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Abstract

As language models become increasingly inte-
grated into our digital lives, Personalized Text
Generation (PTG) has emerged as a pivotal
component with a wide range of applications.
However, the bias inherent in user written text,
often used for PTG model training, can inad-
vertently associate different levels of linguistic
quality with users’ protected attributes. The
model can inherit the bias and perpetuate in-
equality in generating text w.r.t. users’ pro-
tected attributes, leading to unfair treatment
when serving users. In this work, we investi-
gate fairness of PTG in the context of person-
alized explanation generation for recommenda-
tions. We first discuss the biases in generated
explanations and their fairness implications.
To promote fairness, we introduce a general
framework to achieve measure-specific coun-
terfactual fairness in explanation generation.
Extensive experiments and human evaluations
demonstrate the effectiveness of our method.

1 Introduction

Personalized text generation (PTG) has extensive
applications, such as explainable recommendation
(Zhang and Chen, 2020; Chen et al., 2021), post
generation (Yuan and Huang, 2019; He et al., 2021),
and conversational systems (Zhang et al., 2018,
2019; Lee et al., 2021). The auto-generated text,
functioning at the frontier of human-machine inter-
action, influences users’ decisions and transforms
their way of thinking and behaving. However, due
to its immense power and wide reach, PTG can
inadvertently give rise to fairness issues and lead to
unintended consequences (Alim et al., 2016; Bor-
dia and Bowman, 2019; Blodgett et al., 2020).

In this work, we investigate the fairness issues
in PTG, focusing on one of the mostly studied set-
tings: generating natural language explanations for
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Figure 1: Left: average FeatCov of ground-truth ex-
planations in the train set. Right: average FeatCov of
explanations generated on the test set by PETER.

recommendations (Wang et al., 2018; Chen et al.,
2021; Yang et al., 2021; Li et al., 2021a; Yang et al.,
2022). Personalized explanation generation aims
to provide a user with descriptive paragraphs on
recommended items that align with his/her pref-
erences, enabling more informative and accurate
decision-making. The generators are typically lan-
guage models trained on user written reviews from
e-commerce platforms (Zhang et al., 2018; Ni et al.,
2019; Yang et al., 2021), where sentences related
to item descriptions are retained to construct the
ground-truth explanations. However, due to histori-
cal, social, or behavioral reasons, inherent bias may
exist within the review text, associating specific
linguistic characteristics with the users’ protected
attributes such as gender or race (Newman et al.,
2008; Alim et al., 2016; Volz et al., 2020). While
certain linguistic features that capture the diversity
of language use (Newman et al., 2008; Groenwold
et al., 2020) are suitable for personalization, others
pertaining to the linguistic quality of explanations,
such as informativeness or detailedness, (Louis,
2013), should be excluded. Failure to do so can
result in unfair treatment when serving users.

As an example, we investigate the explanation
generation on Amazon Movies1 with the personal-
ized transformer model PETER (Li et al., 2021a).
We adopt feature coverage (FeatCov, the number
of unique features mentioned about a movie) as
an automatically measurable metric of explanation

1The details about experiment setup is in Section 6.
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Figure 2: FeatCov vs. human evaluated quality mea-
sures. Each measure is rated in a five-category scale.
p-valus < 0.05 in Kruskal-Wallis H test for all three
criteria (see Appendix D for detailed test results).

quality. As shown in Figure 1 (left), reviews from
male users generally have higher FeatCov on the
target movies than those from female users (Fan-
Osuala, 2023)2. A model trained on such data can
inherit the bias and generate explanations discrim-
inately when serving users—higher FeatCov for
males than females, as indicated in Figure 1 (right).
To further substantiate the bias issue, we conducted
a user study and found strong positive correlation,
shown in Figure 2, between FeatCov and human
evaluated quality criteria including informativeness,
detailedness and helpfulness. The observations re-
main consistent when results from male and female
human evaluators are analyzed separately, affirm-
ing that both genders consider FeatCov a signifi-
cant indicator of quality. This study demonstrates
the bias in FeatCov as a concerning issue for PTG.
Details of the user study are in Section 7.

In particular, the bias observed in training data
originates from various factors such as different
demographic behavior patterns that are beyond our
control. But the system should not inherit the bias
and act discriminately by generating explanations
of different quality for different users—the lack of
informative reviews from users of a demographic
group should not prevent them from receiving infor-
mative explanations. Without proper intervention,
the system can exhibit such bias, thus adversarially
affecting the users’ experience, reliance and trust
in the system (Tintarev and Masthoff, 2015). From
a broader perspective, the bias can reinforce itself
by influencing how users write online, and jeopar-
dize fairness in the long run (Schwartz et al., 2016;
Alim et al., 2016; Bordia and Bowman, 2019).

To mitigate the issue, we take a causal perspec-
tive to dissect the bias and enforce counterfactual
fairness (CF) (Kusner et al., 2017) in personalized
explanation generation: the quality of generated

2We use binary gender for case study, but our work gener-
alizes to any binary or non-binary attributes.

explanations should not differentiate a user in the
real world vs. in the counterfactual world where
only the user’s protected attribute (e.g., gender) is
changed. This problem is essential and unique com-
pared to fairness problems in the literature (Sec-
tion 2), and imposes specific technical challenges
(Section 4). To achieve the goal, we develop a
general framework, COFFEE, for COunterFactual
FairnEss in Explanation generation. COFFEE
treats a user’s protected attribute value as a sep-
arate token input to the model, and disentangles
its representation from the user’s representation
(Ma et al., 2019; Locatello et al., 2019b; Zheng
et al., 2021). By controlling the input attribute val-
ues for counterfactual inference (CI), we impose
a measure-specific CF constraint (Russell et al.,
2017) on generated explanations. Then a novel
fair policy learning scheme is developed to opti-
mize CF with carefully designed rewards, which
generalizes to any single or combination of qual-
ity measures. We use user-side fairness by default
in discussions, but COFFEE is general to ensure
fairness on either user or item side in the two-sided
market (Wang and Joachims, 2021), and be adapted
to different models. Extensive experiments and
rigorous user studies demonstrate COFFEE’s su-
periority in achieving fairness and maintain high
generation performance compared to baselines.

