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Abstract

Large multilingual language models typically
rely on a single vocabulary shared across 100+
languages. As these models have increased in
parameter count and depth, vocabulary size has
remained largely unchanged. This vocabulary
bottleneck limits the representational capabil-
ities of multilingual models like XLM-R. In
this paper, we introduce a new approach for
scaling to very large multilingual vocabular-
ies by de-emphasizing token sharing between
languages with little lexical overlap and assign-
ing vocabulary capacity to achieve sufficient
coverage for each individual language. Tok-
enizations using our vocabulary are typically
more semantically meaningful and shorter com-
pared to XLM-R. Leveraging this improved
vocabulary, we train XLM-V, a multilingual
language model with a one million token vo-
cabulary. XLM-V outperforms XLM-R on ev-
ery task we tested on ranging from natural lan-
guage inference (XNLI), question answering
(MLQA, XQuAD, TyDiQA), to named entity
recognition (WikiAnn). XLM-V is particularly
effective on low-resource language tasks and
outperforms XLM-R by 11.2% and 5.8% ab-
solute on MasakhaNER and Americas NLI, re-
spectively.

1 Introduction

While multilingual language models have increased
in parameter count and depth over time, vocabu-
lary size has largely remained unchanged: mBART
(680M parameters; Liu et al. 2020), XGLM (7.5B
parameters, Lin et al. 2021), XLM-R XXL (10.7B
parameters; Goyal et al. 2021), mT5 XXL (13B
parameters; Xue et al. 2020); and BLOOM (176B
parameters; Scao et al. 2022) all share the same
250K token vocabulary size as XLM-R base (Con-
neau et al., 2019), a 250M parameter model.

For models like mT5 and XLM-R, this 250K
vocabulary is shared across 100+ languages. Dis-
counting shared tokens, this results in an average of

2,500 unique tokens per language, calling into ques-
tion the vocabulary’s ability to represent the diverse
selection of languages that it was intended to model.
For example, there are 8,105 characters in the Ta-
ble of General Standard Chinese characters and
over 100,000 unique characters in total; the num-
ber of commonly used Chinese words (consisting
of multiple characters) is even larger (Wikipedia,
2023). In fact, prior work has already shown that
this vocabulary bottleneck hinders the performance
of multilingual models on question answering and
sequence labeling where in-depth token-level and
sequence-level understanding is essential (Wang
et al., 2019).

In this paper, we construct a large multilingual
vocabulary by attending to two core principles: (1)
vocabularies can be improved by de-emphasizing
token sharing between languages with little lex-
ical overlap and (2) proper vocabulary capacity
allocation for individual languages is crucial for en-
suring that diverse languages are well-represented.
Then, we show that our new vocabulary exhibits
favorable characteristics including the ability to fre-
quently output semantically meaningful tokeniza-
tions while reducing over-tokenization for low-
resource languages. Finally, we present XLM-V,
the first multilingual language model with a one
million token vocabulary trained on 2.5TB of data
from Common Crawl (Conneau et al., 2019).

Our main contributions are as follows:

• In Section 3, we present our method for
constructing large multilingual vocabularies.
Specifically, we improve upon the language
clustering algorithm from Chung et al. (2020)
by constructing better vector representations
for individual languages and leverage Zheng
et al. (2021) to improve the vocabulary capac-
ity assignments for each cluster.

• In Section 5, we demonstrate that XLM-V
outperforms comparable baselines that have
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the same vocabulary size on XNLI. Addition-
ally, XLM-V outperforms XLM-R on every
multilingual language understanding task we
tested on (including XNLI, WikiAnn, MLQA,
XQuAD, and TyDiQA) by an average of 3.5
points absolute. XLM-V performs especially
well on low-resource evaluation datasets like
AmericasNLI and MasakhaNER, outperform-
ing XLM-R by 5.8% absolute accuracy and
11.2% absolute F1, respectively.

• Finally, in Section 6, we provide examples
and quantitative analysis to compare our new
vocabulary to various baselines. Most notably,
we provide evidence showing that expanding
the vocabulary beyond 1M tokens can degrade
performance on downstream tasks.

2 Background

2.1 Sentencepiece

The Unigram Language Model (ULM) from Kudo
and Richardson (2018) is a popular subword seg-
mentation algorithm used to construct vocabularies.
ULM begins with a large initial vocabulary that is
iteratively pruned to maximize the likelihood of the
training corpus (under a unigram language model
of the tokens) until the number of tokens falls be-
low some pre-determined vocabulary size thresh-
old, |V |. During tokenization, ULM decodes the
most probable segmentation of a sequence through
the Viterbi algorithm (Viterbi, 1967). This method
is used by both XLM-R and our work.

2.2 Clustering

Chung et al. (2020) proposed an approach to multi-
lingual vocabulary construction that balances the
trade-off between optimizing for cross-lingual sub-
word sharing and the need for robust representation
of individual languages.

