huggingface.co/google/t5-v1_1-xxl
2https://huggingface.co/google/flan-t5-xxl
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Accuracy Seen Unseen (type 1) Unseen (type 2)

SKD Critic (355M) 36.64 38.34 43.40
I2D2 Critic (355M) 55.03 54.79 67.11
UnifiedQA-v2 (11B) 56.33 59.73 53.95
Entailer (11B) 73.79 71.47 70.72
GPT-3.5 (175B) 75.41 71.03 78.87
ChatGPT† 62.11 61.20 62.83
GPT-4† 72.35 77.40 70.29
Flan-T5‡ (11B) 79.50 77.62 78.89

VERA-LLaMA (7B) 82.99 75.51 82.56
VERA-T5 (5B) 85.51 81.65 83.37

Table 2: Results on problem-solving with VERA on
seen and unseen benchmarks. Average accuracy on the
development sets is reported. Accuracy across different
parts (seen, unseen (type 1), unseen (type 2)) are not
directly comparable due to different underlying bench-
marks. See Figure 5 and Table 9, 10, 11 (appendix)
for full results. †: The performance of ChatGPT and
GPT-4 may be under-estimated because we don’t have
access to the raw token logits. ‡: Flan-T5 has been
trained on some unseen benchmarks we use; see Table 7
(appendix) for details on data contamination.

Baseline Models. We compare VERA with the
best publicly available models that can be di-
rectly used or repurposed for commonsense state-
ment verification. Roughly in increasing order
of performance, these models are: SKD Critic
(West et al., 2021), I2D2 Critic (Bhagavatula et al.,
2022), UnifiedQA-v2 (Khashabi et al., 2022), En-
tailer (Tafjord et al., 2022), GPT-3.5 (OpenAI,
2022b), ChatGPT (OpenAI, 2022a), GPT-4 (Ope-
nAI, 2023), and Flan-T5 (Chung et al., 2022). See
more details in §C.2.

5 Evaluation Results

In this section, we evaluate the ability of VERA

to estimate the plausibility of commonsense state-
ments and compare it with the baseline models.
We show the effectiveness of VERA in three sce-
narios: solving commonsense problems, filtering
LM-generated commonsense knowledge, and de-
tecting commonsense errors in ChatGPT outputs.

5.1 Solving Multiple-Choice and Boolean
Commonsense Problems

The output plausibility scores from VERA can be
used for solving multiple-choice and boolean com-
monsense problems. We first convert the prob-
lems into the statement group format (§3.1). For
multiple-choice problems, we choose the statement
with the highest score in the statement group. For
boolean problems, we use s = 0.5 as the threshold

to predict correctness labels of statements.
Table 2 reports the results when VERA is applied

to solve commonsense problems. See Figure 5 and
Table 9, 10, 11 (appendix) for full results including
AUROC and AP. On seen benchmarks (16 multiple-
choice and one boolean), VERA outperforms the
best baseline, Flan-T5, by 6% on (absolute) ac-
curacy and 9% on AUROC. VERA beats Flan-T5
by 4% accuracy and 5% AUROC on type 1 un-
seen benchmarks (four multiple-choice and one
boolean), and by 4% accuracy and 6% AUROC
on type 2 unseen benchmarks (five multiple-choice
and two boolean), demonstrating good generaliza-
tion. VERA-T5 has better performance than VERA-
LLaMA across the board, which may be due to
its bidirectional connectivity. Aside from perfor-
mance, VERA also has good calibration, with ECE
no higher than 3% on seen and unseen benchmarks.
The post hoc calibration method improves calibra-
tion across all three parts.

Typically we may need to choose a threshold for
binary classification in boolean datasets. However,
we notice that a zero logit (z = 0) is generally close
to the optimal decision threshold between correct
and incorrect commonsense statements. Therefore
we do not estimate a model-specific threshold, and
simply use the default threshold: z = 0, or equiva-
lently, s = 0.5.

5.2 Filtering LM-generated Commonsense
Knowledge

Figure 2 reports the results when VERA is ap-
plied to filter LM-generated commonsense knowl-
edge. On the two seen benchmarks, SKD_anno and
I2D2_anno, VERA is a better knowledge filter than
all baseline models, in terms of both AUROC and
AP. In particular, on I2D2_anno it outperforms the
I2D2 critic model by 2% AUROC, which is specif-
ically trained on the I2D2_anno dataset and does
not generalize well to other benchmarks. On the
unseen benchmark, Rainier_anno, VERA is also
comparable with the best baselines like Flan-T5
and GPT-3.5. As for calibration, the ECE is no
higher than 8% on all three benchmarks.

We find that filtering commonsense knowledge
using VERA can greatly improve the performance
of knowledge-augmented reasoning methods. In
the Generated Knowledge Prompting framework
(Liu et al., 2021), when solving a commonsense
QA problem, first a knowledge model generates
several commonsense knowledge statements rele-
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Figure 2: Results for filtering LM-generated common-
sense knowledge with VERA. We plot the calibration
curve for both the uncalibrated version (w/ faded color)
and calibrated version (w/ saturated color) of the VERA
model. Results on the development sets are reported.
See Figure 6 for full results.

vant to the question, and then a QA model makes
predictions based on them. A big problem that
hinders the effectiveness of this framework is that
model-generated knowledge is not always factual,
and incorrect knowledge statements can mislead
the QA model. We introduce VERA to filter these
statements before passing them to the QA model.
In particular, we keep those statements that receive
a score higher than 0.5 from VERA.

Following Liu et al. (2022b), we use
UnifiedQA-large as the QA model, and
consider two knowledge models: few-shot
GPT-3 (davinci) (Brown et al., 2020) and
Rainier-large (Liu et al., 2022b). We follow
the evaluation settings as in Liu et al. (2022b),
and for few-shot GPT-3 (davinci), we use the
same task-specific few-shot prompts and same
process to generate silver knowledge as in Liu et al.
(2022b). Results are shown in Table 3. Applying
knowledge filtering with VERA increases the

Generator Filter QA Model Acc Usefulness ∆

– – UnifiedQA 60.45 – –
GPT-3 – UnifiedQA 67.44 +6.99 –
GPT-3 VERA UnifiedQA 70.67 +10.22 +46%

– – UnifiedQA 60.45 – –
Rainier – UnifiedQA 61.78 +1.33 –
Rainier VERA UnifiedQA 64.88 +4.43 +233%

Table 3: Results of introducing VERA into the Gener-
ated Knowledge Prompting pipeline (Liu et al., 2021).
The QA model is UnifiedQA-large, and the generator
is either GPT-3 (davinci) or Rainier-large when
applicable. Average accuracy on the development set is
reported; see Table 12 (appendix) for detailed results.

usefulness of GPT-3’s and Rainier’s knowledge
by 46% and 233%, respectively. VERA can
effectively supervise and improve the quality of
commonsense knowledge generated by a much
larger model, GPT-3 (davinci). Detailed results
(Table 12, appendix) show that there is increased
effectiveness in every individual benchmark.

