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Abstract

Table of contents (ToC) extraction centres on
structuring documents in a hierarchical man-
ner. In this paper, we propose a new dataset,
ESGDoc, comprising 1,093 ESG annual reports
from 563 companies spanning from 2001 to
2022. These reports pose significant challenges
due to their diverse structures and extensive
length. To address these challenges, we pro-
pose a new framework for Toc extraction, con-
sisting of three steps: (1) Constructing an initial
tree of text blocks based on reading order and
font sizes; (2) Modelling each tree node (or text
block) independently by considering its con-
textual information captured in node-centric
subtree; (3) Modifying the original tree by tak-
ing appropriate action on each tree node (Keep,
Delete, or Move). This construction-modelling-
modification (CMM) process offers several ben-
efits. It eliminates the need for pairwise mod-
elling of section headings as in previous ap-
proaches, making document segmentation prac-
tically feasible. By incorporating structured
information, each section heading can leverage
both local and long-distance context relevant
to itself. Experimental results show that our
approach outperforms the previous state-of-the-
art baseline with a fraction of running time. Our
framework proves its scalability by effectively
handling documents of any length.1

1 Introduction

A considerable amount of research has been pro-
posed to comprehend documents (Xu et al., 2019;
Zhang et al., 2021; Xu et al., 2021a,b; Peng et al.,
2022; Li et al., 2022; Gu et al., 2022; Shen et al.,
2022; Lee et al., 2022, 2023) , which typically
involves the classification of different parts of a
document such as title, caption, table, footer, and
so on. However, such prevailing classification of-
ten centres on a document’s local layout structure,
sidelining a holistic comprehension of its content

1Available at https://github.com/xnyuwg/cmm.

and organisation. While traditional summarisation
offers a concise representation of a document’s
content, a Table of Contents (ToC) presents a struc-
tured and hierarchical summary. This structural
organisation in a ToC provides a comprehensive
pathway for pinpointing specific information. For
example, when seeking information about a com-
pany’s carbon dioxide emissions, a ToC enables
a systematic navigation through the information
hierarchy. In contrast, conventional summarisa-
tion might only provide a vague indication of such
information, requiring sifting through the entire
document for precise detail.

Several datasets have been proposed to facilitate
the research in document understanding (Zhong
et al., 2019b; Li et al., 2020; Pfitzmann et al., 2022).
Most of these studies lack a structured construc-
tion of documents and primarily focus on well-
structured scientific papers. A dataset called Hier-
Doc (Hierarchical academic Document) (Hu et al.,
2022) was introduced to facilitate the development
of methods for extracting the table of contents
(ToC) from documents. This dataset was compiled
from scientific papers downloaded from arXiv2,
which are typically short and well-structured. The
hierarchical structure can often be inferred directly
from the headings themselves. For example, the
heading “1. Introduction” can be easily identified
as a first-level heading based on the section number-
ing. Moreover, due to the relatively short length of
scientific papers, it is feasible to process the entire
document as a whole. Hu et al. (2022) proposed
the multimodal tree decoder (MTD) for ToC extrac-
tion from HierDoc. MTD first utilises text, visual,
and layout information to encode text blocks identi-
fied by a PDF parser; then classifies all text blocks
into two categories, headings and non-headings;
and finally predicts the relationship of each pair of
headings, facilitating the parsing of these headings
into a tree structure representing ToC.

2https://arxiv.org/
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Figure 1: Five examples of ESG reports, with the left three presented in portrait orientation and the right-most two
in landscape orientation. They show a wide range of diverse structures. It is common to observe the absence of
section numbering.

However, understanding long documents such
as ESG (Environmental, Social, and Governance)
annual reports poses significant challenges com-
pared to commonly used scientific papers. First,
ESG reports tend to be extensive, often exceed-
ing 100 pages, which is uncommon for scientific
papers. Second, while scientific papers generally
adhere to a standard structure that includes abstract,
introduction, methods, results, discussion, and con-
clusion sections, ESG reports exhibit more diverse
structures with a wide range of font types and sizes.
Third, ESG reports often include visual elements
such as charts, graphs, tables, and infographics to
present data and key findings in a visually appeal-
ing manner, which adds complexity to the docu-
ment parsing process. Some example ESG reports
are illustrated in Figure 1.

In this paper, we develop a new dataset, ESGDoc,
collected from public ESG annual reports3 from
563 companies spanning from 2001 to 2022 for
the task of ToC extraction. The existing approach,
MTD (Hu et al., 2022), faces difficulties when deal-
ing with challenges presented in ESGDoc. MTD
models relationships of every possible heading
pairs and thus requires the processing of the entire
document simultaneously, making it impractical
for lengthy documents. As will be discussed in our
experiments section, MTD run into out-of-memory
issue when processing some lengthy documents in
ESGDoc. Moreover, MTD only uses Gated Recur-
rent Unit (GRU) (Cho et al., 2014) to capture the
context of a section heading, lacking long-distance
interaction, particularly for high-level headings that
may be tens of pages apart.

3https://www.responsibilityreports.com/

In order to overcome the challenges presented
in ESGDoc, we propose a new scalable framework,
consisting of three main steps: (1) Constructing an
initial tree of text blocks based on reading order
and font sizes; (2) Modelling each tree node (or
text block) independently by considering its contex-
tual information captured in node-centric subtree;
(3) Modifying the original tree by taking appro-
priate action on each tree node (Keep, Delete, or
Move). Our method is named as CMM (Construction-
Modelling-Modification).