Their procedure for building a multilingual vo-
cabulary contains several steps. First, the authors
train individual sentencepiece models for each lan-
guage: for each language l in the set of languages
L, a vocabulary V l is generated. Then, they cre-
ate the shared lexicon V L by taking the union of
each language-specific vocabulary, V L = ∪l∈LV l.
Next, for each language l, they construct a binary
vector vl of dimension |V L| which represents the
lexicon of l. Each component of vl corresponds to
a subword in V L. In other words, the binary vec-
tor vl contains a 1 corresponding to each subword

present in the vocabulary of l. An illustration of
this step is shown in Figure 1. Then, the authors
cluster the binary vectors to group lexically similar
languages together. Finally, they construct a vocab-
ulary for each cluster and combine the per-cluster
vocabularies together to form a unified multilingual
vocabulary.

2.3 Vocabulary allocation
Zheng et al. (2021) proposed the average log proba-
bility (ALP) to evaluate the ability of a vocabulary
to represent a particular language. Specifically,
given a monolingual corpus composed of sentences
Di = {s1, ..., s|Di|} from the i-th language and
tokenized with vocabulary V , the average log prob-
ability is defined as;

ALP (Di, V ) =
1

|Di|

|Di|∑

j=1

|sj |∑

k=1

log puni(s
k
j ) (1)

where skj is the k-th subword of the sentence sj
and puni(·) is the unigram distribution counted on
the monolingual corpus Di. The authors first show
that ALP is highly correlated with downstream task
performance and then propose a greedy algorithm
to determine the desired vocabulary capacity for in-
dividual languages in the multilingual vocabulary.

3 Methodology

3.1 Building the vocabulary
In this subsection, we describe our method for con-
structing multilingual vocabularies. At a high level,
we (1) train individual monolingual sentencepiece
models (SPM) for each language in our dataset
using the Unigram Language Model (ULM) algo-
rithm (Kudo and Richardson, 2018), (2) use the
per-language vocabularies to construct lexical rep-
resentation vectors for each language, (3) cluster
the lexical representation vectors using K-Means,
assign vocabulary capacities for each cluster using
the ALP, and then construct per-cluster vocabular-
ies using the ULM algorithm, and (4) create the
final multilingual vocabulary by taking the union
of the vocabularies for each cluster.

Training monolingual SPMs To acquire the data
for building the vocabulary, we perform sampling
with temperature t = 2 to sample 1 billion lines
of text from CC100 (up-sampling lower-resource
and down-sampling data from high resource lan-
guages). Then, for each language in CC100, we
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Cluster |V c| Languages
c1 174,504 fa, pa, sa, ka, ur, lo, my, ne, am, te, my, th, ta, ko, bn, ml, he, sd, as, hi, km, gu, kn, si, yi, mr, ps, or, xh, ar, ug
c2 102,722 ja, zh-TW, zh-CN
c3 186,881 fi, sk, om, sw, ln, az, lg, uz, so, hy, ss, hu, la, ff, et, ta, wo, lv, ku, te, sc, el, pl, lt, tr
c4 110,148 pt, eu, gl, gn, it, ca, qu, es
c5 24,752 af, li, nl, fy
c6 19,801 hr, sl, bs
c7 101,485 bg, ky, uk, be, kk, sr, mk, ru, mn
c8 279,702 su, jv, tl, sv, tn, no, id, ig, bn, ns, mg, cs, ms, ro, ur, rm, ha, ga, ht, is, eo, gd, br, hi, en, cy, fr, vi, da, yo, de, sq

Table 1: Lexical clustering results for XLM-V with number of clusters k = 8 and a total vocabulary capacity of 1M.

train a language-specific sentencepiece model with
a vocabulary size of 30,000 (per language) using
this data.

{the, of, and, le, la}

{1,   1,   1,   0,  0}

{0,   1,   0,   1,  1}
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Figure 1: Similar to Chung et al. (2020), we also lever-
age the per-language sentencepiece vocabularies as a
“lexical fingerprint” for clustering. However, instead of
using binary vectors, we use the unigram log probability
instead.

Constructing lexical fingerprints We then con-
struct a vector representation of each language us-
ing the vocabularies of each language as shown
in Figure 1. Unlike Chung et al. (2020), where a
language is represented by a binary vector contain-
ing a 1 corresponding to each subword present in
the vocabulary of that language, we instead use the
negative log probability that each token appears
in the respective language’s monolingual corpus.
We hypothesize that weighting each token by its
likelihood of occurring better represents the lexical
fingerprint of a language.