5.3 Preliminary Study on Detecting
Commonsense Errors made by ChatGPT

VERA can be useful in detecting commonsense
mistakes made by generative LMs in-the-wild. We
collected 27 anecdotes from the Internet where
people reported ChatGPT making commonsense
errors, and manually rewrote them into their correct
versions, obtaining 54 statements in total.

When detecting incorrect commonsense state-
ments in this dataset, VERA has a precision of 91%
and a recall of 74%, amounting to an F1 score of
82%. Table 4 shows how VERA scores some of
these these erroneous commonsense statements and
their manually corrected version. In 7 out of the 9
cases, VERA assigns a low score to the original, in-
correct statement, and a high score to the corrected
statement. For example, “since the density of a
marble is much less than the density of mercury,
the marble would sink to the bottom of the bowl if
placed in it” receives a score of 0.04 and is identi-
fied as an incorrect statement, whereas “since the
density of a marble is much less than the density of
mercury, the marble would float if placed in mer-
cury” receives a score of 0.96 and is identified as a
correct statement. Meanwhile, there are also some
failure cases. VERA believes that “it is possible for
a solar eclipse to be followed by a lunar eclipse the
next day”, and fails to reject that “it is possible to
draw a diagonal line in a triangle”.
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Date Original / Corrected Score Pred

2023/01/05
It is possible for a solar eclipse to be followed by a lunar eclipse the next day. 0.86 ✓

It is impossible for a solar eclipse to be followed by a lunar eclipse the next day. 0.48 ✗

2023/01/06
The time it takes for a given number of cars to travel a fixed distance is directly proportional to the number of cars. 0.26 ✗

The time it takes for a given number of cars to travel a fixed distance is invariant of the number of cars. 0.52 ✓

2023/01/06
If A sits next to B and B sits next to C, then A must sit next to C. 0.20 ✗

If A sits next to B and B sits next to C, then A may not sit next to C. 0.60 ✓

2023/01/10
If two cats can eat two cans of food in a minute, then it would take six cats to eat three cans of food in a minute. 0.05 ✗

If two cats can eat two cans of food in a minute, then it would take three cats to eat three cans of food in a minute. 0.67 ✓

2023/01/11
A three-dimensional cube has eight faces. 0.46 ✗

A three-dimensional cube has six faces. 0.70 ✓

2023/01/30
It is possible to draw a diagonal line in a triangle. 0.80 ✓

It is impossible to draw a diagonal line in a triangle. 0.28 ✗

2023/02/21
70 is a smaller number than 58. 0.14 ✗

70 is a larger number than 58. 0.85 ✓

2023/02/23
Since the density of a marble is much less than the density of mercury, the marble would sink to the bottom of the
bowl if placed in it.

0.04 ✗

Since the density of a marble is much less than the density of mercury, the marble would float if placed in mercury. 0.96 ✓

2023/02/25
Both a house and a pound of feathers weigh the same, which is one pound. 0.25 ✗

A house weighs more than one pound, while a pound of feathers weighs one pound. 0.87 ✓

Table 4: Examples of commonsense mistakes made by ChatGPT, and how VERA can detect them. In each section,
the first line is the original, incorrect commonsense statement in ChatGPT’s output, and the second line is the
authors’ manually corrected version of the statement. Each statement is followed by VERA’s score and predicted
correctness label. Examples are adapted from Venuto (2023); Marcus and Davis (2023); Borji (2023).

Figure 3: Ablation results. Average accuracy on the development sets is reported. Components are incrementally
removed from the training process, except for the multi-class loss and the binary loss; the hierarchy is indicated in
the legend.

5.4 Analysis

Ablations. We conduct an ablation study by
incrementally removing the following compo-
nents from the training process: contrastive loss
(§3.2.3), training stage A (§3.2.4), LM-augmented
falsehoods (§3.1), multi-class loss or binary loss
(§3.2.3). Since at least one of the multi-class loss
and the binary loss is needed, we remove them sep-
arately and observe the effect of training with a
single loss.
Results are shown in Figure 3. Overall, the ab-
lated components have more impact on unseen
benchmarks than seen ones. Removing the con-
trastive loss hurts performance mostly on unseen
datasets, implying that the contrastive objective
is beneficial for generalization. Removing train-
ing stage A hurts performance across the board,

emphasizing the importance of training with large-
scale commonsense knowledge. LM-augmented
falsehoods are most helpful on unseen benchmarks,
with a little sacrifice in the performance on seen
benchmarks. The multi-class loss is most helpful
on multiple-choice benchmarks, while removing
the binary loss substantially hurts performance on
boolean benchmarks.

Scaling Trends of VERA. We trained variants of
VERA that are based on smaller versions of the T5
encoder, and show the results in Figure 4. Model
performance increases steadily with size, and does
not show evidence of saturation at 5B parameters,
suggesting that better commonsense plausibility
estimation models might be yielded from larger
pretrained LMs.

1271



Figure 4: Scaling trends of commonsense statement verifiers.

Format: Verification vs. QA. In this paper, we
focus on the verification format to solve common-
sense problems. A comprehensive discussion on
how this format compares with the QA format is
provided in §E and Figure 7.

6 Related Work

Commonsense verifiers. Prior work has ex-
plored the idea of verifying commonsense state-
ments. SYMBOLIC KNOWLEDGE DISTILLATION

(West et al., 2021) and I2D2 (Bhagavatula et al.,
2022) train models to classify the acceptability of
model-generated commonsense statements. The
ENTAILER (Tafjord et al., 2022) model is partially
trained to score the validity of a given hypothesis.
These models are trained on relatively small-scale,
domain-specific data and do not generalize well to
broader commonsense domains. Some other work
uses pretrained LMs with few-shot prompting to
verify commonsense statements (Kadavath et al.,
2022; Jung et al., 2022). In this work, we develop
a general-purpose commonsense statement verifier
that works out-of-the-box in zero-shot setting.