This approach allows higher-level headings to
focus on capturing high-level and long-distance in-
formation, while lower-level headings focus more
on local information. Additionally, CMM also mod-
els each heading independently, removing the need
for modelling pairwise relationships among head-
ings and enabling more effective document seg-
mentation. Here, we can divide documents based
on the tree structure instead of relying on page di-
visions. This ensures that each segment maintains
both local and long-distance relationships, preserv-
ing the long-distance connections that would be
lost if division were based on page boundaries. As
CMM does not require the processing of a document
as a whole, it can be easily scaled to deal with
lengthy documents. Experimental results show that
our approach outperforms the previous state-of-the-
art baseline with only a fraction of running time,
verifying the scalability of our model as it is ap-
plicable to documents of any length. Our main
contributions are summarised as follows:

• We introduce a new dataset, ESGDoc, com-
prising 1,093 ESG annual reports specifically
designed for table of contents extraction.
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• We propose a novel framework that pro-
cesses documents in a construction-modelling-
modification manner, allowing for the decou-
pling of each heading, preserving both local
and long-distance relationships, and incorpo-
rating structured information.

• We present a novel graph-based method for
document segmentation and modelling, en-
abling the retention of both local and long-
distance information within each segment.

2 Related Work

Datasets Many datasets have been proposed
for document understanding. PubLayNet dataset
(Zhong et al., 2019b) is a large-scale dataset col-
lected from PubMed Central Open Access, which
uses scientific papers in PDF and XML versions for
automatic document layout identification and anno-
tation. Article-regions dataset (Soto and Yoo, 2019)
offers more consistent and tight-fitting annotations.
DocBank dataset (Li et al., 2020) leverages the la-
tex source files and font colour to automatically an-
notate a vast number of scientific papers from arXiv.
DocLayNet dataset (Pfitzmann et al., 2022) extends
the scope from scientific papers to other types of
documents. However, these datasets primarily con-
tain annotations of the type and bounding box of
each text, such as title, caption, table, and figure,
but lack structured information of documents.

Approaches for Document Understanding In
terms of methods for document understanding, a
common approach is the fusion of text, visual, and
layout features (Xu et al., 2019; Zhang et al., 2021;
Xu et al., 2021a,b; Peng et al., 2022; Li et al., 2022),
where visual features represent images of texts and
the document, and layout features comprise bound-
ing box positions of texts. Some methods also
introduced additional features. For instance, XY-
LayoutLM (Gu et al., 2022) incorporates the read-
ing order, VILA (Shen et al., 2022) utilises visual
layout group, FormNet (Lee et al., 2022, 2023)
employs graph learning and contrastive learning.
The aforementioned methods focus on classifying
individual parts of the document rather than under-
standing the structure of the entire document.

Table of Contents (ToC) Extraction In addition
to document understanding, some work has been
conducted on the extraction of ToC. Early meth-
ods primarily relied on manually designed rules
to extract the structure of documents (Nambood-

iri and Jain, 2007; Doucet et al., 2011). Tuarob
et al. (2015) designed some features and use Ran-
dom Forest (Breiman, 2001) and Support Vector
Machine (Bishop and Nasrabadi, 2006) to predict
section headings. Mysore Gopinath et al. (2018)
propose a system for section titles separation. MTD
(Hu et al., 2022) represents a more recent approach,
fusing text, visual, and layout information to detect
section headings from scientific papers in the Hi-
erDoc (Hu et al., 2022) dataset. It also uses GRU
(Cho et al., 2014) and attention mechanism to clas-
sify the relationships between headings, generating
the tree of ToC. While MTD performs well on Hi-
erDoc, it requires modelling all headings in the
entire document simultaneously, which is impracti-
cal for long documents. To address this limitation,
we propose a new framework that decouples the
relationships of headings for ToC extraction and
introduces more structural information by utilis-
ing font size and reading order, offering a more
practical solution for long documents.

3 Dataset Construction

To tackle the more challenging task of ToC extrac-
tion from complex ESG reports, we construct a new
dataset, ESGDoc, from ResponsibilityReports.com4.
Initially, we have downloaded 10,639 reports in the
PDF format. However, only less than 2,000 reports
have ToC in their original reports. To facilitate the
development of an automated method for ToC ex-
traction from ESG reports, we selectively retrain
reports that already possess a ToC. The existing
ToC serves as the reference label for each ESG re-
port, while the report with the ToC removed is used
for training our framework specifically designed
for ToC extraction.

Our final dataset comprises 1,093 publicly avail-
able ESG annual reports, sourced from 563 distinct
companies, and spans the period from 2001 to 2022.
The reports vary in length, ranging from 4 pages to
521 pages, with an average of 72 pages. In contrast,
HierDoc (Hu et al., 2022) has a total of 650 scien-
tific papers, which have an average of 19 pages in
length. We randomly partitioned the dataset into
a training set with 765 reports, a development set
with 110 reports, and a test set with 218 reports.

Text content from ESG reports was extracted us-
ing PyMuPDF5 in a format referred to as “block”.
A block, defined as a text object in the PDF stan-

4https://www.responsibilityreports.com/
5https://pymupdf.readthedocs.io/
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dard, which is usually a paragraph, can encompass
multiple lines of text. We assume that the text
within a text object is coherent and should be inter-
preted as a cohesive unit. Each block comprises the
following elements: text content, font, size, colour,
position, and id. The id is a unique identifier as-
signed to each block to distinguish blocks that con-
tain identical text content. The position refers to the
position of the block within a page in the ESG PDF
report, represented by four coordinates that denote
the top-left and bottom-right points of the block
bounding box. Other elements, such as font, size,
and colour, provide additional information about
the text.

4 Methodology

We propose a framework for ToC extraction based
on the following assumptions:

Assumption 1 Humans typically read documents
in a left-to-right, top-to-bottom order, and a higher-
level heading is read before its corresponding sub-
heading and body text.

Assumption 2 In a table of contents, the font size
of a higher-level heading is no smaller than that of
a lower-level heading or body text.

Assumption 3 In a table of contents, headings of
the same hierarchical level share the same font size.