Clustering and capacity allocation Next, we
construct language clusters and train sentencepiece
models for each cluster in order to discourage the
vocabulary sharing between lexically dissimilar
languages. Before training per-cluster sentence-
piece models, we need to first decide on the vo-
cabulary size, or vocabulary capacity, to allocate
to each cluster. Unfortunately, we found that the

method for assigning vocabulary capacities used
by Chung et al. (2020) (i.e. proportionally to the
set union of the per-language vocabularies in each
cluster) resulted in several clusters with deficient
vocabulary capacity. For example, cluster c2 in
Table 1 (a smaller cluster that contains lexically
diverse languages: Chinese Simplified, Chinese
Traditional, and Japanese), was assigned a capacity
of just 28,593 tokens.

We instead use the per-language vocabulary ca-
pacity allocations (Zheng et al., 2021) optimized
for the CC100 dataset. By doing so, the vocabulary
capacity assigned to c2 was increased to 102,722.
For each tail-end (low-resource) language that was
not covered in Zheng et al. (2021), we allocate a
2,000 token vocabulary budget. Rather than use
the vocabulary allocations directly, we take their
relative values and rescale them to sum up to the
vocabulary capacity of our choosing (e.g. 1M, 2M,
etc.). Finally, we perform K-Means clustering with
k = 8, based on experiments from Chung et al.
(2020) showing that k = 8 results in the best per-
formance on downstream tasks. We expect the
ideal number of clusters to vary not based on the
number of languages but rather on the identity of
those languages and their respective similarities to
one another.

The final vocabulary For each resulting cluster,
we train per-cluster sentencepiece models and com-
bine the vocabularies of each cluster into a single
multilingual vocabulary. The final vocabulary con-
sists of 901,629 tokens (remaining 98,371 tokens
overlapped between the 8 clusters), meaning that
on average over 90% of the tokens learned in each
cluster are unique.

3.2 Training the model
To pretrain our model, we follow the same train-
ing procedure from XLM-R (Conneau et al., 2019).
Specifically, we use the CC100 dataset with a sam-
pling temperature of 0.3 to increase the amount
of low- and medium-resource language examples
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seen during training. We use the Adam optimizer
(Kingma and Ba, 2014) with the default (β1, β2)
and ϵ parameters of (0.9, 0.98) and 1e-6, respec-
tively. We use a learning rate of 6e-4, a warmup
of 15,000 steps, a batch size of 8,192 distributed
across 256 A100 GPUs, and train for a total of
1.5M iterations. Each batch consists of examples
concatenated up to the maximum sequence length
of 512. We pretrain the model using the Masked
Language Model (MLM) task (Devlin et al., 2018)
with the standard masking rate of 15%.

Increasing the vocabulary size can significantly
increase pretraining time due to the computation-
ally intensive softmax layer. To address this, prior
works have leveraged approximation tricks such
as adaptive softmax (Baevski and Auli, 2018) and
adaptive inputs (Joulin et al., 2017). However, we
found that these tricks require non-trivial amounts
of tuning and resulted in slower convergence and
increased training instability. In this paper, we per-
form pretraining without any approximation tricks
noting that this method may not be feasible when
the vocabulary is scaled beyond 2M.1

4 Experiment setup

4.1 Baselines

Aside from training XLM-V, we also construct sev-
eral baselines to compare our model against. To
construct our baselines, we first create the respec-
tive vocabularies and then pretrain transformer en-
coders (12-layers, equivalent to XLM-R base) us-
ing these vocabularies. For the rest of the paper,
we will use the following names to refer to the
vocabulary and the model interchangeably.

XLM-R (250K) The XLM-R vocabulary is cre-
ated using the same procedure from (Conneau et al.,
2019) by applying the ULM algorithm described in
Section 2 on a corpus of 1B lines of text sampled
from CC100. The result is a multilingual vocabu-
lary with 250,002 tokens. For our experiments, we
simply re-use the publicly available XLM-R sen-
tencepiece model and pretrained model checkpoint
from fairseq (Ott et al., 2019).

XLM-R (1M) We construct a 1M token vocab-
ulary by following the same approach as XLM-R
(250K) with an increased vocabulary capacity.

1For a model with a vocabulary size of 1M, each iteration
of MLM pretraining took 2.5 times longer than the same model
with a 250K token vocabulary.

Chung et al. (2020) (1M) We create a 1M token
vocabulary using the lexical clustering approach
from Chung et al. 2020 as described in Section 2.

4.2 Datasets
CC100 (Conneau et al., 2019) is a multilingual
corpus created from one Common Crawl dump for
English and twelve dumps for all other languages.
The resulting corpus contains 2.5 TB of data split
between 116 languages. We use this dataset exclu-
sively for constructing vocabularies and pretraining
our models.

FLoRes-200 (Goyal et al., 2022) is an evalua-
tion corpus consisting of 3,001 sentences extracted
from 842 English Wikipedia articles and covering
a variety of different topics and domains. These
sentences have been translated into 200 languages
by professional translators through a carefully con-
trolled process.