Verification in other tasks. Beyond common-
sense statements, the problem of verification has
been extensively studied on various NLP tasks.
NLI (Liu et al., 2019, 2022a; Zhang et al., 2017)
can be viewed as an entailment verification task.
Chen et al. (2021) presents a method for QA ver-
ification by transforming the context passage and
question-answer pair into a premise-hypothesis for-
mat as in NLI. Some work build models to per-
form reasoning verification – classifying whether a
premise supports or refutes a hypothesis (Bostrom
et al., 2022; Sprague et al., 2022; Yang et al., 2022;
Tafjord et al., 2022). On the other hand, fact veri-
fication (Thorne et al., 2018; Wadden et al., 2020)
requires judging the validity of claims against a cor-
pus of evidence (e.g., Wikipedia). These tasks fea-
ture context-sensitive or knowledge-intensive hy-

potheses to verify and are typically complemented
with additional context. In contrast, we focus
on verifying standalone commonsense statements
where no context is required or provided.

Generation vs. verification. With the rapid
progress in generative LMs, researchers have been
largely building general-purpose problem-solving
methods with a generative approach (Khashabi
et al., 2020, 2022; Lourie et al., 2021; Tafjord and
Clark, 2021; Wei et al., 2022). However, current
generative LMs are still prone to hallucination er-
rors and lack an intrinsic mechanism to express
confidence level on their outputs. Verification, on
the other hand, shows promise to complement these
shortcomings and has been adopted to improve the
outcome of generation (Chen et al., 2021; Jiang
et al., 2022). In this work, we take a pure verifica-
tion approach and build a general-purpose verifier
for commonsense statements, which to our best
knowledge is the first of its kind.

7 Conclusion and Future Work

We introduced VERA, a general-purpose verifica-
tion model for commonsense statements and an
early step toward tools for mitigating common-
sense errors in text generated by language models.
VERA achieves state-of-the-art performance when
solving commonsense problems in the verification
format, excels at filtering LM-generated common-
sense knowledge statements, and is found useful in
detecting erroneous commonsense statements from
generative LMs. Furthermore, the scores produced
by VERA are well-calibrated; and could be used for
plausibility score estimation for declarative state-
ments if needed. As VERA mainly targets on single-
sentence statements, future work may consider ver-
ification of multi-sentence or long-form statements,
or contextualized/defeasible commonsense state-
ments.
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Limitations

VERA aims, and is trained, to predict the plausibil-
ity of statements based on objective commonsense
knowledge of our world. It is not intended to handle
text outside the scope of commonsense statements
(e.g., encyclopedic facts, reading comprehension
with fictional worlds). It is not trained or evaluated
on moral commonsense data, so its capability of
making moral predictions is unknown. It gives a
prediction even if the input falls out of its intended
scope, which could be mitigated by an additional
scope guard to determine its applicability. In ad-
dition, it is not trained to handle very long and
compositional input. Although greatly outperform-
ing existing systems, VERA is not perfect and may
make incorrect predictions. It is not very robust
under syntactic variations of the input, such as para-
phrases and negations. As the training data may
contain bias or toxicity, VERA may also make pre-
dictions that are perceived as ethically problematic.
The output of VERA does not reflect the authors’
view. VERA is a research prototype, and it is not
designed for making real-world decisions.
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A More Details on Datasets

Table 6 shows more dataset statistics, and Table 7
shows the dataset citations and links from which
we retrieved the datasets.

A.1 Dataset-Specific Special Handling

For some datasets, we pre-process them into a uni-
fied multiple-choice or boolean format. We provide
the details below.

Com2Sense (paired). Com2Sense contains true
and false statements that can be paired into com-
plements. To utilize this pairing information, we
place the two statements in each pair into the same
statement group, and treat this as a multiple-choice
dataset. Some statements in the dev set are not
paired, so we discarded these examples.

CycIC (mc). CycIC contains both multiple-
choice and boolean QA problems. To keep con-
sistency in evaluation, we use only the multiple-
choice problems, which is the dominant problem
type in this dataset.

ComVE (task A). ComVE contains data for
three tasks. Task A is assigning true/false labels to
paired statements, similar to Com2Sense (paired).
Task B and C are about choosing and generating
explanations to a given statement being against
commonsense. We use the data for task A.

SKD (annotated). The annotated dataset of
Symbolic Knowledge Distillation (SKD) contains
LM-generated, semi-structured knowledge triples,
where the head and tail events are connected by
relations, such as

(PersonX doesn’t like to wait, xIntent,

to get the job done).

Following West et al. (2021), we replace the name
placeholders with random person names, and con-
vert into natural language statements using tem-
plates adapted from Hwang et al. (2020). For ex-
ample, the triple in the above example becomes

Arnold doesn’t like to wait. Because

Arnold wanted to get the job done.

We set the correctness label to be true iff the valid
field has a positive value.

I2D2 (annotated). The annotated dataset of I2D2
contains LM-generated commonsense statements
with human-annotated correctness labels. We use
the combination of annotated data in “Iter0” and
“Iter2”, because the data of “Iter1” is missing from
the website.

A.2 Conversion to Declarative Statements
From QA datasets, we create declarative statements
from QA problems using the following method:

• If the problem contains a question, we con-
vert the question and choice into a declara-
tive statement using the question conversion
model created by Chen et al. (2021).

• If the question is cloze-style, we replace the
blank with the choice.

• If the question is an incomplete sentence and
the choice is a continuation to it, we concate-
nate the question and the choice.

• If there is no question and the problem only
asks to choose between some choices, we use
the choice as the declarative statement.

• For boolean problems, we always use yes as
the choice and create a single declarative state-
ment for each problem. We use the original
label as the correctness label of this statement.

B More Details on Method

B.1 Training Objectives
Binary classification loss. We defined the binary
classification loss as

Lbin(xi, yi) =

− yi log s(xi)− (1− yi) log(1− s(xi)).