In our task, a document is defined as a set of
blocks. To replicate the reading order of humans,
we reorder the blocks from the top-left to the
bottom-right of the document. We employ the XY-
cut algorithm (Ha et al., 1995) to sort the blocks.
The sorted blocks are denoted as {xi}nb

n=1, where
{x<i} precedes xi and {x>i} follows xi. Here, nb

represents the total number of blocks. For each
block xi, we define si as its size.

Problem Setup Given a list of blocks, ToC ex-
traction aims to generate a tree structure represent-
ing the table of contents, where each node corre-
sponds to a specific block x. We introduce a pseudo
root node r as the root of the ToC tree.

We propose to initially construct a full tree con-
taining all the blocks, where the hierarchical rela-
tion between blocks is simply determined by their
respective font sizes. Specifically, when two blocks,
xi and xj , are read in sequence, if they are close
to each other and their font sizes si > sj , then xj
becomes a child of xi. We then modify the tree by
removing or rearranging nodes as necessary. Es-
sentially, for a node (i.e., a block) xi, we need to

learn a function which determines the operation
(‘Keep’, ‘Delete’, or ‘Move’) to be performed on
the node. In order to enable document segmenta-
tion and capture the contextual information relating
to the node, our approach involves extracting a sub-
tree encompassing its neighbourhood including the
parent, children and siblings, within a range of nd

hops. Subsequently, we use Graph Attention Net-
works (GATs) (Brody et al., 2021; Velickovic et al.,
2017) to update the node information within the
subtree. An overview of our proposed framework
is illustrated in Figure 2.

Before delving into the detail of our proposed
framework, we first define some notations relating
to node operations. PA(xi) as the parent node
of node xi, PR(xi) as the preceding sibling node
of xi. SU(xi) as the subsequent sibling node of
xi. We also define PRS(xi) as all the preceding
sibling nodes of xi.

4.1 Tree Construction

We first construct a complete tree T , consisting
of all identified blocks using PyMuPDF, based on
reading order and font sizes. For each node xi, we
find a node in its previous nodes xj ∈ {x<i} that
is closest to xi and sj > si. Then xi becomes a
child of xj . A detailed algorithm is in Appendix A.
Following the principles outlined in Assumptions 1,
2 and 3, this approach assumes that the ToC is
contained within the tree structure, as shown in
the top-left portion of Figure 2. The subsequent
steps of our model involve modifying this tree T
to generate the ToC.

4.2 Tree Modelling

In this section, for a given tree node, we aim to
learn a function which takes the node representa-
tion as input and generates the appropriate opera-
tion for the node. In what follows, we first describe
how we encode the contextual information of a
node, and then present how to learn node represen-
tations.

Node-Centric Subtree Extraction To effec-
tively encode the contextual information of a tree
node and to avoid processing the whole document
in one go, we propose to extract a node-centric sub-
tree, ti, a tree consisting of neighbourhood nodes,
including PR(xi) and SU(xi), of node xi, ex-
tracted via Breadth First Search (BFS) on xi with
a depth nd. Here, nd is a hyper-parameter. The
neighbourhood nodes consist of the parent node,
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Figure 2: Overview of CMM. Initially, blocks across multiple pages in a document shown in top-left, are reordered
into a sequence based on reading order (Top-right). A full tree consisting of all text blocks is constructed based
on reading order and font size (Center-left). Subsequently, for each node, a node-centric subtree is extracted and
modelled by a graph neural network (GNN). In the subtree shown in center-right, the first-level heading ‘1.’ can
access both long-distance relationships with other first-level headings ‘2.’, ‘3.’, ‘4.’, and local relationships with
heading ‘1.1’, ‘1.2’, and bodies. In contrast, in the subtree shown in bottom-right, the second-level heading ‘3.2.’
concentrates more on local information but also has access to some global information. When modelling with
GNN, each node is connected with its neighbourhood nodes, including parent, children and siblings. After the
tree modelling phase, the node-level operations (Keep, Delete, and Move) are predicted. The original tree is then
modified according to the node-level operations, resulting in the final Table of Contents (Bottom-left). The nodes
numbered and coloured in this figure are for illustrative purposes; some body nodes are omitted for brevity. During
inference, the model is unaware of whether a node is a heading or non-heading.

children nodes, and the sibling nodes of node xi,
as shown in the right portion of Figure 2. Apart
from the edges linking parent and child, we have
additionally added edges connecting neighbouring
sibling nodes.

Node Encoding Before discussing how to update
node representations in a subtree, we first encode
each node (or block) xi into a vector representation.
We employ a text encoder, which is a pre-trained
language model, to encode the text content of xi.
We also utilise additional features from xi defined
as fi. These features include: (1) pdf page number;
(2) font and font size; (3) colour as RGB; (4) the
number of text lines and length; and (6) the position
of the bounding box of the block, represented by
the coordinates of the top-left and bottom-right

points. The representation of xi is derived from
text encoder and fi with a Multilayer Perceptron
(MLP) as follows:

bi = MLP([TextEncoder(xi), fi]) (1)

where bi denotes the hidden representation of block
xi and [., .] denotes concatenation.

To simulate the human reading order, we apply
a one-layer bi-directional Gated Recurrent Unit
(GRU) (Cho et al., 2014) on nodes of the subtree
with in-order traversal as follows:

{vi}|ti| = GRU(ti) (2)

where {vi}|ti| denotes all hidden representations of
the nodes in ti after GRU encoding.

13219



Node Representation Update in a Subtree We
transform each node-centric subtree ti to a graph
G = (V, E), where the nodes V = {xj ∈ ti}, and
the embedding of each node xj is assigned as vj .
For each node xj , there are three types of edges,
from its parent, from its children, and from its sib-
lings. The edges between the parent/siblings and
xi may span across multiple pages, as headings can
be widely separated. Such edges can provide long-
distance relationship information. On the other
hand, the edges from children to xi provide lo-
calised information about the heading. Thus, xi
benefits from learning from both long-distance and
local relationships.