XNLI (Conneau et al., 2018) asks whether a
premise sentence entails, contradicts, or is neu-
tral toward a hypothesis sentence. Crowd-sourced
English data is translated to 10 other languages by
professional human translators and used for evalua-
tion, while the Multi-Genre Natural Language In-
ference Corpus (MultiNLI) (Williams et al., 2018)
data is used for training.

MLQA (Lewis et al., 2019) 2 is a QA evalua-
tion dataset created by mining target language sen-
tences that are parallel to sentences in English from
Wikipedia, crowd-sourcing annotations in English,
and translating the question and aligning the answer
spans in one of the 6 target languages. It consists
of over 12K QA instances in English and 5K in
each other language. The training set of MLQA is
SQuAD v1.1 (Rajpurkar et al., 2016).

XQuAD (Artetxe et al., 2019) translates the dev
set of SQuAD v1.1 into 10 other languages through
professional translators. The resulting dataset is
used for evaluation. The training set of XQuAD is
SQuAD v1.1.

TyDiQA-GoldP (Clark et al., 2020) is a question
answering (QA) dataset covering 11 typologically
diverse languages with 200K QA pairs. Questions

2For the question answering tasks, instead of validating
the selected spans after retrieving the n-best answers, we pro-
pose to only retrieve n-best answer spans that are valid (e.g.
span start and end indices are part of the passage context).
This change improves QA performance for both the baseline
models and XLM-V.
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Model XNLI NER MLQA TyDiQA XQuAD ANLI MNER Average
Acc. Acc. EM / F1 EM / F1 EM / F1 F1 F1

XLM 69.1 - 32.6 / 48.5 29.1 / 43.6 44.3 / 59.8 - - -
XLM-R 76.2 - 46.3 / 63.7 - / - - / - 38.5 - -

XLM-R reimpl. 74.9 61.3 46.7 / 64.4 38.3 / 56.0 56.0 / 71.3 39.6 20.9 55.5
XLM-V 76.0 64.7 47.7 / 66.0 39.7 / 56.9 56.3 / 71.9 45.4 32.1 59.0

Table 2: Overall results across multiple multilingual datasets comparing our model against the XLM and XLM-R
baselines. All results are based on crosslingual transfer after fine-tuning on English data. We computed the average
result using the accuracy or F1 of each task. “reimpl” is our re-implementation of finetuning, used by both XLM-R
and XLM-V. Please refer to the appendix for specific hyperparameters to reproduce each result. EM stands for exact
match. ANLI refers to AmericasNLI and MNER refers to MasakhaNER.

in TyDiQA are written without seeing the answers
leading to significantly less lexical overlap than
XQuAD or MLQA. The languages of TyDiQA are
selected to be diverse with regard to their typology.
We use the gold passage version of the Typologi-
cally Diverse Question Answering dataset.

NER (Pan et al., 2017) consists of 48 languages
and is based on the WikiAnn (PAN-X) dataset.
Named entities were automatically annotated with
LOC, PER, and ORG tags through knowledge
base properties, crosslingual and anchor links, self-
training, and data selection. Similar to (Hu et al.,
2020), we use the balanced dev and test splits from
Rahimi et al. (2019).

Americas NLI (Ebrahimi et al., 2021) is an ex-
tension of XNLI to 10 indigenous languages of
the Americas constructed by translating a subset of
XNLI using human translators. These languages
contain interesting linguistic features such as a rich
system of applicative suffixes (Asháninka), direc-
tional verbs (Bribri), and nominal incorporation
(Wixarika). Presently, these languages are written,
spoken, and used in an official capacity by tens of
thousands to several million people in Central and
Southern America. The training set of Americas
NLI is MultiNLI.

MasakhaNER (Adelani et al., 2021) is the first
large, publicly available, and high-quality dataset
for named entity recognition (NER) in ten African
languages including Amharic, Hausa, Igbo, and
others. The languages covered in this dataset have
varied scripts and range from 4M to 98M speakers
in regions across East, West, Central, and North-
west Africa.

5 Results

5.1 Comparisons using partial training
We first perform a study to measure the impact of
our new vocabulary on downstream performance.
Specifically, we pretrain a 12-layer transformer en-
coder model using Masked Language Modeling
on the CC100 corpus for each baseline as well as
for our proposed method. Because pretraining is
expensive, we limit the batch size to 2,048 and the
number of total steps to 300,000 for these experi-
ments. The results in Figure 2 show that our model
outperforms all baselines on XNLI including XLM-
R (1M) by 1.34% and Chung et al. (2020) by 1.11%
absolute accuracy.

Figure 2: We compare the performance of the same
model trained with different sentencepiece vocabularies.
The models are all trained for 300K iterations with a
batch size of 2,048 on the CC100 corpus.