To account for the fact that there are usually more
incorrect statements than correct ones in the data
produced from multiple-choice datasets, we di-
vide this loss by the number of statements with
the same correctness label in the same statement
group. Therefore, the binary classification loss for
the whole batch is

Lbin =

1

BG

BG∑

j=1

∑

y∈{0,1}

∑Cj

c=1 I[yjc = y]Lbin(xjc, yjc)∑Cj

c=1 I[yjc = y]
,

where Cj is the number of statements in statement
group Xj , xjc is the cth statement in Xj , and I is
the indicator function.
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Multi-class loss. We defined the multi-class loss
as

Lmc(Xj) = − log
exp z(xj∗)∑Cj

c=1 exp z(xjc)
.

The multi-class loss for the whole batch is

Lmc =
1

BG

BG∑

j=1

Lmc(Xj).

Supervised contrastive loss. We defined the su-
pervised contrastive loss as

Lctr(xi, yi) = − log

∑
k∈P(i) e

cos(h(xi),h(xk))

τ

∑
k∈P(i)∪N (i) e

cos(h(xi),h(xk))

τ

.

The supervised contrastive loss for the whole batch
is

Lctr =
1

BS

BS∑

i=1

Lctr(xi, yi).

B.2 Calibration

Our calibration is a post-hoc strategy and does not
affect the task performance metrics we report in §5.
This is because applying our calibration method –
temperature scaling – does not affect the relative
order of plausibility scores assigned to a given set
of statements:

• For tasks with multiple-choice questions
(§5.1), calibration does not affect the argmax
prediction for the above reason.

• For commonsense knowledge filtering (§5.2),
calibration does not affect the TPR/FPR num-
bers at each corresponding decision point,
again for the above reason, so the ROC curves
are valid.

• For True/False judgment problems (§5.1 and
§5.3), calibration does not move the plausibil-
ity scores across the decision boundary. We
use logit z = 0.0 (or equivalently, plausibility
score s = 0.5) as the True/False boundary. A
positive (or negative) logit remains positive
(or negative) after applying the temperature.

C More Details on Experimental Setup

Table 8 shows the hyperparamter settings for train-
ing VERA. These values are obtained from some

moderate hyperparameter tuning, and we did not
do extensive search due to training cost.

For tokenization, the T5 tokenizer tokenizes in-
put so that it ends with the EOS token </s> (token
ID = 1). We manually configured the LLaMA tok-
enizer so that its output ends with the EOS token
</s> (token ID = 2), and does not contain the BOS
token <s> (token ID = 1). Models are trained for
S = 50k steps with BG = 64 statement groups
per batch, using the Adam optimizer (Kingma and
Ba, 2014) with learning rate η = 1 × 10−5 for
T5 encoder and η = 2 × 10−6 for LLaMA. We
train models with the Huggingface Transformers
and Accelerate libraries (Wolf et al., 2019; Gug-
ger et al., 2022). For memory efficiency, during
training, each statement is truncated to 128 tokens
(which can accommodate more than 99% of the
statements; see Table 6) and each statement group
is capped to four statements.

C.1 Definition of Metrics
Multiple-choice accuracy. For multiple-choice
benchmarks, we report the multiple-choice accu-
racy:

Accmc =
1

|D|
∑

Xj∈D
I[xj∗ = argmax

xjc∈Xj

s(xjc)].

Boolean accuracy. The boolean accuracy is de-
fined as

Accbool =
1

|D|
∑

(xi,yi)∈D
I
[
yi = I[z(xi) > 0]

]
.

Boolean accuracy is applicable to balanced
boolean benchmarks where there are roughly equal
true and false statements (e.g., CommonsenseQA
2.0, Spatial Commonsense, StrategyQA, CREAK).
Generally it is not a good metric for multiple-
choice benchmarks and unbalanced boolean bench-
marks.

AUROC and AP. For unbalanced boolean bench-
marks (e.g., LM-generated knowledge filtering
datasets), accuracy may not faithfully capture the
model’s performance. Instead, the metrics we use
are the area under the ROC curve (AUROC) and
the average precision (AP) for selecting the True
statements. Statements are ranked based on their as-
signed raw scores, so that different score thresholds
can be selected to construct the ROC and Precision-
Recall curves. Aside from unbalanced boolean
benchmarks, AUROC and AP are also applicable
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to multiple-choice and balanced boolean bench-
marks.

Calibration. To measure how well the verifier-
predicted score reflects its confidence, we measure
the ECE (Naeini et al., 2015) on the boolean bench-
marks. ECE is computed as

ECE =
M∑

m=1

|Bm|
|D| ·

∣∣∣Acc(Bm)− Score(Bm)
∣∣∣

=
M∑

m=1

|Bm|
|D| ·

∣∣∣ 1

|Bm|
∑

(xi,yi)∈Bm

I[yi = 1]

− 1

|Bm|
∑

(xi,yi)∈Bm

s(xi)
∣∣∣, (1)

where M is the number of bins which bucket data
points with similar predictions, and Bm ⊆ D is
the subset of data points that fall into the m-th bin.
We use M = 10 equal-sized bins when computing
ECE.

C.2 Details on Baseline Models
SKD Critic. West et al. (2021) trained a critic
model that filters incorrect commonsense knowl-
edge generated by their symbolic knowledge distil-
lation (SKD) method. This critic model is based on
RoBERTa-large (Liu et al., 2019) and is finetuned
on 8k GPT-3-generated commonsense knowledge
sentences with human-annotated true/false labels.
The model predicts a [0, 1] score s which we use
as the final score, and we let the logit z = σ−1(s).

I2D2 Critic. Bhagavatula et al. (2022) trained
a critic model that filters incorrect commonsense
knowledge generated by their I2D2 method. This
critic model is based on RoBERTa-large (Liu et al.,
2019) and is finetuned on 12k I2D2-generated
commonsense knowledge sentences with human-
annotated true/false labels. Given an input state-
ment, the model predicts two logits: t for the True
label and f for the False label. We let the logit
z = t− f and the score s = σ(t− f). We use the
critic model trained in the final iteration (i.e., “Iter
2” in I2D23).