We employ Graph Attention Networks (GAT)
with nd layers for graph learning, enabling each
xi to focus on other nodes that are more relevant
to itself. GAT also uses edge embeddings. In our
model, we define edge features fj,i for edge ej,i
as follows: (1) the edge type (parent, children, or
siblings); (2) size difference sj − si; (3) whether
xj and xi have the same font or colour; (4) page
difference; (5) position difference as the differences
of the coordinates of the top-left and bottom-right
points of the corresponding block bounding boxes.

With nodes V = {xi ∈ ti}, node embeddings
{vi}, edge E = {ej,i}, and edge embeddings fj,i,
the graph learning is performed as follows:

{hi}|ti| = GAT(V, E) (3)

where {hi}|ti| are the hidden representations of
nodes {xi}|ti| in the node-centric subtree ti. In
practice, multiple node-centric subtrees can be
merged and represented simultaneously in GPU
to accelerate training and inference.

4.3 Tree Modification

In this section, we discuss how the model predicts
and executes modifications to the tree. We define
three types of operations for each node:

1. Delete: This node is predicted as not a heading
and will be deleted from the tree.

2. Move: This node is predicted as a low-level
heading that is a sibling of a high-level head-
ing due to having the same font size in rare
cases. The node 3.2.1 in Figure 2 is an exam-
ple. This node will be relocated to be a child
as its preceding sibling as non-heading nodes
have already been deleted.

3. Keep: This node is predicted as a heading and
does not require any operations.

We define three scores o
[kp]
i , o[de]

i and o
[mv]
i to

represent the likelihood that the node xi should be
kept, deleted or moved. These scores are computed
as follows:

o
[kp]
i = Wkphi + bkp

o
[de]
i = Wdehi + bde

o
[mv]
i = Wmv[POOL(PRS(hi)), hi] + bmv

(4)

where POOL(PRS(hi)) denotes a max pooling
layer on the representations of preceding siblings
of xi; [., .] denotes the concatenation; Wkp, Wde,
Wmv, bkp, bde, and bmv are learnable parameters.
The score of Keep and Delete is inferred from the
node directly, as hi has gathered neighbourhood
information with both long-distance and local rela-
tionships. The score of Move is inferred from the
node and its preceding siblings so that the node can
compare itself with its preceding siblings to decide
whether it is a sub-heading of preceding siblings.

The probabilities of the node operations are com-
puted with the softmax function as follows:

p
[.]
i =

eo
[.]
i

eo
[kp]
i + eo

[de]
i + eo

[mv]
i

(5)

where [.] could be [kp], [de] or [mv]. The final
operation for node xi is determined as follows:

ŷi = argmax(pi) (6)

where each ŷi could be Keep, Delete, or Move.
For each node-centric subtree ti, the model only

predicts the operation ŷi for node xi and ignores
other nodes. With all {ŷi}nb

i=1 predicted for nodes
{xi}nb

i=1, the original tree T will be modified as
shown in Algorithm 1, where node deletion is per-
formed first, followed by node relocation.

We assume that all non-heading nodes have al-
ready been deleted during the deletion step. Each
node is then checked following the reading order
whether it should be moved. Therefore, for a node
to be moved, we can simply set its preceding sib-
ling as its parent node.

The modified tree T ′ represents the final infer-
ence output of our method, which is a ToC.

4.4 Inference and Training
For training the model, we define the ground truth
label yi of operation for each node xi. If a node xi
is not a heading, then its label is yi = Delete. If
a node xi is a heading, and there is a higher-level
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Algorithm 1: Tree Modification
Input: A tree T , node operations {ŷi}nb

i=1

X [de] ← {xi ∈ T , ŷi = ‘delete′}
T ′ = {xi ∈ T \X [de]}
Reconstruct the tree T ′ with reading order

and font size.
foreach xi ∈ T ′ do

if ŷi = ‘Move’ then
PA(xi)← PR(xi) /* Set the

parent of xi as its
preceding sibling */

end
end
Output: The modified tree T ′

heading in its preceding nodes, then the label is
yi = Move. Otherwise, the label is yi = Keep.
The loss is the cross entropy between ŷi and yi.

5 Experiments

5.1 Experimental Setup
Baselines We use MTD (Hu et al., 2022) as our
baseline, which utilises multimodal information
from images, text, and layout. The MTD consists
of two steps: firstly, classifying and selecting head-
ings from documents with a pre-trained language
model, and secondly, modelling via GRU (Cho
et al., 2014) and decoding heading relations into a
hierarchical tree.

Dataset We evaluate CMM on the following ToC
extraction datasets: (1) ESGDoc dataset consists of
1,093 ESG annual report documents, with 765, 110,
and 218 in the train, development, and test sets, re-
spectively. In our experiments, MTD encounters
out-of-memory issues when processing some long
documents in ESGDoc as it needs to model the entire
document as a whole. Therefore, we curated a sub-
dataset, denoted as ESGDoc (Partial), which con-
sists of documents from ESGDoc that are less than
50 pages in length. This sub-dataset contains 274,
40, and 78 documents in the train, development,
and test sets, respectively. (2) HierDoc dataset (Hu
et al., 2022) contains 650 scientific papers with
350, 300 in the train, and test sets, respectively.
Given that the extracted text from HierDoc does
not include font size, we extract font size from PDF
directly using PyMuPDF.

Evaluation Metrics We evaluate our method in
two aspects: heading detection (HD) and the tree

of Toc. HD is evaluated using the F1-score, which
measures the effectiveness of our method in identi-
fying headings from the document, which primar-
ily relates to construction and modelling steps, as
it does not measure the hierarchical structure of
ToC. For Toc, we use tree-edit-distance similar-
ity (TEDS) (Zhong et al., 2019a; Hu et al., 2022),
which compares the similarity between two trees
based on their sizes and the tree-edit-distance (Paw-
lik and Augsten, 2016) between them:

TEDS(Tp, Tg) = 1− TreeEditDist(Tp, Tg)
max(|Tp|, |Tg|)

(7)

For each document, a TEDS is computed between
the predicted tree Tp and the ground-truth tree Tg.
The final TEDS is the average of the TEDSs of all
documents.