5.2 Fully trained model
We evaluate an XLM-V (1M) model, trained on
CC100 for 1.5M iterations with a batch size of
8,192, on several tasks including natural language
inference (XNLI), question answering (MLQA,
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Model en fr es de el bg ru tr ar vi th zh hi sw ur AVG
Finetune multilingual model on English training set (Cross-lingual Transfer)

XLM-R reimpl. 85.4 78.5 79.1 77.7 76.1 78.1 76.3 73.9 72.3 75.6 73.0 74.9 70.5 65.8 66.5 74.9
XLM-V 85.6 79.6 79.5 78.4 76.9 79.6 76.6 74.0 73.1 76.2 73.0 75.1 72.0 70.5 69.4 76.0

Finetune multilingual model on all training sets (Translate-Train-All)

XLM-R reimpl. 85.4 81.5 82.0 80.7 80.2 81.2 78.9 78.4 77.6 79.9 77.6 79.5 75.8 73.4 72.3 79.0
XLM-V 85.6 81.5 82.1 81.5 80.7 81.5 79.6 78.7 77.6 80.0 77.7 79.5 77.0 74.3 73.9 79.4

Table 3: XLM-V outperforms XLM-R on cross-lingual transfer on every language in XNLI with outsized improve-
ments on the lower-resource languages, Swahili and Urdu. We observe similar improvements on translate-train-all.
The model is trained for 12 epochs (2 epochs for translate-train-all) on 8 A100 GPUs with float16 precision. We use
a learning rate of 7.5e-6 with a max sequence length of 256, a batch size of 16, no weight decay, and no warmup.

Model aym bzd cni gn hch nah oto quy shp tar AVG
XLM-R reimpl. 36.6 39.6 40.5 41.6 38.8 40.2 39.4 38.7 42.7 37.6 39.6
XLM-V 39.9 41.5 41.7 58.8 40.7 44.7 42.1 56.9 46.5 41.2 45.4

Tok. Length (rel.) -10.8% -11.6% -11.9% -16.5% -6.5% -10.7% -8.4% -18.4% -10.9% -9.1% -11.5%

Table 4: We show the zero-shot cross-lingual transfer results on Americas NLI (trained on English and evaluated on
the unseen languages). Our model, XLM-V, outperforms XLM-R by a wide margin with outsized improvements
on Quechua and Guaraní. Tok. Length (rel.) refers to the relative difference in the average number of tokens
(post-tokenization) between XLM-R and XLM-V. XLM-V consistently outputs shorter sequences post-tokenization.
The model is trained for 12 epochs on 8 A100 GPUs with float16 precision. We use a learning rate of 7.5e-6 with a
max sequence length of 256, batch size of 16, no weight decay, and no warmup.

TyDiQA, and XQuAD), named enitity recogni-
tion (WikiAnn), and low resource language tasks
(AmericasNLI, MasakhaNER). All tasks leverage
crosslingual transfer from English-only finetuning
and are trained using float16 precision with the
AdamW optimizer (Loshchilov and Hutter, 2017).
We use hyperparameters selected based on the best
English performance on the dev set,3 and finally
evaluate on the test set. We compile all of our re-
sults in Table 2 for XLM-V and XLM-R. We also
include results for XLM (Lample and Conneau,
2019) for additional context.

Table 2 shows that XLM-V outperforms our re-
implementation of XLM-R on all datasets by an
average of 3.5 points absolute (we compute the av-
erage result using either the accuracy or F1 of each
task). In Table 3, we show that XLM-V outper-
forms XLM-R on all languages in cross-lingual
transfer (training on English and evaluating on
other languages) with similar improvements on
translate-train-all (finetuning the model on both
the English and translated training sets). In particu-
lar, we find that XLM-V consistently outperforms
XLM-R on low-resource languages. For exam-
ple, in Table 3, we observe a 4.7% and 2.9% accu-

3For tasks trained on MNLI we follow Conneau et al.
(2019) and select the checkpoint with the best average perfor-
mance across all languages.

racy improvement on Swahili (sw) and Urdu (ur)
on XNLI. Similarly, we show an average gain of
11.2% F1 on MasakhaNER, a low-resource African
language NER dataset.

In Table 4 we show that XLM-V not only con-
sistently outperforms XLM-R on Americas NLI
in zero-shot crosslingual transfer but is able to ob-
tain 18.2% absolute F1 improvement on Quechua
(quy) and 17.2% absolute improvement on Guaraní
(gn). Interestingly, Quechua and Guaraní are also
the two languages with the largest relative drop in
average token count per sentence – suggesting that
these languages are over-tokenized by XLM-R.