UnifiedQA-v2. UnifiedQA-v2 (Khashabi et al.,
2022) is a general-purpose QA model trained on
datasets with a variety of input formats, including
boolean datasets. When the input is a declarative
statement, the model is trained to output either “yes”

3https://gengen.apps.allenai.org/

or “no”. We use this feature of the model and make
it act as a commonsense statement verifier. For an
input statement, we compute the logits received by
“yes” and “no” in the decoder, denoted as t and f ,
respectively. We let the logit z = t − f and the
score s = σ(t− f). We use the largest version of
this model, UnifiedQA-v2-11b.4

Entailer. Entailer (Tafjord et al., 2022) is a model
trained to construct proof trees for scientific com-
monsense hypotheses. This multi-angle model can
be used in three ways: (1) given a hypothesis,
generate a set of premises that may entail it; (2)
given a hypothesis, predict a score that reflects the
model’s belief in it; (3) given a hypothesis and set
of premises, predict a score that reflects whether
there is a valid entailment between them. We
use (2) as a commonsense statement verifier. The
model predicts a [0, 1] score s which we use as the
final score, and we let the logit z = σ−1(s). We use
the largest version of this model, Entailer-11b.5

GPT-3.5. GPT-3.5 (OpenAI, 2022b) is a series of
general-purpose autoregressive decoder-only LMs.
To make it act as a commonsense verifier, we use
the following input prompt:

Question: Based on commonsense knowledge, is the following

statement correct? Please answer yes or no.

Statement: {statement}

Answer:

We query the OpenAI Completions API6 with this
prompt and compute the logits received by “ Yes”
and “ No” in the next-token prediction, denoted as
t and f , respectively. We let the logit z = t − f
and the score s = σ(t− f). We experimented with
several prompt formats and found the one presented
above to have the best performance, and in most
cases, “ Yes” and “ No” together receive most of
the probability mass during next-token prediction.
We also experimented with several models in the
GPT-3 (Brown et al., 2020) and GPT-3.5 series, and
found GPT-3.5 (text-davinci-002) to work the
best.
Additionally, we report a baseline where the
(negated) language modeling perplexity is used for

4https://huggingface.co/allenai/
unifiedqa-v2-t5-11b-1251000

5https://huggingface.co/allenai/entailer-11b
6https://platform.openai.com/docs/

api-reference/completions
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commonsense plausibility. Note that the plausibil-
ity scores derived this way are not normalized, and
we only use them for ranking purposes. For this
baseline, we use GPT-3.5 (text-davinci-002)
as the base model, and name it as “PPL (GPT-3.5)”.

ChatGPT and GPT-4. ChatGPT (OpenAI,
2022a) and GPT-4 (OpenAI, 2023) are optimized
for chat. To make them act as a commonsense veri-
fier, we use the same input prompt as for GPT-3.5,
without the “Answer:” line. We query the OpenAI
Chat API7 with this prompt in a user message, and
obtain the first token of the assistant message in
the response. Besides this zero-shot setting, we ad-
ditionally report a few-shot chain-of-thought (Wei
et al., 2022) setting with 5 in-domain examples, for-
matted as additional user-assistant message pairs
prior to the query user message.

Since the API does not provide token logits, we
let the score s = 1.0 when this token is “Yes”,
and s = 0.0 when this token is “No”. In the un-
likely case that this token is neither, we let s = 0.5.
We add a small random noise to the score. This
is to arbitrate potentially multiple positive predic-
tions within statement groups from multiple-choice
QA problems, and to enable plotting the ROC and
precision-recall curves. Note that this is not an
ideal solution and may cause under-estimation of
ChatGPT and GPT-4’s performance.

Flan-T5. Flan-T5 (Chung et al., 2022) is a series
of sequence-to-sequence LMs instruction-finetuned
on massive number of tasks. To make it act as
a commonsense verifier, we use the same input
prompt as for GPT-3.5. We compute the logits
received by “yes” and “no” in the first token predic-
tion in the decoder, denoted as t and f , respectively.
We let the logit z = t−f and the score s = σ(t−f).
We experimented with several prompt formats and
found the one presented above to have the best
performance, and in most cases, “yes” and “no” to-
gether receive most of the probability mass during
the token prediction. We use the largest version of
this model, Flan-T5-XXL.8 Note that some unseen
benchmarks are in the training data of Flan-T5; see
Table 7 for details on data contamination.

7https://platform.openai.com/docs/
api-reference/chat

8https://huggingface.co/google/flan-t5-xxl

D More Evaluation Results

Figure 5 is an expansion of Table 2 and addition-
ally shows the precision-recall curves on problem-
solving benchmarks. Table 9, Table 10, and Ta-
ble 11 show the per-dataset breakdown of the accu-
racy numbers in Figure 5. Figure 6 is an expansion
of Figure 2 and additionally shows the precision-
recall curves on knowledge-filtering benchmarks.
Table 12 shows the per-dataset breakdown of the
accuracy numbers in Table 3.

E Further Analysis

Format: Verification vs. QA. In this paper, we
have been using the verification format to approach
problem-solving tasks. But do we lose something
when compared to using the QA format? In Fig-
ure 7 we compare how well existing models can
solve problems in the verification format and the
QA format. Verification format does fall behind
QA format, especially with models trained exclu-
sively in QA format (i.e., UnifiedQA-v2). We also
trained a sequence-to-sequence model in QA for-
mat on the same multiple-choice data as VERA.
It leads VERA by 1.5% on seen multiple-choice
benchmarks. We hypothesize that this is because
verification models only see one option at a time,
whereas QA models can see all choices of a prob-
lem at the same time and thus can do comparative
ranking.
In addition to the performance loss, a verification
model does lose the generative capability possessed
by some QA models that are generative (e.g., Uni-
fiedQA in Khashabi et al. (2020)), and it has to run
C times to solve a C-way multiple-choice problem,
whereas QA models (e.g., UnifiedQA in Khashabi
et al. (2020), Unicorn in Lourie et al. (2021)) need
to run only once.
However, verification models can perform some
tasks that generative QA models cannot cover.
They can classify the correctness of declarative
statements, without having to convert them into
questions in the first place. They can also reflect
on the answer produced by a generative QA model,
and provide a level of confidence. We argue that
verification models and generative QA models have
different best-application scenarios and are some-
times complementary to each other.
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Abbr. Name Domain Format # Train Ex. Aug # Dev Ex. # Statements # True # False

STAGE A TRAINING

Atomic2020 Atomic2020 multiple-choice (4) 803541 70731 282924 70731 212193
GenericsKB GenericsKB multiple-choice (4) 775820 96977 387908 96977 290931
Total 1579361 167708 670832 167708 503124

STAGE B TRAINING (SEEN)