2 Background

Uniqueness and Importance: Fairness in machine
learning (ML) is originally studied in automatic
decision-making systems that directly impose "sig-
nificant" or "legal" effects on individuals (Voigt and
Bussche, 2017). Such fairness considerations often
revolve around resource allocation by ML models,
exemplified in contexts like loan assessments (Lee
and Floridi, 2021) or job applications (Singh and
Joachims, 2018), where model predictions can un-
favorably affect a protected group (Du et al., 2021;
Mehrabi et al., 2021).

In contrast to resource allocation fairness, NLP
researchers primarily examine the representational
fairness (Blodgett et al., 2020; Liang et al., 2021;
Sheng et al., 2021) regarding how language models
shape social biases and stereotypes through natu-
ral language understanding (NLU) or generation
(NLG). In the realm of NLG, fairness particularly
concerns how generated text may contain biased
information about a specific demographic group.
For instance, Huang et al. (2020) analyze the sen-
tence completion by a GPT-2 model, and find dif-
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ferent sentiment distributions of completed sen-
tences when the occupation word is counterfactu-
ally changed in the prompts. Bordia and Bowman
(2019) revealed a more frequent co-occurrence of
the ’doctor’ with male pronouns and ’nurse’ with
female pronouns in generated text. However, these
biases, directly encapsulated within the text, can
be more easily analyzed. To the best of our knowl-
edge, our work is pioneering in exploring how per-
sonalization, bridging NLP and recommendation,
associates the bias in NLG with protected attributes
of users.
Fairness Notions: Various fairness notions exist in
the literature, with group-wise fairness notions be-
ing the firstly studied ones (Zafar et al., 2015; Hardt
et al., 2016; Zafar et al., 2017). Yet, group-wise
fairness has different quantitative definitions that
are generally incompatible (Kleinberg et al., 2017;
Berk et al., 2021). Some definitions can even exac-
erbate discrimination (Kusner et al., 2017). Individ-
ual fairness (Zemel et al., 2013; Joseph et al., 2016)
requires similar users to receive similar predictions.
But it relies on carefully chosen domain-specific
similarity metrics (Dwork et al., 2012). In contrast,
counterfactual fairness (CF) (Kusner et al., 2017),
considering fairness from a causal perspective, has
gained prominence recently as a more robust fair-
ness notion (Russell et al., 2017; Wu et al., 2019;
Makhlouf et al., 2020), which can also enhance
group-wise fairness in certain scenarios (Zhang
and Bareinboim, 2018; Khademi et al., 2019).

Though CF has been studied in some non-
personalized NLP tasks (Huang et al., 2020; Garg
et al., 2019), most existing works study the depen-
dency of model outputs on attribute-specific words
within the input text (Blodgett et al., 2020; Liang
et al., 2021; Sheng et al., 2021). In such cases,
CI can be easily performed on the input text it-
self, such as changing male pronouns to female
pronouns (Huang et al., 2020; Garg et al., 2019).
However, CF in PTG necessitates CI on the pro-
tected attributes of users being served-an area yet
to be thoroughly explored.

3 Problem Formulation

In the following discussions, we consider a sin-
gle protected attribute on the user side for sim-
plicity, but our proposed framework is versatile
to accommodate multiple attributes on either the
user or the item side. The value of a user’s pro-
tected attribute is denoted by a variable A ∈ A,

where A is the set of possible attribute values, e.g.,
A = {male, female, other} for gender. Each
dataset entry is a tuple of (u, i, a, e), correspond-
ing to user ID, item ID, observed attribute value,
and ground-truth explanation. The explanation gen-
erator Gθ is a language model parameterized by θ.
Given a user u, an item i, and observed attribute
value a, an explanation can be sampled from the
generator as Y ∼ Gθ(u, i|A = a). The linguis-
tic quality of any explanation y is measured by a
function Q(y). Notably, we treat Q as a black box
oracle—a quality measure that can only be queried.
This is essential in practice and offers the flexibility
to arbitrarily tailor Q based on the fairness require-
ments of the application. An explanation can be
gauged in various ways by customizing Q, such as
using an explicit function, human evaluation, or a
tool provided by authorities. We assume, without
loss of generality, that higher Q values represent
superior quality. CF on any measure Q of explana-
tions is achieved when, given a user u and an item
i,

P (Q(YA←a)|u, i, a) = P (Q(YA←a′)|u, i, a), (1)

where YA←a′ ∼ Gθ(u, i|A = a′) is the expla-
nation generated when we counterfactually as-
sign the value of the user’s protected attribute by
A← a′, a′ ̸= a. The right side of Eq. (1) evaluates
the quality distribution of explanations generated
had the user’s protected attribute value been a′,
given that the observed attribute value is a (Kusner
et al., 2017; Li et al., 2021b).

Denote the loss of the generator for a given user
u and item i by Lgen(Gθ(u, i|A = a), e), which
is typically the negative log-likelihood (NLL) loss
or a combination of several losses (Li et al., 2017;
Yang et al., 2021; Li et al., 2021a). We consider
training the generator for fair explanation genera-
tion as a constrained optimization problem:

minLgen(Gθ(u, i|A = a), e)

s.t. EYA←a
[Q(YA←a)|u, i, a] =

EYA←a′ [Q(YA←a′)|u, i, a]
(2)

For ease of presentation, we consider a single user-
item pair, and the total loss on a dataset is simply
summed over all user-item pairs with the constraint
applied to every pair. In this work, we apply the
first-order moment of the quality of generated ex-
planations to construct the constraint, and leave the
extension to other moment-matching constraints
for future work. We further simplify the expression
of the constraint as E[Q(YA←a)] = E[Q(YA←a′)].
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Figure 3: Given a user with attribute value a and a recommended item, COFFEE performs CI by switching
the attribute value to a′ to get the counterfactual user, which is achieved by disentangled attribute embeddings.
Explanations Y for both the real user and the counterfactual user are sampled from the generator, evaluated by Q.
COFFEE then updates the generator’s parameters θ by policy learning from the fairness constraint.

4 COFFEE

User and item IDs are conventionally input to the
generator for explanation generation, represented
as learned embedding vectors (Li et al., 2017; Wang
et al., 2018; Li et al., 2021a). However, the user’s
protected attribute, entangled with their preference,
is implicitly encoded in the representations (Lo-
catello et al., 2019a), hindering its direct manipu-
lation for CI. One way explored for CF in person-
alization involves removing all information about
the protected attribute in representations via dis-
criminators (Zemel et al., 2013; Li et al., 2021b;
Wang et al., 2022). Although this improves fairness,
it detrimentally affects personalization and elimi-
nates desired characteristics linked to the protected
attribute. In contrast, we aim to enforce the inde-
pendence of the protected attribute from any speci-
fied quality measure Q on generated explanations,
while preserving explanation content-dependence
to sustain high personalization performance.