6 Analysis

6.1 The Zipf ceiling

We explored training models with vocabulary sizes
greater than 1M tokens but found that these models
perform comparatively worse on downstream tasks.
We visualize the diminishing utility of increasing
the vocabulary size in Figure 3. Specifically, we
create vocabularies with 500K, 1M, 1.5M, and 2M
tokens using our methodology. Then, we use these
vocabularies to tokenize the FLoRes-200 dataset.
For vocabulary sizes of 500K, 1M, and 2M, we find
that 99% of the content is covered by just 140,337,
197,817, and 243,832 unique tokens, respectively.
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Language Tokenizer Tokenized Output

zh

Original Sentence 剑桥大学本科生和研究生
XLM-R (250K) [’剑’, ’桥’, ’大学’, ’本科’, ’生’, ’和’, ’研究生’]
XLM-R (1M) [’剑’, ’桥’, ’大学’, ’本’, ’科’, ’生’, ’和’, ’研究’, ’生’]
Chung et al. (2020) (1M) [’剑桥’, ’大学本科’, ’生’, ’和’, ’研究生’]
XLM-V (1M) [’剑桥大学’, ’本科生’, ’和’, ’研究生’]

en, fr, es

Original Sentence narcolepsy narcolepsie narcolepsia
XLM-R (250K) [’na’, ’r’, ’cole’, ’psy’] [’na’, ’r’, ’cole’, ’psi’, ’e’] [’na’, ’r’, ’cole’, ’psi’, ’a’]
XLM-R (1M) [’na’, ’rcole’, ’psy’] [’na’, ’rcole’, ’psie’] [’na’, ’rcole’, ’psia’]
Chung et al. (2020) (1M) [’na’, ’rcole’, ’psy’] [’narco’, ’lepsi’, ’e’] [’na’, ’rcole’, ’psia’]
XLM-V (1M) [’narco’, ’le’, ’psy’] [’narco’, ’lepsi’, ’e’] [’narco’, ’lepsi’, ’a’]

de

Original Sentence Betäubungsmittelverschreibungsverordnung
XLM-R (250K) [’Be’, ’tä’, ’ub’, ’ungs’, ’mittel’, ’ver’, ’schreibung’, ’s’, ’ver’, ’ordnung’]
XLM-R (1M) [’Be’, ’tä’, ’ub’, ’ungsmittel’, ’ver’, ’schreibung’, ’s’, ’verordnung’]
Chung et al. (2020) (1M) [’Bet’, ’äub’, ’ungsmittel’, ’ver’, ’schreibung’, ’sverordnung’]
XLM-V (1M) [’Bet’, ’äub’, ’ungsmittel’, ’ver’, ’schreibung’, ’sverordnung’]

Table 5: We provide examples comparing tokenization using the XLM-V vocabulary against baselines. We find
that our sentencepiece model reduces overtokenization and can be surprisingly good at splitting sentences into
pseudo-meaningful segments out-of-the-box.

Model vi zh fr de en xho tel AVG
XLM-R (250K) 34.3 28.5 37.5 33.9 29.1 43.9 38.8 43.6

XLM-R (1M) 33.5 31.7 34.8 31 26.8 40.3 41.6 41.4
Chung et al. (2020) (1M) 32.7 24.4 32.9 29.1 27.8 29.2 25.7 37.7
XLM-V (1M) 32.4 23.4 32.2 28.3 25.5 37.4 33.2 38.6

Table 6: Average number of tokens after tokenization on the FLoRes-200 dataset for several high, medium, and low
resource languages. AVG denotes the average tokenized lengths per sentence across all 200 languages in Flores-200.

Figure 3: We compare the token utilization of each
sentencepiece vocabulary on the FLoRes-200 dataset.
We see diminishing returns as the size of the vocabulary
is increased beyond 1M tokens.

We hypothesize that since the Unigram LM
(Kudo and Richardson, 2018) algorithm used to
construct the vocabulary iteratively prunes a large
initial set, as discussed in Section 2, further expand-
ing the vocabulary is equivalent to inheriting tokens
from the long tail of a Zipfian distribution. These

token embeddings are problematic because they are
trained on significantly less data during the course
of MLM pretraining and will learn sub-optimal rep-
resentations as a result. As a consequence, vocab-
ularies past a certain size will cease to improve
model performance and can potentially degrade
it. A clear example of this is shown in Figure 2
where our model with a 1M token vocabulary out-
performs its 1.5M token counterpart trained using
an equivalent amount of data.

6.2 Qualitative improvements in tokenization

Table 5 shows a few tokenized examples from
Chinese (zh), English (en), French (fr), Span-
ish (es), and German (de). For languages in the
same cluster (en, fr, es), our method can sep-
arate shared roots (e.g. narco) from the same
word in different languages. Notably, our method
demonstrates a surprising ability to segment Chi-
nese out-of-the-box, parsing out individual entities
in the original phrase. For example, the XLM-
V tokenizer is able to meaningfully break down
the phrase 剑桥大学本科生和研究生, trans-
lated as Cambridge University undergraduates
and postgraduates. Specifically, the output of the
XLM-V tokenizer is剑桥大学(Cambridge Univer-
sity),本科生(undergraduates),和(and), and研究
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生(postgraduates). Qualitatively, our tokenizer
frequently performs tokenizations that are se-
mantically meaningful, one possible contributor
to the improved downstream performance.