OBQA OpenBookQA scientific multiple-choice (4) 4957 ✓ 500 2000 500 1500
ARC_e ARC (easy) scientific multiple-choice (4) 2251 ✓ 570 2281 570 1711
ARC_h ARC (hard) scientific multiple-choice (4) 1119 ✓ 299 1194 299 895
AI2Sci_e AI2 Science (elem) scientific multiple-choice (4) 623 ✓ 123 489 123 366
AI2Sci_m AI2 Science (middle) scientific multiple-choice (4) 605 ✓ 125 502 125 377
CSQA CommonsenseQA general multiple-choice (5) 9741 ✓ 1221 6099 1221 4878
QASC QASC scientific multiple-choice (8) 8134 ✓ 926 7408 926 6482
PIQA Physical IQA physical multiple-choice (2) 16113 1838 3676 1838 1838
SIQA Social IQA social multiple-choice (3) 33410 ✓ 1954 5861 1954 3907
WG Winogrande general multiple-choice (2) 40398 1267 2534 1267 1267
C2S Com2Sense (paired) general multiple-choice (2) 804 391 782 391 391
SciQ SciQ scientific multiple-choice (4) 11679 ✓ 1000 4000 1000 3000
QuaRel QuaRel qualitative multiple-choice (2) 1941 278 556 278 278
QuaRTz QuaRTz qualitative multiple-choice (2) 2696 384 768 384 384
CycIC CycIC (mc) general multiple-choice (5) 6521 907 4535 907 3628
ComVE ComVE (task A) general multiple-choice (2) 10000 997 1994 997 997
CSQA2 CommonsenseQA 2.0 general boolean 9264 2541 2541 1225 1316
SKD_anno SKD (annotated) boolean 7980 1015 1015 803 212
I2D2_anno I2D2 (annotated) boolean 26206 13094 13094 6158 6936
Total 194442 29430 61329 20966 40363

EVALUATION (UNSEEN TYPE 1)

WSC WSC general multiple-choice (2) 0 273 546 273 273
COPA COPA general multiple-choice (2) 0 500 1000 500 500
NumerSense NumerSense quantitative multiple-choice (11) 0 200 2200 200 2000
PROST PROST physical multiple-choice (4) 0 18736 74944 18736 56208
SpatialCS Spatial Commonsense physical boolean 0 1448 1448 724 724
Rainier_anno Rainier (annotated) boolean 0 591 591 424 167
Total 0 21748 80729 20857 59872

EVALUATION (UNSEEN TYPE 2)

SWAG SWAG multiple-choice (4) 0 20006 80024 20006 60018
HellaSwag HellaSwag multiple-choice (4) 0 10042 40168 10042 30126
CODAH CODAH multiple-choice (4) 0 2776 11104 2776 8328
SCT Story Cloze Test multiple-choice (2) 0 1871 3742 1871 1871
αNLI αNLI multiple-choice (2) 0 1532 3064 1532 1532
StrategyQA StrategyQA boolean 0 229 229 107 122
CREAK CREAK boolean 0 1371 1371 691 680
Total 0 37827 139702 37025 102677

Table 5: Datasets and statistics. Data sourced from commonsense KBs are listed under STAGE A TRAINING, and
data sourced from commonsense QA datasets are listed under STAGE B TRAINING. The number in parentheses
under the Format column represents the number of choices per question. The Aug column indicates whether
LM-augmented falsehoods are generated for each dataset. The last three columns are the number of total, correct
and incorrect statements in the development set. See Table 6 for more dataset statistics, and Table 7 for full citations
and sources for these datasets.
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Abbr. Name Statement Length
min median 90% 95% 99% max

STAGE A TRAINING

Atomic2020 Atomic2020 5 19 24 26 30 57
GenericsKB GenericsKB 4 13 22 24 28 82

STAGE B TRAINING (SEEN)

OBQA OpenBookQA 5 16 29 36 56 74
ARC_e ARC (easy) 6 24 50 60 86 111
ARC_h ARC (hard) 7 30 59 70 94 138
AI2Sci_e AI2 Science (elem) 7 29 63 79 455 473
AI2Sci_m AI2 Science (middle) 7 24 58 72 511 536
CSQA CommonsenseQA 5 18 28 32 43 73
QASC QASC 5 13 19 21 24 30
PIQA Physical IQA 5 26 62 80 120 256
SIQA Social IQA 10 28 38 41 51 70
WG Winogrande 17 24 31 34 38 42
C2S Com2Sense (paired) 12 24 34 38 44 55
SciQ SciQ 6 19 29 34 48 75
QuaRel QuaRel 15 39 62 80 101 107
QuaRTz QuaRTz 9 29 44 49 73 78
CycIC CycIC (mc) 6 31 59 67 97 122
ComVE ComVE (task A) 4 10 14 16 20 28
CSQA2 CommonsenseQA 2.0 5 14 24 29 38 58
SKD_anno SKD (annotated) 13 20 25 27 31 37
I2D2_anno I2D2 (annotated) 5 15 21 24 31 41

EVALUATION (UNSEEN TYPE 1)

WSC WSC 10 22 33 39 45 48
COPA COPA 10 17 21 23 26 28
NumerSense NumerSense 6 13 20 23 32 36
PROST PROST 17 42 63 68 78 78
SpatialCS Spatial Commonsense 9 12 17 18 19 20
Rainier_anno Rainier (annotated) 5 12 19 21 29 33

EVALUATION (UNSEEN TYPE 2)

SWAG SWAG 12 30 46 52 67 148
HellaSwag HellaSwag 15 103 134 140 149 181
CODAH CODAH 5 21 31 34 45 73
SCT Story Cloze Test 29 56 69 72 78 89
αNLI αNLI 17 35 44 47 53 65
StrategyQA StrategyQA 6 14 20 22 25 30
CREAK CREAK 8 14 20 22 29 50

Table 6: More dataset statistics. This table shows the percentiles of statement lengths (as in number of T5 tokens) in
each dataset.
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Abbr. Name Citation Link In Flan-T5?