To enable CI, COFFEE considers a user’s pro-
tected attribute value as a separate token input
to the model, along with user and item IDs, and
learns disentangled attribute representations from
the user representation to encapsulate the effect
of each attribute value in explanation generation
(Locatello et al., 2019a,b; Ma et al., 2019; Zheng
et al., 2021). This mirrors methods in controllable
text generation (Oraby et al., 2018; Shu et al., 2020;
Dathathri et al., 2020), where disentangled attribute
tokens are utilized as inputs to modulate the topic,
sentiment, or style of generated text. CI is then
achieved by altering the attribute token input to the
model. Subsequently, we enforce a fairness con-
straint based on the explanations generated pre and
post CI, and establish a policy learning method for
optimizing this constraint. An illustration of the
COFFEE framework is shown in Figure 3.

4.1 Disentangled Attribute Representation

For a given tuple (u, i, a), we denote the represen-
tation for the attribute value a as ra, the user’s pref-
erence representation (independent from the pro-
tected attribute) as ru and item representation as ri.
The complete user representation is rau = [ra, ru].
Correspondingly, when performing A ← a′ on
user u, we change the input attribute token from
a to a′, and the new user representation becomes
rA←a′
u = [r′a, ru]. Note that each attribute value

has its own representation, and is shared across all
users having that same attribute value. For instance,
all male users’ attribute representation is the same
vector rmale. We can do the same for item-side
attributes as rai = [ra, ri].3

Simply separating the user’s protected attribute
and preference representations does not guarantee
that ru will not contain any information about the
protected attribute, inhibiting the accuracy of CI.
To further enforce the disentanglement, we intro-
duce a discriminator D(ru), and add an adversarial
loss on ru in Eq. (2) as

min Lgen(Gθ(u, i|A = a), e) + λD log(D(ru, a))

s.t. E[Q(YA←a)] = E[Q(YA←a′)], ∀a′ ∈ A, a′ ̸= a,
(3)

where D(ru, a) is the probability of predicting the
correct attribute value a. In this way, we adver-
sarially remove the protected attribute information
from ru, and enforce ra to capture all the attribute
information. During mini-batch optimization, we
alternate between the parameter updates of the
model and the discriminator as follows: (1) X
batches of updates minimizing the loss Eq. (3) with
D fixed, and (2) Z batches of updates maximizing
the the loss Eq. (3) with the generator Gθ fixed.

3We can introduce K ≥ 2 attribute tokens, each mapped to
its disentangled representations. Sum instead of concatenation
of embeddings can be used when K is large.
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4.2 Policy Learning for Fairness
Once the user, item, and attribute representations
are learned and fixed, we can optimize the gen-
erator w.r.t. the CF constraint. Due to the non-
convexity of the constrained fairness optimization
problem, closed-form solutions are unattainable.
We add the constraint with Lagrangian relaxation
as a regularization in the loss (Russell et al., 2017)

minLall + λ
∣∣E[Q(YA←a)]− E[Q(YA←a′)]

∣∣, (4)

with Lall = Lgen(Gθ(u, i|A = a), e) +
λD log(D(ru, a)) in Eq. (3) denotes all other losses
except for the CF constraint, and λ is a hyper-
parameter for fairness-utility trade-off.

However, standard gradient methods cannot be
directly applied to optimize the constraint: expla-
nations are discretely sampled from the generator,
and Q is an oracle. Instead, we consider policy
learning for fairness optimization, where the ex-
planation distribution imposed by the generator is
considered as the policy for explanation generation,
and sampled explanations are actions. Concretely,
for estimating the expectations in the regulariza-
tion, we sample N explanations and calculate the
average quality of explanations sampled in both the
real-world and the counterfactual world. Denote
the regularization term as Lfair, the expectations
in the regularization can be estimated as:

Lfair =
∣∣E[Q(YA←a)]− E[Q(YA←a′)]

∣∣

≈sign(∆)

(
1

N

N∑

k=1

Q
(
yk
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)
− 1

N

N∑

k=1
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(
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)
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(5)

∆ = 1
N
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k=1Q

(
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)
− 1
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k=1Q

(
ykA←a′

)
.

For an explanation ykA←a sampled in the real-
world, its contribution to the unfairness in regu-
larization term is thus 1

N sign(∆)Q
(
ykA←a

)
. To im-

prove fairness by minimizing the regularization,
the reward for ykA←a is considered as r

(
ykA←a

)
=

− 1
N sign(∆)Q

(
ykA←a

)
. Similarly, the reward for a

sampled explanation ykA←a′ in the counterfactual
world is r

(
ykA←a′

)
= 1

N sign(∆)Q
(
ykA←a′

)
. In this

way, we convert the CF optimization into maximiz-
ing the rewards of generated explanations.

Although the rewards are designed to minimize
the difference in the qualities of explanations from
the real vs. counterfactual world, we lack direct
control over how the difference should be mini-
mized during optimization. The optimization may
arbitrarily improve or decrease the quality of ex-
planations to achieve fairness, e.g., always gener-
ating low quality explanations, which greatly hurt

their utility in practice. To address this, we fur-
ther design a weighting mechanism to calibrate the
rewards such that the optimization focuses more
on improving (or decreasing) the quality measure
for an attribute value for achieving fairness. This
empowers the designer to better control the opti-
mization and the utility-fairness trade-off. Specif-
ically, we introduce a quality promotion weight
η ∈ [0, 1] to re-weigh the rewards of explanations
in the world with lower expected quality, and use
1− η to reweigh the rewards of explanations in the
other world. The resulting calibrated rewards are:

rw
(
yk
A←a

)
= − 1

N
sign(∆)Q

(
yk
A←a

)
· w(∆)

rw
(
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(
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A←a′

)
· (1− w(∆))

where w = sign(∆)+1
2 (1− η) +

(
1− sign(∆)+1

2

)
η.