Implementation Detail We use RoBERTa-base
(Liu et al., 2019) as the text encoder model. We
set the BFS depth nd = 2, and the hidden size
of b, v, and h to 128. Our model is trained on
a NVIDIA A100 80G GPU using the Adam op-
timizer (Kingma and Ba, 2015) with a batch size
32. We use a learning rate of 1e-5 for pretrained
parameters, and a learning rate of 1e-3 for ran-
domly initialised parameters. In some instances,
the font size may be automatically adjusted slightly
depending on the volume of text to ensure that texts
that have varying fonts do not share the same font
sizes. Texts with very small sizes are automatically
deleted during modification.

5.2 Assumption Violation Statistics

Dataset A1 A2 A3 Any

HierDoc 0.0 0.5 4.1 4.6
ESGDoc 0.8 1.7 8.7 10.8

Table 1: The percentage (%) that each assumption is
violated. Any denotes the percentage that the heading
violates at least one assumption.

Our method is based on Assumption 1, 2, and
3. However, these assumptions do not always hold.
This section presents statistics on the percentage
of headings that violate these assumptions by auto-
matically examining consecutive blocks along the
sorted blocks {xi}nb

n=1 with their labels. As shown
in Table 1, there are 4.6% and 10.8% of headings
that contravene these assumptions in HierDoc and
ESGDoc, respectively. Our current method is unable
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to process these non-compliant headings. Despite
these limitations, our method still achieves good
performance, as will be detailed in Section 5.3.

5.3 Overall Results
Table 2 presents the overall TEDS results on Hier-
Doc and ESGDoc. Both models demonstrate good
performance on HierDoc with CMM slightly outper-
forming MTD. However, we observe significant
performance drop 1.1on ESGDoc, indicating the
challenge of processing complex ESG reports com-
pared to scientific papers. MTD exhibits a notably
low TEDS score in ESGDoc (Full) due to the out-
of-memory issue it encountered when processing
certain lengthy documents. To address this, we
exclude documents longer than 50 pages, result-
ing in MTD achieving a TEDS score of 26.9% on
ESGDoc (Partial). Nevertheless, our approach CMM
outperforms MTD by a substantial margin. The
HD F1-score of our method outperforming MTD
by 12.8% on ESGDocPartial also demonstrates the
effectiveness of construction and modelling steps.
Due to the violation of assumptions as discussed
in Section 5.2, the improvement of our model over
MTD in TOC is less pronounced compared to HD.

Model HierDoc ESGDoc F. ESGDoc P.

HD ToC HD ToC HD ToC

MTD 96.1 87.2 12.7 12.8 40.4 26.9
CMM (Ours) 97.0 88.1 55.6 33.2 53.2 30.0

Table 2: Heading detection (HD) in F1-score and ToC
in TEDS (%) of MTD and CMM on HierDoc, ESGDocFull
(F.), and ESGDocPartial (P.).

Our model’s performance on ESGDoc (Full)
demonstrates its scalability in handling ESG re-
ports with diverse structures and significantly
lengthy text. The comparable TEDS scores be-
tween CMM and MTD on HierDoc can be potentially
attributed to the nature of scientific papers. For
instance, headings in scientific papers such as “5
Experiments” and “5.1 Experimental Setup”, pro-
vide explicit indication of their hierarchical rela-
tionships within the headings themselves. The pres-
ence of section numbering such as “5” and “5.1”
makes it easier to determine their hierarchical level
such as the latter being a sub-heading of the former.
Our method introduces hierarchical information
via the reading order and font sizes, and learns tree
node representations by simultaneously consider-
ing long-distance and local relationships. However,

if the hierarchical information is already contained
in the headings, our method may not offer many
additional hierarchical insights.

5.4 Run-Time Comparison

Model HierDoc ESGDoc Partial

Time Ratio Time Ratio

Training

MTD 2420.6 4.6x 513.5 2.1x
CMM (Ours) 525.4 1.0x 241.4 1.0x

Inference

MTD 16.1 4.2x 2.7 1.3x
CMM (Ours) 3.8 1.0x 2.1 1.0x

Table 3: The GPU training and inference time in min-
utes for MTD and CMM on HierDoc and ESGDoc (Partial).

Table 3 presents the run-time comparison be-
tween MTD and CMM on HierDoc and ESGDoc (Par-
tial). MTD consumes 4.6x and 2.1x more time for
training and 4.2x and 1.3x more time for inference
on HierDoc and ESGDoc, respectively. Different
from MTD, CMM does not need to model all possible
pairs of headings. Instead, it only predicts whether
a node should be deleted or relocated, thereby re-
ducing the computational time.

Compared to MTD, our model exhibits higher
efficiency on HierDoc compared to ESGDoc. This
could be attributed to the larger number of edges in
the graphs constructed from node-centric subtrees
in our method for ESGDoc. ESG annual reports of-
ten contain numerous small text blocks, such as
“$5,300m”, “14,000”, and “3,947 jobs”, as illus-
trated in the first example of Figure 1. Our method
treats these individual texts as separate nodes in
both the trees and graphs, leading to a significant
increase in the number of edges in ESGDoc com-
pared to HierDoc.