STAGE A TRAINING

Atomic2020 Atomic2020 Hwang et al. (2020) https://allenai.org/data/atomic-2020 yes
GenericsKB GenericsKB Bhakthavatsalam et al. (2020) https://allenai.org/data/genericskb yes

STAGE B TRAINING (SEEN)

OBQA OpenBookQA Mihaylov et al. (2018) https://github.com/allenai/unifiedqa yes
ARC_e ARC (easy) Clark et al. (2018) https://github.com/allenai/unifiedqa yes
ARC_h ARC (hard) Clark et al. (2018) https://github.com/allenai/unifiedqa yes
AI2Sci_e AI2 Science (elem) Clark et al. (2018) https://github.com/allenai/unifiedqa no
AI2Sci_m AI2 Science (middle) Clark et al. (2018) https://github.com/allenai/unifiedqa no
CSQA CommonsenseQA Talmor et al. (2019) https://github.com/allenai/unifiedqa yes
QASC QASC Khot et al. (2019) https://github.com/allenai/unifiedqa yes
PIQA Physical IQA Bisk et al. (2019) https://github.com/allenai/unifiedqa yes
SIQA Social IQA Sap et al. (2019) https://github.com/allenai/unifiedqa yes
WG Winogrande Sakaguchi et al. (2019) https://github.com/allenai/unifiedqa yes
C2S Com2Sense (paired) Singh et al. (2021) https://github.com/PlusLabNLP/Com2Sense/tree/

master/data
yes

SciQ SciQ Welbl et al. (2017) https://allenai.org/data/sciq yes
QuaRel QuaRel Tafjord et al. (2018) https://allenai.org/data/quarel yes
QuaRTz QuaRTz Tafjord et al. (2019) https://allenai.org/data/quartz yes
CycIC CycIC (mc) – https://leaderboard.allenai.org/cycic/

submissions/get-started
no

ComVE ComVE (task A) Wang et al. (2020) https://github.com/wangcunxiang/
SemEval2020-Task4-Commonsense-Validation-and-Explanation

no

CSQA2 CommonsenseQA 2.0 Talmor et al. (2021) https://github.com/allenai/csqa2/tree/master/
dataset

no

SKD_anno SKD (annotated) West et al. (2021) https://github.com/peterwestai2/
symbolic-knowledge-distillation/tree/main/
purification_code

no

I2D2_anno I2D2 (annotated) Bhagavatula et al. (2022) https://gengen.apps.allenai.org no

EVALUATION (UNSEEN TYPE 1)

WSC WSC Levesque et al. (2011) https://huggingface.co/datasets/winograd_wsc yes
COPA COPA Gordon et al. (2011) https://huggingface.co/datasets/super_glue yes
NumerSense NumerSense Lin et al. (2020) https://github.com/INK-USC/NumerSense/tree/main/

data
yes

PROST PROST Aroca-Ouellette et al. (2021) https://huggingface.co/datasets/corypaik/prost yes
SpatialCS Spatial Commonsense Liu et al. (2022c) https://github.com/xxxiaol/spatial-commonsense no
Rainier_anno Rainier (annotated) Liu et al. (2022b) https://github.com/liujch1998/rainier no

EVALUATION (UNSEEN TYPE 2)

SWAG SWAG Zellers et al. (2018) https://github.com/rowanz/swagaf/tree/master/
data

yes

HellaSwag HellaSwag Zellers et al. (2019) https://github.com/rowanz/hellaswag/tree/master/
data

yes

CODAH CODAH Chen et al. (2019) https://github.com/Websail-NU/CODAH/tree/master/
data

yes

SCT Story Cloze Test Mostafazadeh et al. (2016) https://cs.rochester.edu/nlp/rocstories/ yes
αNLI αNLI Bhagavatula et al. (2019) https://leaderboard.allenai.org/anli/submissions/

get-started
yes

StrategyQA StrategyQA Geva et al. (2021) https://github.com/eladsegal/strategyqa/tree/
main/data/strategyqa

yes

CREAK CREAK Onoe et al. (2021) https://github.com/yasumasaonoe/creak/tree/main/
data/creak

yes

Table 7: More dataset details. We show the link from which we retrieved each dataset, and whether each dataset is
included in the training data of Flan-T5.

Symbol Value Description

L 128 Max number of tokens in the input statement
BG 64 Number of statement groups per batch
C 4 Max number of statements in each group, during training
BS 256 Max number of statements per batch, during training
S 50,000 Total number of training steps in each stage
ηT5 1× 10−5 Learning rate for VERA with T5 encoder backbone

ηLLaMA 2× 10−6 Learning rate for VERA with LLaMA backbone
α 1.0 Weight of binary classification loss
β 1.0 Weight of multiple-choice loss
γ 0.1 Weight of supervised contrastive loss
τ 0.05 Temperature in supervised contrastive loss

Table 8: Hyperparameter settings.
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Figure 5: Results on problem-solving with VERA on seen and unseen benchmarks. Average results on the
development sets are reported. Accuracy across different parts (seen, unseen (type 1), unseen (type 2)) are not
directly comparable due to different underlying benchmarks. For calibration curves, curves with saturated colors are
results after applying post hoc calibration (§3.3), while curves with faded colors are results from the raw logits.
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Dataset → All MC Bool OBQA ARC_e ARC_h AI2Sci_e AI2Sci_m CSQA QASC PIQA SIQA WG C2S SciQ QuaRel QuaRTz CycIC ComVE CSQA2

SKD Critic (355M) 36.64 35.96 47.60 27.60 29.12 23.08 25.20 28.00 20.15 12.42 53.86 39.20 50.28 51.41 27.30 53.60 55.73 25.80 52.56 47.60
I2D2 Critic (355M) 55.03 55.75 43.65 44.80 55.61 35.79 55.28 50.40 61.51 45.25 67.36 56.45 55.56 63.17 55.10 61.51 60.16 35.72 88.26 43.65
UnifiedQA-v2 (11B) 56.33 56.34 56.05 54.60 48.77 39.46 48.78 43.20 44.23 32.61 63.98 52.10 70.64 75.96 42.20 81.65 71.35 48.29 83.65 56.05
Entailer (11B) 73.79 74.90 56.00 74.40 81.93 64.88 77.24 82.40 67.81 57.56 78.78 64.33 77.11 82.86 76.90 85.97 76.56 52.81 96.89 56.00
PPL (GPT-3.5) 66.02 66.02 – 45.20 70.12 45.15 69.92 62.70 61.92 57.02 81.55 51.23 71.37 72.56 86.80 71.22 70.91 53.31 85.37 –
GPT-3.5 (175B) 75.41 76.34 60.55 74.20 85.79 68.90 84.55 80.80 66.91 62.85 84.17 65.30 72.53 81.33 86.00 83.09 76.04 51.60 97.39 60.55
ChatGPT 62.11 61.52 71.65 60.80 65.44 57.19 63.41 68.00 39.64 42.01 67.36 52.20 61.33 76.73 60.70 74.10 72.66 29.66 93.08 71.65