We can leverage this weight to guide the fairness
optimization: if η > 0.5, the algorithm will focus
more on improving the quality of low-quality expla-
nations for fairness. Finally, for stability and faster
convergence, we apply the advantage trick (Mnih
et al., 2016), and each reward is its difference from
the average reward in its corresponding world:

radv
(
yk
A←a

)
= rw

(
yk
A←a

)
− r̄w

(
yk
A←a

)

radv
(
yk
A←a′

)
= rw

(
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A←a′

)
− r̄w

(
yk
A←a′

) (6)

The policy gradient (Sutton et al., 1999; Yang et al.,
2021) on θ can then be estimated as:

▽θLfair ≈
N∑

k=1

▽θ logGθ

(
yk
A←a

)
radv

(
yk
A←a

)

+
N∑

k=1

▽θ logGθ

(
yk
A←a′

)
radv

(
yk
A←a′

)
(7)

Intuitively, during optimization, the probability of
sampled explanations that lead to the unfairness
will be demoted, while the probability of those that
contribute to fairness will be promoted.

To train a COFFEE model, we first pre-train the
model without the fairness constraint. Then we
fix the latent representations of users, items and
attributes, and add the fairness constraint in the
objective function for fine-tuning the model.

5 Applying COFFEE to Existing Models

Existing models for personalized explanation gen-
eration mostly adopt either Transformer (Li et al.,
2021a) or RNN (Li et al., 2017; Chen et al., 2021;
Yang et al., 2021). In this section, we demon-
strate the application of COFFEE to PETER (Li
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Table 1: Statistics of the datasets and the protected
attributes used in experiments. The candidate values of
the attributes are indicated in parentheses.

#Users #Items #Reviews Attribute Values

Video Games 9,511 5,173 59,374 male, female
Movies & TV 28,001 12,888 265,646 male, female

Yelp 35,714 24,900 1,499,291 $, $$, $$$

et al., 2021a), which is an explanation generation
model based on personalized Transformers. In Ap-
pendix A, we also illustrate the application of COF-
FEE to NRT (Li et al., 2017), which is based on
RNN. However, it is worth noting that COFFEE is
a general framework that can be applied to most
of existing explanation generation models, as long
as the model is based on user/item representation
learning and can be fine-tuned.

In PETER (Li et al., 2021a), user and item IDs,
represented as special tokens, are appended to the
start of each explanation sequence before being in-
putted to transformer layers. A context prediction
loss is introduced for enhanced personalization in
addition to the NLL loss, which predicts the words
in the explanations regardless of their order. We
denote the overall loss as Lpeter, which is the sum
of the NLL loss and context prediction loss (Li
et al., 2021a). To apply COFFEE to PETER, we
introduce an attribute token at the start of each se-
quence for disentangled attribute embedding. The
discriminator is applied at the input embedding
layer to enhance disentanglement. User, item, and
attribute tokens can attend to each other, while the
explanation words can only attend to past tokens.
When applying COFFEE to PETER, the loss is
constructed by replacing Lgen in Eq. (3) by Lpeter.

6 Experiments

We conduct experiments on three public review
datasets: Amazon Video Games, Amazon Movies
& TV, and Yelp Restaurant, and compare COFFEE
with multiple baseline models. Due to space limit,
we present the results based on PETER, and put
example explanations and results based on NRT in
Appendix E.

6.1 Experiment Setup
Datasets. In Amazon Games and Amazon Movies
review datasets4, we use users’ binary gender
(male, female) as the protected attribute. We study
the fairness on the item side on the Yelp dataset5,

4https://nijianmo.github.io/amazon/index.html
5https://www.yelp.com/dataset

where a restaurant’s price range ($, $$, $$$) is used
as the protected attribute, as the system may not
discriminate a restaurant simply because the restau-
rant owner sets lower prices for equally good food
and service than its counterparts. The statistics of
the datasets are summarized in Table 1. The details
of data processing are described in Appendix B.

On both Amazon Games and Movies, the raw
model tends to generate higher FeatCov explana-
tions for male users than female users, aligned
with the existing findings that male users usually
write more detailed reviews (Fan-Osuala, 2023).
On Yelp, the model generates more thorough fea-
ture descriptions for pricier restaurants than their
less expensive counterparts, as shown in Table 4
in Appendix B. This could be a reflection of users’
heightened attention to experiences in more expen-
sive restaurants due to higher expenditure. These
observations also align with the biases present in
the respective training datasets.

Baselines. As we are the first to study the quality
fairness in PTG, there is no existing work that di-
rectly addresses this problem. We adapt popular
methods in the fairness literature for the purpose.
Below we briefly introduce them and describe their
detailed implementations in Appendix B.

• RAW: Original PETER model without modifica-
tion, which is also the base for other baselines.
• ADV (in-processing): Adversarially removing
the sensitive information in user or item represen-
tations by adding a discriminator (Li et al., 2021b).
• NORM (pre-processing): Normalizing the train-
ing data to remove the bias on group-level.
• BT (pre-processing): Back-translation has been
shown to help normalize text and reduce bias (Ra-
binovich et al., 2017; Christiansen et al., 2021). We
pre-process the training data by translating the ex-
planations to Chinese and then back to English.
• ATTR: To evaluate the effectiveness of the disen-
tanglement and optimizing the fairness constraint
in COFFEE, we use the model trained without the
constraint (equivalent to λ = 0 in COFFEE) but
with disentangled attribute representations.
• NATTR (post-processing): We disable the pro-
tected attribute token in ATTR for generating ex-
planations during inference.

We train each model on the training set, tune
hyper-parameters on the validation set, and report
the results on the testing set. Each reported result
point is averaged over 3 runs. We put the detailed
model specifications and parameter tuning in Ap-
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pendix C.

Metrics. Our evaluation consists of two parts: fair-
ness and utility. Fairness requirements are subjec-
tive, contingent on both the application and the the
designer’s objective (Hu and Chen, 2020; Khademi
et al., 2019). COFFEE is designed to accommodate
different fairness specifications by appropriately
defining Q. To select meaningful quality evalua-
tion metrics in experiments, we evaluated expla-
nations with different measures such as FeatCov,
length, grammar, redundancy, structure (Zhu and
Bhat, 2020). We found that only FeatCov con-
sistently shows significant correlations to human
perceptions of explanation quality such as infor-
mativeness, detailedness, and helpfulness. The de-
tailed correlation results are shown in Table 6 in
Appendix D. Therefore, we specify the quality mea-
sure function in COFFEE as Qfeat, which directly
corresponds to an explanation’s FeatCov. Further-
more, experiment findings suggest a substantial
influence of the number of tokens in explanations
on FeatCov. Hence, we additionally explore a com-
bination of FeatCov and number of tokens to facil-
itate the fairness optimization on FeatCov, speci-
fying Q as Qfeat + Qnumtoken. We refer to this
variant, with Q augmented by the number of tokens,
as COFFEE-NT. This modification also helps vali-
date COFFEE’s ability to adapt to different quality
measures in optimizing fairness.