5.5 Ablation Study

Table 4 illustrates how different components in CMM
contribute to performance:

w/ page-based division CMM divides the docu-
ment into subtrees based on the tree structure. We
substitute the tree-based division with a page-based
one. Initially, the document is divided using a
window of 6 pages with a 2-page overlap. All
other steps remain unchanged, including the mod-
elling of node-centric subtrees. The choice of the
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Model HierDoc ESGDoc

HD ToC HD ToC

CMM 97.0 88.1 55.6 33.2

w/ page division 96.7 87.8 52.3 30.1
w/o GRU 96.8 87.7 50.8 30.5
w/o GNN 96.4 87.4 44.0 24.9

Table 4: Ablation Study of CMM on HierDoc and ESGDoc
with heading detection (HD) and ToC results reported
in F1-score and TEDS (%), respectively.

page number for division is made to keep a simi-
lar GPU memory consumption. This results in a
performance drop of 0.3% on HierDoc and 3.1%
on ESGDoc. The page-based division impedes long-
distance interaction, resulting in a lack of connec-
tion between high-level headings.

w/o GRU We exclude the GRU in Eq. (2) and di-
rectly set vi = bi. The results show a performance
drop of 0.4% on HierDoc and 2.7% on ESGDoc.

w/o GNN We exclude the GNN in Eq. (3) and
directly set hi = vi. This results in a more signif-
icant performance drop of 0.7% on HierDoc and
8.3% on ESGDoc. With GNN, each heading can
gather information from other long-distance and
local body nodes effectively and simultaneously.

As shown in Table 4, there is a larger perfor-
mance drop on ESGDoc compared to HierDoc. This
can be attributed to the same reason outlined in Sec-
tion 5.3: inferring hierarchical relationships from
headings themselves is easier in HierDoc than in
ESGDoc. Therefore, the removal of components
that introduce hierarchical relationships does not
significantly harm the performance on HierDoc.

Figure 3 demonstrates how performance varies
with different values of nd, the depth of neighbour-
hood during BFS for constructing node-centric sub-
trees. Due to the nature of the data, there is limited
improvement observed on HierDoc as nd increases.
Notably, there is a substantial increase in TEDS
from nd = 1 to nd = 2, but the improvement be-
comes negligible when nd > 2. Therefore, we
select nd = 2 considering the trade-off between
performance and efficiency.

The primary factors contributing to the negligi-
ble improvement nd > 2 may include: (1) A signifi-
cant portion of documents exhibit a linear structure.
To illustrate, when nd = 2, it corresponds to a hier-
archical arrangement featuring primary headings,

87.5

88.0

88.5

1 2 3 4

HierDoc

30.0

31.0

32.0

33.0

34.0

1 2 3 4

ESGDoc

Figure 3: Study of BFS depth nd of CMM on HierDoc
and ESGDoc in TEDS.

secondary headings, and main body content in a
three-tier configuration. (2) The constructed initial
tree inherently positions related headings in close
proximity according to their semantic relationships,
without regard for their relative page placement.
As a consequence, a heading’s most relevant con-
textual information predominantly emerges from
its immediate neighbours within the tree. For ex-
ample, when examining heading 1.2., information
from heading 1. (nd = 1) offers a comprehensive
overview of the encompassing chapter. Simultane-
ously, heading 2. (nd = 2) can provide supplemen-
tary insights, such as affirming that heading 1.2. is
nested within the domain of heading 1., rather than
heading 2. However, delving into deeper levels
may become redundant. For example, a heading
like 2.2. (nd = 3), situated more distantly in the
semantic space, would not notably enhance the un-
derstanding of heading 1.1.

Some case studies illustrating the ToC extrac-
tion results of CMM on ESGDoc are presented in Ap-
pendix C.

6 Conclusion and Future Work

In this paper, we have constructed a new dataset,
ESGDoc, and proposed a novel framework, CMM, for
table of contents extraction. Our pipeline, con-
sisting of tree construction, node-centric subtree
modelling, and tree modification stages, effectively
addresses the challenges posed by the diverse struc-
tures and lengthy nature of documents in ESGDoc.
The methodology of representing a document as an
initial full tree, and subsequently predicting node
operations for tree modification, and further lever-
aging the tree structure for document segmentation,
can provide valuable insights for other document
analysis tasks.
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Limitations

Our method exhibits two primary limitations.
Firstly, it relies on the extraction of font size. For
documents in photographed or scanned forms, an
additional step is required to obtain the font size
before applying our method. However, with the
prevailing trend of storing documents in electronic
formats, this limitation is expected to diminish in
significance.

Secondly, our method is grounded in Assump-
tions 1, 2, and 3. As discussed in Section 5.2, our
current method encounters difficulties in scenarios
where these assumptions are not met. Some ex-
amples of such assumption violations are provided
in Appendix B. However, it is worth noting that
these assumption violations primarily impact the
modification step in our construction-modelling-
modification approach. If we focus solely on the
construction and modelling steps, our method still
outperforms MTD in heading detection. There-
fore, future efforts to enhance the modification
step, which is susceptible to assumption violations,
could hold promise for improving the overall per-
formance of our approach.

Ethics Statement

The ESG annual reports in ESGDoc are indepen-
dently published by the companies and are publicly
accessible. ResponsibilityReports.com6 compiles
these ESG annual reports, which are also accessi-
ble directly on the respective companies’ websites.
There are also other websites such as CSRWIRE7

and sustainability-reports.com8 serve as reposito-
ries for these reports. Because these reports are
publicly available, the use of such data for research
purpose is not anticipated to present any ethical
concerns.

6https://www.responsibilityreports.com/
7https://www.csrwire.com/reports
8https://www.sustainability-reports.com/

References
Christopher M. Bishop and Nasser M. Nasrabadi. 2006.

Pattern recognition and machine learning. J. Elec-
tronic Imaging, 16:049901.

L. Breiman. 2001. Random forests. Machine Learning,
45:5–32.

Shaked Brody, Uri Alon, and Eran Yahav. 2021. How
attentive are graph attention networks? ArXiv,
abs/2105.14491.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1724–1734, Doha,
Qatar. Association for Computational Linguistics.