+ 5-shot CoT 65.19 65.19 – 62.40 77.33 62.88 72.36 69.84 46.52 47.52 68.59 52.25 59.98 82.14 69.77 65.83 72.14 42.56 90.98 –
GPT-4 72.35 71.81 81.00 76.00 69.00 72.00 80.00 80.00 43.00 44.00 73.00 57.00 77.00 94.00 70.00 86.00 80.00 53.00 95.00 81.00

+ 5-shot CoT 74.96 74.96 – 79.80 79.00 70.00 87.00 89.11 31.31 44.00 80.00 67.00 82.18 91.92 80.00 82.00 87.00 57.00 92.08 –
Flan-T5 (11B) 79.50 80.58 62.25 79.60 85.79 71.24 86.99 81.60 69.21 64.58 83.95 73.23 84.69 84.40 80.80 92.81 82.03 69.90 98.40 62.25

VERA-LLaMA (7B) 82.99 84.18 63.85 80.20 84.39 75.92 88.62 82.40 76.17 71.38 85.91 79.89 87.92 83.63 90.00 92.09 80.99 89.42 97.99 63.85
VERA-T5 (5B) 85.51 86.57 68.60 83.20 88.07 78.60 93.50 86.40 77.97 73.33 88.47 80.14 92.42 85.93 88.80 93.88 84.90 91.73 97.79 68.60

Table 9: Results on seen benchmarks. Accuracy on the development set is reported.

Dataset → All MC Bool WSC COPA NumerSense PROST SpatialCS

SKD Critic (355M) 38.34 35.83 48.41 54.21 53.00 11.50 24.60 48.41
I2D2 Critic (355M) 54.79 54.43 56.22 80.59 72.80 35.00 29.35 56.22
UnifiedQA-v2 (11B) 59.73 55.10 78.25 71.79 81.20 35.00 32.40 78.25
Entailer (11B) 71.47 68.05 85.15 86.08 92.40 51.00 42.70 85.15
GPT-3.5 (175B) 71.03 70.73 72.24 85.71 87.00 66.50 43.70 72.24
ChatGPT 61.20 54.69 87.22 73.26 58.80 47.50 39.20 87.22
GPT-4 77.40 71.75 100.00 85.00 64.00 69.00 69.00 100.00
Flan-T5 (11B) 77.62 73.22 95.23 90.48 93.00 57.50 51.90 95.23

VERA-LLaMA (7B) 75.71 74.06 82.32 94.14 91.80 65.00 45.30 82.32
VERA-T5 (5B) 81.65 78.70 93.44 94.51 93.40 66.50 60.40 93.44

Table 10: Results on unseen (type 1) benchmarks. Accuracy on the development set is reported.

Dataset → All MC Bool SWAG HellaSwag CODAH SCT αNLI StrategyQA CREAK

SKD Critic (355M) 43.40 40.11 51.62 26.95 30.45 29.35 62.75 51.04 50.66 52.59
I2D2 Critic (355M) 67.11 70.42 58.84 72.15 53.30 67.30 88.24 71.08 52.40 65.28
UnifiedQA-v2 (11B) 53.95 52.83 56.77 31.75 36.60 49.00 82.04 64.75 49.34 64.19
Entailer (11B) 70.72 70.63 70.94 52.45 47.65 80.70 94.39 77.94 60.26 81.62
GPT-3.5 (175B) 78.87 80.21 75.53 73.40 70.40 85.05 95.56 76.63 62.88 88.18
ChatGPT 62.83 56.21 79.39 43.70 42.95 56.75 77.34 60.31 67.69 91.10
GPT-4 70.29 66.20 80.50 57.00 40.00 66.00 93.00 75.00 70.00 91.00
Flan-T5 (11B) 78.89 80.52 74.81 69.20 64.55 89.60 98.45 80.81 61.14 88.48

VERA-LLaMA (7B) 82.56 86.11 73.71 79.30 83.90 88.95 98.61 79.77 62.45 84.97
VERA-T5 (5B) 83.37 86.66 75.13 76.30 85.90 88.60 98.56 83.94 65.07 85.19

Table 11: Results on unseen (type 2) benchmarks. Accuracy on the development set is reported.

Generator Filter QA Avg OBQA ARC_e ARC_h AI2Sci_e AI2Sci_m CSQA QASC PIQA SIQA WG

– – UnifiedQA-large 60.45 70.20 69.12 55.85 69.11 64.80 61.43 43.09 63.66 53.84 53.35
GPT-3 (davinci) – UnifiedQA-large 67.44 74.60 75.44 64.55 69.92 72.80 70.19 63.82 67.74 58.70 56.59

GPT-3 (davinci) VERA UnifiedQA-large 70.67 77.60 80.00 67.56 78.05 78.40 71.91 66.20 70.35 59.37 57.22

Generator Filter QA Avg OBQA ARC_e ARC_h AI2Sci_e AI2Sci_m CSQA QASC PIQA SIQA WG

– – UnifiedQA-large 60.45 70.20 69.12 55.85 69.11 64.80 61.43 43.09 63.66 53.84 53.35
Rainier-large – UnifiedQA-large 61.78 69.40 66.84 52.84 68.29 57.60 68.30 54.86 65.51 56.81 57.38

Rainier-large VERA UnifiedQA-large 64.88 73.40 71.05 57.19 73.98 67.20 68.30 55.51 67.52 56.96 57.70

Table 12: Results of introducing VERA into the Generated Knowledge Prompting pipeline (Liu et al., 2021).
Accuracy on the development set is reported.
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Figure 6: Results for filtering LM-generated commonsense knowledge with VERA. Results on the development sets
are reported.
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Figure 7: Comparing verification and QA, the two different formats for problem-solving tasks. Average accuracy on
the development sets of the seen multiple-choice benchmarks is reported. We use text-davinci-002 as GPT-3.5
here, and gpt-3.5-turbo-0301 as ChatGPT. VERA in QA format actually means a T5 model finetuned on the
same seen multiple-choice data as VERA.
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