• Fairness metrics. We adopt both individual and
group-wise fairness metrics evaluated on FeatCov,
with and without counterfactual perspectives. De-
tailed metric formulas are in Appendix B. The first
metric, Ind-CF, assesses individual CF as defined
by (Kusner et al., 2017), which is equivalent to the
regularization term in Eq. (4) averaged over all test
set user-item pairs. We also evaluate the counter-
factual effects on group-level (Coston et al., 2020).
For a demographic group with attribute value a, we
counterfactually alter all group members’ attribute
value to a′ ̸= a, and compute the change of the
average FeatCov of the group. The average change
is denoted as Grp-CF. Additionally, we evaluate
COFFEE’s generalization to improve group-wise
fairness evaluated by demographic disparity (DDP)
(Zafar et al., 2015). Metrics based on CF can only
be evaluated on baselines that feature disentangled
attribute representations, such as ATTR and COF-
FEE. All fairness metrics are lower the better.

• Utility metrics. Besides commonly used BLEU-
{1,4} (Papineni et al., 2002) and ROUGE-{1,2,L}
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Figure 4: Trade-off between fairness and utility on Ama-
zon Movies & TV (left) and Yelp (right) datasets. A
method should give low DDP and high BERTScore (top-
left corner of each plot) for better trade-offs.

(Lin, 2004) scores, we also employ the increasingly
popular BERTScore (Zhang et al., 2020), known
for better semantic alignment between target and
generated text and stronger correlation with hu-
man judgments. We compute BERTScore using
RoBERTa-large with re-scaled scores, and report
F-1 scores for ROUGE and BERTScore. All utility
metrics are higher the better. Lastly, we incorpo-
rate FeatCov into the utility metrics to evaluate the
impact of various fairness attainment methods.

6.2 Comparison to Baselines

An ideal method should enhance fairness without
hurting explanation utility. Due to space limits, we
display complete results on Amazon Games in Ta-
ble 2, and sample results for Amazon Movies and
Yelp in Figure 4; full results are in Appendix E. As
indicated in Table 2, COFFEE excels in fairness im-
provement across all metrics, significantly outper-
forming baselines. Moreover, comparing COFFEE
and ATTR in terms of Ind-CF and Grp-CF validates
the effectiveness of our fair policy learning scheme
in optimizing CF constraints. Additionally, intro-
ducing Qnumtoken and Qfeat in COFFEE-NT bol-
sters fairness optimization in FeatCov, suggesting
that enhanced quality measures can aid fairness op-
timization, echoing findings in (Bose and Hamilton,
2019). Crucially, COFFEE secures strong fairness
outcomes while preserving high utility in explana-
tion generation.

We plot results on Amazon Movies and Yelp in
Figure 4, where we use DDP on FeatCov for fair-
ness and BERTScore for utility. Notably, COFFEE
achieves the best trade-off by drastically reducing
DDP with minimal impact on BERTScore. ADV
and NORM moderately improve fairness, albeit
less significantly than COFFEE or at the cost of
a greater decrease on utility. Lastly, BT also ef-
fectively enhances fairness, showing its interesting
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Table 2: Comparison between COFFEE and baselines. BL stand for BLEU and RG denotes ROUGE. BLEU,
ROUGE and BERTScore are in percentage values and others are in absolute values. The best results are boldfaced,
and the second best are underlined. * indicates p < 0.05 for significance test over the second best baseline.

PETER
Fairness on FeatCov Utility

Ind-CF↓ Grp-CF↓ DDP↓ BL1↑ BL4↑ RG1↑ RG2↑ RGL↑ BERT↑ FeatCov

Amazon Games (User’s Gender as Protected Attribute)
RAW - - 1.18 8.82 1.49 19.95* 5.37* 15.54* 14.14 6.53
ADV - - 0.62 8.78 1.50 16.13 3.96 13.06 12.84 6.12

NORM-F - - 1.13 8.83 1.51 18.20 4.66 14.42 13.91 4.28
BT - - 0.65 10.43* 1.55 13.42 2.08 10.44 9.55 5.42

NATTR - - 0.63 8.76 1.52 16.55 3.86 13.02 12.72 5.26
ATTR 2.68 0.75 1.40 8.91 1.57 17.73 4.45 14.13 14.08 5.78

COFFEE 1.26 0.32 0.68 9.77 1.58 16.73 3.98 13.43 14.12 6.34
COFFEE-NT 1.15 0.01* 0.08* 10.23 1.24 17.38 3.70 13.62 14.02 6.27

Figure 5: Relative Ind-CF and BERTScore ratio w.r.t.
to λ = 0 in COFFEE. The Ind-CF and BERTScore of
ATTR-PETER are 12.42 and 14.08, respectively.

normalization effect. But BT causes a dramatic
sacrifice on utility, as the translation may eliminate
much information about personal preference.

6.3 Effect of Tuning λ in COFFEE
We further study the fairness-utility trade-off in
COFFEE by tuning the weight λ on fairness con-
straint in Eq. (4). We use Ind-CF on FeatCov for
fairness evaluation which corresponds to the con-
straint that COFFEE directly optimizes, and use
BERTScore for utility evaluation. We plot the re-
sults on Amazon Movies in Fig. 5, where the y-axis
is the metric values ratio to the base results when
λ = 0 (equivalent to ATTR). As λ increases from
0 to 0.5, COFFEE significantly improves fairness,
with a drop of about 77% in Ind-CF, while barely
hurts the BERTScore, with a drop of about 3%.
This study shows COFFEE’s outstanding efficiency
and effectiveness in fairness optimization.

7 Human Evaluation

We conduct human evaluations to justify the use
of FeatCov for fairness and confirm COFFEE’s
efficacy. Human evaluators, recruited on Mechan-
ical Turk, are asked to assess explanations gener-
ated from Amazon Movies’ test data, as movies are

Table 3: Fairness and quality based on human evalu-
ations of explanations. Smaller Ind-CF means better
fairness. * indicates p-value <0.05 for paired t-test.