Antoine Doucet, Gabriella Kazai, Bodin Dresevic, Alek-
sandar Uzelac, Bogdan Radakovic, and Nikola Todic.
2011. Setting up a competition framework for the
evaluation of structure extraction from ocr-ed books.
International Journal on Document Analysis and
Recognition, 14:45–52.

Zhangxuan Gu, Changhua Meng, Ke Wang, Jun Lan,
Weiqiang Wang, Ming Gu, and Liqing Zhang. 2022.
Xylayoutlm: Towards layout-aware multimodal net-
works for visually-rich document understanding.
2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4573–4582.

Jaekyu Ha, Robert M Haralick, and Ihsin T Phillips.
1995. Recursive xy cut using bounding boxes of
connected components. In Proceedings of 3rd In-
ternational Conference on Document Analysis and
Recognition, volume 2, pages 952–955. IEEE.

Pengfei Hu, Zhenrong Zhang, Jianshu Zhang, Jun Du,
and Jiajia Wu. 2022. Multimodal tree decoder for ta-
ble of contents extraction in document images. 2022
26th International Conference on Pattern Recogni-
tion, pages 1756–1762.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations.

Chen-Yu Lee, Chun-Liang Li, Timothy Dozat, Vincent
Perot, Guolong Su, Nan Hua, Joshua Ainslie, Ren-
shen Wang, Yasuhisa Fujii, and Tomas Pfister. 2022.
FormNet: Structural encoding beyond sequential
modeling in form document information extraction.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3735–3754, Dublin, Ireland.
Association for Computational Linguistics.

Chen-Yu Lee, Chun-Liang Li, Hao Zhang, Timothy
Dozat, Vincent Perot, Guolong Su, Xiang Zhang,
Kihyuk Sohn, Nikolay Glushnev, Renshen Wang,

13224

https://www.responsibilityreports.com/
https://www.csrwire.com/reports
https://www.sustainability-reports.com/
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2022.acl-long.260
https://doi.org/10.18653/v1/2022.acl-long.260


Joshua Ainslie, Shangbang Long, Siyang Qin, Ya-
suhisa Fujii, Nan Hua, and Tomas Pfister. 2023.
FormNetV2: Multimodal graph contrastive learn-
ing for form document information extraction. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 9011–9026, Toronto, Canada.
Association for Computational Linguistics.

Chenxia Li, Ruoyu Guo, Jun Zhou, Mengtao An, Yun-
ing Du, Lingfeng Zhu, Yi Liu, Xiaoguang Hu, and
Dianhai Yu. 2022. Pp-structurev2: A stronger docu-
ment analysis system. ArXiv, abs/2210.05391.

Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu
Wei, Zhoujun Li, and Ming Zhou. 2020. DocBank:
A benchmark dataset for document layout analy-
sis. In Proceedings of the 28th International Confer-
ence on Computational Linguistics, pages 949–960,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Abhijith Athreya Mysore Gopinath, Shomir Wilson, and
Norman Sadeh. 2018. Supervised and unsupervised
methods for robust separation of section titles and
prose text in web documents. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 850–855, Brussels, Bel-
gium. Association for Computational Linguistics.

Anoop M. Namboodiri and Anil K. Jain. 2007. Doc-
ument Structure and Layout Analysis, pages 29–48.
Springer London, London.

Mateusz Pawlik and Nikolaus Augsten. 2016. Tree edit
distance: Robust and memory-efficient. Information
Systems, 56:157–173.

Qiming Peng, Yinxu Pan, Wenjin Wang, Bin Luo,
Zhenyu Zhang, Zhengjie Huang, Yuhui Cao, Wei-
chong Yin, Yongfeng Chen, Yin Zhang, Shikun Feng,
Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. 2022.
ERNIE-layout: Layout knowledge enhanced pre-
training for visually-rich document understanding.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 3744–3756, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Birgit Pfitzmann, Christoph Auer, Michele Dolfi,
Ahmed S. Nassar, and Peter Staar. 2022. Doclaynet:
A large human-annotated dataset for document-
layout segmentation. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, KDD ’22, page 3743–3751,
New York, NY, USA. Association for Computing
Machinery.

Zejiang Shen, Kyle Lo, Lucy Lu Wang, Bailey Kuehl,
Daniel S. Weld, and Doug Downey. 2022. VILA: Im-
proving structured content extraction from scientific
PDFs using visual layout groups. Transactions of the
Association for Computational Linguistics, 10:376–
392.

Carlos Soto and Shinjae Yoo. 2019. Visual detection
with context for document layout analysis. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing, pages 3464–3470, Hong Kong, China.
Association for Computational Linguistics.

Suppawong Tuarob, Prasenjit Mitra, and C. Lee Giles.
2015. A hybrid approach to discover semantic hier-
archical sections in scholarly documents. 2015 13th
International Conference on Document Analysis and
Recognition, pages 1081–1085.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio’, and Yoshua Ben-
gio. 2017. Graph attention networks. ArXiv,
abs/1710.10903.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou.
2021a. LayoutLMv2: Multi-modal pre-training for
visually-rich document understanding. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2579–2591, Online.
Association for Computational Linguistics.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. 2019. Layoutlm: Pre-training
of text and layout for document image understanding.
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining.

Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yi-
juan Lu, Dinei A. F. Florêncio, Cha Zhang, and Furu
Wei. 2021b. Layoutxlm: Multimodal pre-training for
multilingual visually-rich document understanding.
ArXiv, abs/2104.08836.

Peng Zhang, Can Li, Liang Qiao, Zhanzhan Cheng,
Shiliang Pu, Yi Niu, and Fei Wu. 2021. Vsr: A
unified framework for document layout analysis
combining vision, semantics and relations. ArXiv,
abs/2105.06220.

Xu Zhong, Elaheh Shafieibavani, and Antonio Jimeno-
Yepes. 2019a. Image-based table recognition: Data,
model, and evaluation. ArXiv, abs/1911.10683.