6.3 Over-tokenization

Representing input data with fewer tokens can
speed up inference, allow the model to make use
of longer context, and help with over-tokenization
for low-resource languages (Rust et al., 2020). Ta-
ble 6 shows the average number of resulting to-
kens (post-tokenization) for several languages in
FLoRes-200. On average, the XLM-V tokenizer
returns fewer tokens for high and medium resource
languages while Chung et al. (2020) returns the
fewest tokens for low-resource languages. Overall,
XLM-V returns 11.5% fewer tokens compared
to the baseline XLM-R tokenizer, meaning that
input sequences are on average 11.5% shorter.

Figure 4: We track training speed vs. vocabulary size
using a typical training setup on XNLI: one A100 GPU,
a batch size of 16, sequence length of 128, and float16
precision. The text above each point denotes the vocab-
ulary size.

6.4 Speed vs. size

For XLM-R, which has a vocabulary size of 250K
tokens, the vocabulary embedding matrix contains
77% of the model’s trainable parameters. For XLM-
V, the 1M token vocabulary accounts for 93% of
the model’s trainable parameters. While scaling
the vocabulary can markedly increase the number
of trainable parameters in a model, we can treat it
as an efficient form of conditional compute (Ben-
gio et al., 2015): only a small fraction of the em-
bedding matrix is used for any given input. We
illustrate the relationship between the vocabulary
size and training speed in Figure 4. By increasing
the vocabulary from 250K to 1M tokens, we can

increase the number of trainable parameters by
3.3x with just a 25% increase in training time.

7 Related work

7.1 Vocabulary-free models

In recent years, vocabulary-free models like ByT4
(Xue et al., 2022) and CANINE (Clark et al.,
2022) have demonstrated on-par or better perfor-
mance compared to their subword tokenization-
based counterparts. However, one consistent draw-
back of these models is slower training and infer-
ence speed. For example, ByT5 is 6.4 to 9.5 times
slower than mT5 (Xue et al., 2020) on classifica-
tion tasks like XNLI. CANINE fares better, leverag-
ing optimizations like lower input character dimen-
sions and heavy down sampling, but still remains
approximately 1.6 times slower than a comparable
BERT baseline. On the other hand, simply using a
larger sentencepiece vocabulary can improve down-
stream performance, increase the capacity of the
model, and reduce the over-tokenization and cov-
erage of low-resource languages all with a smaller
impact on inference latency. We believe that both
directions are useful areas of research and can be
explored simultaneously.

7.2 Building larger vocabularies

Prior work on vocabulary expansion (Wang et al.,
2019) sought to augment the vocabulary of exist-
ing models to address out-of-vocabulary (OOV)
problems in multilingual settings. While these re-
sults are potentially useful in augmenting subword
models like BERT, sentencepiece models by nature
encounter significantly fewer OOVs.

More recent work on building larger vocabular-
ies (Chung et al., 2020; Zheng et al., 2021) leverage
tricks like lexical clustering and more principled
methods for vocabulary allocation have tackled is-
sues with over-tokenization and vocabulary cover-
age for low-resource languages. While compelling,
these works are unfortunately limited by data (the
models are trained on Wikipedia, a relatively small
pretraining corpus) and scale (the largest vocab-
ulary explored was 500K, only twice the size of
the vocabulary in XLM-R). As such, the result-
ing models significantly under-perform the pub-
lic XLM-R baseline. Our work seeks to combine
and improve upon existing methods for building
large-scale vocabularies, pretrain with substantially
bigger datasets, and explore vocabularies of 1M
tokens and beyond.
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8 Conclusion

In this paper, we presented XLM-V, a multilingual
language model with a 1M token vocabulary. We
showed that our model outperforms XLM-R, has
outsized gains on tasks in low-resource languages,
results in semantically meaningful tokenizations,
reduces average sequence length, and serves as an
efficient form of conditional compute. In the fu-
ture, we would like to further investigate the Zipf
ceiling discussed in Section 6 by increasing the vo-
cabulary beyond 2M tokens while also using more
data. Another possible direction for future work
is to explore larger multilingual vocabularies for
autoregressive language models. Finally, further
exploration with different clustering methods such
as hierarchical clustering may prove both interest-
ing and effective.