Ind-CF↓ Average↑
RAW COFFEE RAW COFFEE

Infor 0.8476 0.5673* 2.6381 2.6712
Detail 0.8190 0.6442* 2.5238 2.3788

Helpful 0.8857 0.5786* 2.5904 2.5577

more universally understood. In each questionnaire,
we present the title of a recommended movie for
a user, randomly sampled from the dataset, along
with two explanations: one generated for the real
user and the other for a counterfactual user with
a modified gender. Evaluators then assess each
explanation from three criteria: informativeness,
detailedness, and helpfulness. Each criterion is
rated on a scale of 5: 1: "not at all", 2: "somewhat",
3: "moderate", 4: "very", 5: "extremely". We
also collect evaluators’ gender (only for aggregated
analysis) to examine if humans with different gen-
ders evaluate the explanations differently. Rigorous
privacy protection and quality control mechanisms
are implemented. We compare the explanations
generated from the raw model and COFFEE, with
150 valid questionnaires collected for each.

We measure fairness in the three human evalu-
ated criteria of explanations. The results are shown
in Table 3, where we use Ind-CF as the fairness
metric. COFFEE can effectively achieve better
fairness on human evaluated quality measures by
improving fairness on FeatCov. Moreover, as in-
dicated by the average quality measure values, the
quality of explanations generated by COFFEE is
comparable to that of the RAW model. These re-
sults demonstrate COFFEE’s ability and practical
use in achieving fairness in explanation generation.
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8 Conclusion

We investigate the fairness problem in PTG by fo-
cusing on the bias in FeatCov of explanation gener-
ation. We propose COFFEE for achieving counter-
factual fairness in explanation generation. Compre-
hensive experiments and human evaluations show
the efficacy of COFFEE in achieving fairness with-
out hurting the utility of explanations.

This work opens the new direction of quality
fairness in PTG. We anticipate that this work will
encourage researchers to investigate novel fairness
notions in this problem, based on different quality
measures, and conduct in-depth analyses on their
social impacts. A promising direction is to involve
humans in the loop for direct fairness optimization
on human evaluated measures. We also plan to
generalize the COFFEE to other PTG settings, such
as conversational systems.

Limitations

In this study, we formulated a counterfactual fair-
ness constraint on explanation qualities, which is
grounded in sampled explanations from both real
and counterfactual worlds. We employed straight-
forward first moment matching to minimize the dis-
parity between these two sample sets. Future work
could explore the use of higher moment matching
to more effectively align the quality distributions
from the two worlds. For our experiments, we uti-
lized FeatCov of explanations as a quality measure,
given its simplicity and significance in the context
of explainable recommendations. However, ex-
ploring other domain-specific measures (e.g., senti-
ment, emotion) to define Q and assess COFFEE’s
versatility in different PTG settings would be in-
triguing. We have also achieved encouraging re-
sults in terms of sentiment fairness using COF-
FEE. Nevertheless, a more detailed discussion on
this falls outside the scope of this paper’s focus on
quality fairness, and thus we earmark it for future
investigation.
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A Applying COFFEE to NRT

There are mainly two modules in NRT (Li et al.,
2017)—a MLP for rating prediction, and an RNN
for explanation generation. Both modules share
the same user and item embeddings mapped from
input user and item IDs for personalization. In
particular, the user and item embeddings are used in
the initial hidden state of the RNN for explanation
generation (see Figure 2 in (Li et al., 2017)). To
apply COFFEE to NRT, we simply need to use
the concatenation of disentangled user preference
embedding and the attribute embedding instead of
the holistic user embedding, exactly as introduced
in Section 4.1. Similar to PETER, there are also
three loss terms in the original NRT, corresponding
to the explanation, context, and rating prediction
(see Section 3 in (Li et al., 2017)). We denote the
total loss of NRT by Lnrt, which is used to replace
Lgen in Eq. (3) for applying COFFEE.

B Experiment Setup

B.1 Dataset Processing

The first two datasets are the Video Games and
the Movies & TV categories from Amazon reviews.
These two datasets only provide the names of users.
We use a gender classification tool6 to predict the
gender of users from their names. To guarantee
the accuracy of the attribute values, we only re-
serve the users whose names can be confidently
classified as male or female and remove those clas-
sified as unknown. In the Yelp dataset, we use a
restaurant’s price range as the protected attribute.
There are originally four price ranges ($, $$, $$$,
$$$$) provided. However, we found that there are
much less four-dollar restaurants than in the other
price ranges, and thus we merge the four-dollar
restaurants into the group of three-dollar ones for
experiments. Using restaurant price as a sensitive
attribute is based on the counterfactual argument:
if a restaurant chose to raise/lower the price of its
dishes without other changes, the quality of gener-
ated explanations shouldn’t change. The rationale
is that users may care more about experiences in ex-
pensive restaurants since they are paying more, and
thus writing more detailed reviews. As shown in
Table 4, the explanations for expensive restaurants
have higher FeatCov and thus are more informa-
tive and detailed, which helps recommendations
on them be accepted more often. However, this

6https://pypi.org/project/gender-guesser/

Table 4: Average FeatCov of explanations generated for
restaurants of different price tags.

FeatCov $ $$ $$$

Ground-Truth 3.15 3.72 4.38
RAW PETER 3.26 3.68 4.03

will also leave the lower-priced restaurants at a
disadvantage.

We split each dataset into training (80%), valida-
tion (10%), and testing (10%) sets, and ensure that
there is at least one record in each subset for every
user and item.

B.2 Details of Baselines

• ADV (in-processing): Adversarially removing
the sensitive information in user or item represen-
tations by adding a discriminator (Li et al., 2021b).
We add discriminators on the user’s (or item’s) em-
bedding in PETER and NRT to remove the infor-
mation about protected attributes.
• NORM (pre-processing): We normalize the train-
ing data to remove the bias on group-level. With
two demographic groups, we remove the explana-
tions with the higher (lower) quality in the group
with more reviews, until the difference of average
quality between the two groups is below 10% of the
original difference. With more than two groups, we
recursively apply the procedure to the two groups
with the maximum difference until the maximum
difference is below the threshold. NORM removes
less than 2% of training data on Amazon datasets,
and less than 18% on Yelp.
• We pre-process the training data by translating
the explanations to Chinese and then back to En-
glish. We use the multilingual model mBART
(Tang et al., 2020) from EasyNMT7 to perform
the translation.
• ATTR: In order to evaluate the effectiveness of
optimizing the fairness constraint in COFFEE, we
use the model trained without the constraint (λ = 0
in Eq. (4)) as a baseline. We call the model ATTR,
which means the attribute is disentangled from the
user’s or item’s representations as introduced in
Section 5 but without adding the fairness constraint.
• NATTR (post-processing): We disable the pro-
tected attribute token in ATTR for generating expla-
nations during inference. Specifically, for NATTR-
NRT, we replace the learned attribute embeddings

7https://github.com/UKPLab/EasyNMT
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with random embeddings with values uniformly
sampled in [−1, 1] for explanation generation. For
NATTR-PETER, we disable the other tokens’ at-
tention on the attribute token during inference.