Xu Zhong, Jianbin Tang, and Antonio Jimeno-Yepes.
2019b. Publaynet: Largest dataset ever for document
layout analysis. 2019 International Conference on
Document Analysis and Recognition, pages 1015–
1022.

13225

https://doi.org/10.18653/v1/2023.acl-long.501
https://doi.org/10.18653/v1/2023.acl-long.501
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/D18-1099
https://doi.org/10.18653/v1/D18-1099
https://doi.org/10.18653/v1/D18-1099
https://doi.org/10.1007/978-1-84628-726-8_2
https://doi.org/10.1007/978-1-84628-726-8_2
https://doi.org/https://doi.org/10.1016/j.is.2015.08.004
https://doi.org/https://doi.org/10.1016/j.is.2015.08.004
https://aclanthology.org/2022.findings-emnlp.274
https://aclanthology.org/2022.findings-emnlp.274
https://doi.org/10.1145/3534678.3539043
https://doi.org/10.1145/3534678.3539043
https://doi.org/10.1145/3534678.3539043
https://doi.org/10.1162/tacl_a_00466
https://doi.org/10.1162/tacl_a_00466
https://doi.org/10.1162/tacl_a_00466
https://doi.org/10.18653/v1/D19-1348
https://doi.org/10.18653/v1/D19-1348
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201


Appendix

A Algorithm of Building an Initial Tree

Algorithm 2 describes how to build an initial full
tree from a document.

Algorithm 2: Building a Tree based on
Reading Order and Font Sizes
Input: Root node r, all blocks {xi}nb

i=1 with
their corresponding sizes {si}nb

i=1.
for i = 1 to nb do

j ← i− 1
while j >= 0 do

if j = 0 then
PA(xi)← r /* Set r as the

parent node of xi */
break

else if sj > si then
PA(xi)← xj /* Set xj as

the parent node of xi
*/

break
end
j ← j − 1

end
end
Output: a tree T with root node r.

B Assumption Violation Examples

For Assumption 1, upon manually inspecting some
samples, we found that errors in these particular
cases were linked to the errors in the XY-cut al-
gorithm (Ha et al., 1995), resulting in an incorrect
arrangement of text blocks.

Figure A1 presents two examples where As-
sumption 2 is not satisfied. In the first example,
the term “The way we work” serve as the parent-
heading of “Corporate governance” which is a sub-
heading, but featuring a smaller font size. Despite
the smaller font size of "The way we work", it is
clearly delineated from the sub-headings below by
two green horizontal lines. However, our method
focuses solely on text, neglecting visual cues such
as these lines. In the second example, “COMMU-
NITY OUTREACH” is a sub-heading under “SO-
CIAL RESPONSIBILITY”, but is has a larger font
size, as this page emphasises community achieve-
ments.

Figure A2 presents two instances where Assump-
tion 3 is violated. In the first example, “indirect

economic impacts” and “Transmission System In-
vestments” are headings situated at the same hi-
erarchical level but have distinct font sizes. This
dissimilarity could potentially lead to confusion
for human readers, questioning whether these two
headings should be placed within the same hierar-
chical level. In the second example, “Sustainability
Fund purchases” and “Spend by solution type” are
also headings at the same level, with subtly differ-
ent font sizes, 11 and 10, respectively. While this
difference may go unnoticed by humans, it does
impact the performance of our method.

C Case Study

Figure A3 and Figure A4 illustrate a favourable
scenario and an unfavorable one for CMM within
the context of ESGDoc. The favourable case in Fig-
ure A3 demonstrates the capability of our model
to handle lengthy document, where it generates a
high quality tree structure.

Conversely, Figure A4 represents a challeng-
ing scenario where our model encounters diffi-
culties across multiple nodes. Figure A5 further
elaborated on this issue, showcasing four example
pages of the unfavorable case illustrated in Fig-
ure A4. On the top-left page, CMM incorrectly re-
tain the non-heading “ABOUT BRANDYWINE”.
This is a challenging case as “ABOUT BRANDY-
WINE” is prominently displayed in a large font
at the top-left corner of the page, making it diffi-
cult to identify as a non-heading. A similar situ-
ation occurs on the top-right page, where CMM in-
correctly keeps the non-heading “ENVIRONMEN-
TAL PROGRESS”. In this instance, “ENVIRON-
MENTAL PROGRESS” is enlarged to emphasise
the company’s achievements.

For the bottom two pages in Figure A5, CMM
might encounter confusion between headings with
coloured lead-in sentences. In the bottom-left
page, “MANAGING CLIMATE RISK” functions
as a heading and follows a pattern similar to other
lead-in sentences such as “GOVERNANCE” and
“STRATEGY AND RISK MANAGEMENT”. They
typically begin with a large, colored sentence fol-
lowed by a paragraph. The bottom-right page
presents a similar challenge. “OUR TENANTS”
and “VALUED PARTNERSHIPS” share a similar
pattern, with the former being a heading, whereas
the latter not. The determination of “MANAGING
CLIMATE RISK” and “OUR EMPLOYEES” as
headings is primarily based on their position and
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Figure A1: Two examples in ESGDoc where Assumption 2 is violated, one in portrait and the other in landscape
orientation.

Figure A2: Two examples in ESGDoc where Assumption 3 is violated, one in portrait and the other in landscape
orientation.

colour. However, it is worth noting that CMM does
not use visual information, making it difficult for
the model to handle such scenarios. Future work

could explore the integration of visual information
to enhance the model’s performance in handling
these situations.
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Figure A3: A favourable case for CMM on ESGDoc. Blocks highlighted in red represent incorrect predictions.
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Figure A4: An unfavorable case for CMM on ESGDoc. Blocks highlighted in red represent incorrect predictions.

Figure A5: Four example pages of the unfavorable case highlighted in Figure A4. CMM preserves non-headings in
the top two pages, while deleting headings in the bottom two pages.
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