Limitations

While the strengths of XLM-V are clear, there re-
mains several scalability issues that are notable.
First, while scaling the vocabulary is an efficient
form of conditional compute, it can result in in-
creased pre-training times due to the computational
complexity of the softmax over the entire vocab-
ulary. We believe these issues can be solved by
adopting approximation techniques like adaptive
softmax (Joulin et al., 2017) and adaptive inputs
(Baevski and Auli, 2018). Additionally, scaling
the vocabulary can also significantly increase the
memory footprint of a model. However, we believe
memory-related issues become less of a problem
as we begin to work with larger models, where
the number of non-embedding parameters vastly
outweigh the size of the vocabulary embedding
matrix.
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Model en es de ar hi vi zh AVG
XLM-R reimpl. 65.9 / 78.7 50.4 / 67.7 47.6 / 62.2 36.8 / 55.8 42.1 / 59.3 45.2 / 65.2 37.8 / 60.7 46.5 / 64.2

XLM-V 67.5 / 80.4 51.1 / 69.4 49.8 / 64.3 38.1 / 58.2 44.5 / 62.7 46.4 / 67.2 36.3 / 59.9 47.7 / 66.0

Table 7: MLQA results (EM/F1). The model is trained for 2 epochs on a single A100 GPU with float16 precision.
We use a learning rate of 3e-5 with a max sequence length of 512, batch size of 6, no weight decay, and no warmup.

Model en ar bn fi id ko ru sw te AVG
XLM-R reimpl. 55.5/68.6 42.0/63.9 18.6/37.6 42.8/61.6 54.7/73.1 23.6/39.9 31.5/59.9 30.7/54.1 27.5/44.3 36.3/55.9

XLM-V 52.3/66.9 45.4/65.5 27.4/42.7 46.0/63.6 56.1/72.3 22.8/37.4 31.5/59.3 43.1/61.4 32.4/43.2 39.7/56.9

Table 8: TyDiQA-GoldP results (EM/F1). The model is trained for 8 epochs on a single A100 GPU with float16
precision. We use a learning rate of 3e-5 with a max sequence length of 512, batch size of 6, no weight decay, and
no warmup.

Model en es de el ru tr
XLM-R reimpl. 72.1 / 83.5 58.5 / 76.5 57.6 / 73.0 55.4 / 72.2 56.6 / 73.1 52.2 / 68.3
XLM-V 72.9 / 84.2 60.3 / 78.1 57.3 / 75.1 53.5 / 72.4 56.0 / 73.2 51.8 / 67.5

ar vi th zh hi AVG
XLM-R reimpl. 49.2 / 65.9 53.5 / 72.9 55.7 / 66.3 55.5 / 65.3 49.8 / 57.7 56.0 / 71.3
XLM-V 51.2 / 67.5 53.7 / 73.1 56.9 / 67.0 53.5 / 63.1 51.9 / 69.4 56.3 / 71.9

Table 9: XQuAD Results (EM/F1). The model is trained for 2 epochs on a single A100 GPU with float16 precision.
We use a learning rate of 3e-5 with a max sequence length of 512, batch size of 6, no weight decay, and no warmup.

Model ro gu pa lt az uk pl qu hu fi et tr kk zh my yo sw
XLM-R reimpl. 73.5 62.9 53.6 72.7 61.0 72.4 77.5 60.4 75.8 74.4 71.2 75.4 42.2 25.3 48.9 33.6 66.3
XLM-V 73.8 66.4 48.7 75.6 66.7 65.7 79.5 70.0 79.5 78.7 75.0 77.3 50.4 30.2 61.5 54.2 72.4

th ko ka ja ru bg es pt it fr fa ur mr hi bn el de
XLM-R reimpl. 5.2 49.4 65.4 21.0 63.1 76.1 70.2 77.0 76.9 76.5 44.6 51.4 61.5 67.2 69.0 73.8 74.4
XLM-V 3.3 53.0 69.5 22.4 68.1 79.8 74.5 80.5 78.7 77.6 50.6 48.9 59.8 67.3 72.6 76.7 76.8

en nl af te ta ml eu tl ms jv id vi he ar AVG
XLM-R reimpl. 83.0 80.0 75.83 49.2 56.3 61.9 57.2 69.8 68.3 59.4 48.6 67.7 53.2 43.8 61.3
XLM-V 83.4 81.4 78.3 51.8 54.9 63.1 67.1 75.6 70.0 67.5 52.6 67.1 60.1 45.8 64.7

Table 10: NER Results. The model is trained for 10 epochs on a single A100 GPU with float16 precision. We use a
learning rate of 2e-5 with a max sequence length of 128, batch size of 32, no weight decay, and no warmup.

Model amh hau ibo kin lug luo pcm swa wol yor AVG
XLM-R reimpl. 25.1 43.5 11.6 9.4 9.5 8.4 36.8 48.9 5.3 10.0 20.9
XLM-V 20.6 35.9 45.9 25.0 48.7 10.4 38.2 44.0 16.7 35.8 32.1

Table 11: We show the zero-shot cross-lingual transfer results on MasakhaNER (trained on English and evaluated
on the unseen languages). The model is trained for 10 epochs on a single A100 GPU with float16 precision. We use
a learning rate of 2e-5 with a max sequence length of 128, batch size of 32, no weight decay, and no warmup.
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