B.3 Evaluation Metrics

We evaluate both individual-level and group-level
fairness, with and without counterfactual perspec-
tives. The first metric denoted as Ind-CF evaluates
the originally defined CF on individuals (Kusner
et al., 2017), which is the same as the regularization
term in Eq. (4) averaged over all user-item pairs on
the test set D:

Ind-CF (8)

=
1

|D|
∑

u,i∈D

∣∣E[Q(yA←a)|u, i]− E[Q(yA←a′)|u, i]
∣∣.

We also evaluate the counterfactual effect on
group-level (Coston et al., 2020). For each attribute
value a and the corresponding demographic group,
we counterfactually change the attribute value of
all users in this group by a′ ̸= a, and calculate the
change on the average quality of this group. We
call this metric Group-CF:

Group-CF (9)

=
1

|A|(|A| − 1)

∑

a∈A

∑

a′ ̸=a

1

|Da|
∣∣∣∣∣

∑

u,i∈Da

E[Q(yA←a)|u, i]−
∑

u,i∈Da

E[Q(yA←a′)|u, i]
∣∣∣∣∣,

where Da denotes the demographic group with at-
tribute value a.

Finally, besides counterfactual metrics, we also
evaluate COFFEE’s generalization to improve
group-wise fairness by the popular notion of de-
mographic disparity (DDP) (Zafar et al., 2015):

DDP (10)

=
2

|A|(|A| − 1)

∑

a,a′∈A∣∣∣∣∣
1

|Da|
∑

u,i∈Da

E[Q(y)|u, i]− 1

|Da′ |
∑

u,i∈Da′

E[Q(y)|u, i]
∣∣∣∣∣.

All fairness metrics are lower the better, and the
quality expectation on each user-item pair is calcu-
lated over N = 3 sampled explanations.

COFFEE
PETER NRT

Games Movies Yelp Games Movies Yelp
λ 0.2 0.2 0.2 0.3 0.1 0.1
η 0.6 0.6 0.5 0.5 0.5 0.5

Table 5: Weight λ for the fairness constraint and the
promotion weight η in reward calibration of COFFEE
when applied to PETER and NRT on the three datasets.

C Experiment Settings

Here we elaborate the experiemntal protocols,
model specifications, and hyper-parameters. For all
models, we set the size of vocabulary to 20,000 by
keeping the most frequent words. By default, we
use top-5 sampling (Fan et al., 2018) as the decod-
ing strategy, and the maximum decoding sequence
length is 128.

For the raw PETER model (Li et al., 2021a),
we mostly follow the original paper’s hyper-
parameters. The token embedding dimension is
512 and the dimension of feed-forward network
is 2, 048. The number of transformer layers and
attention heads are both two. The dropout rate dur-
ing training is 0.2. For NRT (Li et al., 2017), we
follow the original paper and set the embedding di-
mension to 300 for all users, items and words. The
dimension of hidden layers is 400. The dropout
rate during training is 0.1. COFFEE consists of
pre-training the ATTR models with disentangled at-
tribute representations and then fine-tune them with
the counterfactual fairness constraints. For ATTR-
PETER, we just add an additional attribute token
to PETER, with the same embedding dimension
for the attribute. For ATTR-NRT, we disentangle
the attribute representation by concatenating to the
user or item embedding an attribute embedding of
dimension 100. The other model specifications for
ATTR-PETER and ATTR-NRT are the same as raw
PETER and NRT. When applying the discriminator
for removing the information about the protected
attribute from user or item embeddings, we use a 2-
layer MLP with hidden size of 512 as the attribute
discriminator. For both ATTR-PETER and ATTR-
NRT, the weight λD of the adversarial loss is set
to 0.5 on Amazon Games and Yelp datasets, and 0
on Amazon Movies. We iterate between one epoch
of model training and one epoch of discriminator
training until convergence. After the pre-training
of ATTR models, we fix the user, item and attribute
embeddings, remove the loss on rating prediction
but keep the loss on explanation generation, and
tune the model with the fairness constraint. The
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Table 6: Kruskal-Wallis H test between FeatCov and
quality and utility evaluated by human.

K-W H test Infor Detail Help

All
H-stats 39.44 45.67 23.83
p-value 5.6e−8 2.9e−9 8.6e−5

Male
H-stats 24.28 28.07 14.37
p-value 7.0e−5 1.2e−5 6.2e−3

Female
H-stats 16.58 15.74 12.24
p-value 2.3e−4 3.4e−4 5.6e−3

weight λ for the fairness constraint and the pro-
motion weight η in reward calibration are tuned
for different models and datasets, and are listed in
Table 5.

For model training, we use Adam as optimizer
and the initial learning rate for training raw mod-
els and ATTR models is 1e-4. The initial learning
rate is 1e-5 for COFFEE during fine tuning by the
fairness constraint. By default, the batch size is
16. But we use batch size of 8 during the tuning
phase of COFFEE when applying to PETER mod-
els, mainly due to memory issues. For training raw
models and ATTR models, we evaluate the total
loss on the validation set after each epoch, and use
the epoch checkpoint when the total loss is higher
in the next 5 consecutive epochs. When COFFEE
fine-tunes the pre-trained ATTR models, we always
use the checkpoint after a single epoch, which al-
ready yields promising results from COFFEE.

D Results from Kruskal-Wallis H Tests

We perform Kruskal-Wallis H test between Feat-
Cov and three human evaluated measures including
Informativeness, Detailness, and Helpfulness. The
results are shown in Table 6, where a H-stats larger
than one means a strong correlation, and a p-value
smaller than 0.05 means the correlation is signifi-
cant. FeatCov strongly and significantly correlate
with humans’ (both male and female) judgement of
the quality and helpfulness of explanations. Thus,
the bias can lead to unfair treatments to users of
different genders, as the quality of explanations,
evaluated by FeatCov in this case, may affect the
utility of explanations to users.

E Additional Results

We show the complete results on the Amazon
Movies and Yelp datasets based on the PETER

model in Table 7. Importantly, COFFEE achieves
strong fairness results while maintaining high util-
ity on explanation generation. Although COFFEE
may slightly drop the utility compared to the base-
lines, it can sometimes even outperform the base-
lines, as shown in the results on Amazon Movies
and Yelp datasets. This is because the disentan-
glement mechanism enables better representation
learning (Ma et al., 2019; Zheng et al., 2021) and in-
creases the flexibility and accuracy of interactions
between the user and item for better explanation
generation.

We also present some examples of generated
explanations on Amazon Games in Table 8. In par-
ticular, we select a male user Chadwick who wrote
detailed and informative reviews with high Feat-
Cov and a female user Noemi who wrote generic
reviews with low FeatCov for the same item "Wii
Nunchuk Controller". The raw PETER model fol-
lows the ground-truth reviews and generate detailed
explanation for Chadwick but short and generic ex-
planation for Noemi. In contrast, after applying
COFFEE to improve fairness, the model tend to
generate and more descriptive and informative ex-
planation for Noemi. These examples demonstrate
the effectiveness of COFFEE in generating fair and
high-quality explanations for users with different
protected attribute values.

E.1 Entanglement of Protected Attribute with
Preference

In Section 4.1, we employ a disentanglement ap-
proach where each user’s representation is sepa-
rated into two components: the attribute representa-
tion and the preference representation. This setup
enables us to perform counterfactual inference by
switching the attribute representation from one at-
tribute value to another. Following this method,
we analyzed how much changing a user’s learnt at-
tribute representation will influence the FeatCov of
generated explanations. Take the Amazon Games
dataset for example, without imposing any fairness
constraints, we observed that the average FeatCov
change is 2.68 when altering the attribute represen-
tation. Furthermore, over 92% of users exhibit a
FeatCov change greater than 1. This indicates that,
in most cases, the attribute and preference repre-
sentations are intertwined, and the disentanglement
approach effectively separates these two aspects.
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Table 7: Comparison between COFFEE and baselines based on the PETER model. BL stand for BLEU and RG
denotes ROUGE. BLEU, ROUGE and BERTScore are in percentage values and others are in absolute values. The
best results are boldfaced, and the second best are underlined. * indicates p < 0.05 for significance test over the
second best baseline.

PETER
Fairness on FeatCov Utility

Ind-CF↓ Grp-CF↓ DDP↓ BL1↑ BL4↑ RG1↑ RG2↑ RGL↑ BERT↑ FeatCov

Amazon Movies & TV (User’s Gender as Protected Attribute)
RAW - - 0.57 11.25 2.20 18.04 4.53 15.48 19.93 5.61
ADV - - 0.26 11.08 2.16 17.20 4.32 14.37 18.94 5.14

NORM - - 0.27 11.23 2.17 17.46 4.42 15.00 19.67 4.34
BT - - 0.16 11.25 2.18 12.91 1.66 11.02 15.01 4.13

NATTR - - 0.27 11.24 2.19 17.35 4.40 14.92 19.34 4.71
ATTR 1.47 0.10 0.37 11.19 2.16 17.43 4.63 15.98 19.72 5.31

COFFEE 1.13 0.01 0.07 11.28 2.12 17.77 4.60 15.35 20.13* 5.45
COFFEE-NT 1.16 0.01 0.00* 10.05 1.39 19.34* 4.56 15.86 19.52 5.08

Yelp (Restaurant’s Price as Protected Attribute)
RAW - - 0.51 10.24 1.57 18.71 3.11 14.64 19.82 3.78
ADV - - 0.28 9.87 1.60 17.25 2.64 13.99 18.34 3.18

NORM - - 0.09 9.96 1.54 17.56 2.81 14.10 19.67 3.06
BT - - 0.27 10.69 1.61 16.42 2.36 13.29 18.89 3.20

NATTR - - 0.32 10.08 1.55 18.53 3.06 14.57 19.75 3.37
ATTR 1.50 0.44 0.64 10.00 1.53 18.83* 3.16 14.75 19.81 3.52

COFFEE 0.84 0.08 0.13 11.17 1.77 17.97 3.00 14.39 20.58* 3.68
COFFEE-NT 0.54* 0.03 0.03* 11.61* 1.72 17.41 2.93 14.31 20.21 3.61

Table 8: Generated explanations by different models on Amazon Games. We select one male user Chadwick and
one female user Noemi, and present the explanations for them on the same item "Wii Nunchuk Controller".

PETER user: Chadwick, item: Wii Nunchuk Controlle user: Noemi, item: Wii Nunchuk Controller

Ground-truth

this review is for the white wii nunchuk controller. it is a
necessary component in most wii games, and attaches to
the bottom port of every wii remote. it is well-designed,
sturdy, and comfortable to hold. the price is relatively low
for such a controller.

great controller, arrived as expected.

RAW
i bought it to play wii u and this is a great addition to the wii
remote. the gamepad is a nice addition to the wii u gamepad.
the wii u is a must have for any wii u console owner.

the controller worked very well.

COFFEE
i bought this controller to use the nunchuck. this is a great
controller for wii - u owners especially the wii u. the
controller is very responsive and the triggers are awesome.

i bought this controller for my wii u. it was exactly
what it would be expected. i love the feel of the box
and it works great.
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E.2 Results based on NRT
We present the complete results based on the NRT
model in Table 9. Similar to the results on PE-
TER, COFFEE when applied to NRT can signif-
icantly outperform the baselines in terms of fair-
ness improvement. Again, when optimizing both
Qnumtoken and Qfeat together, COFFEE achieves
the best fairness improvements, verifying the effect
of correlations between different quality measures.
In general, PETER can generate better explana-
tions than NRT, e.g., on BERTScore, with or with-
out fairness optimizations, showing the capability
of transformers over RNNs. However, COFFEE
still maintains high generation utility based on NRT
when compared to baselines, showing its advantage
in generalizing the results to different models.

The observations and conclusions are similar to
the PETER based results. These results show COF-
FEE’s ability to generalize the fairness improve-
ment to different types of models, and indicate its
flexibility and practicality in real-world uses.
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Table 9: Comparison between COFFEE and baselines based on the NRT model. BL stand for BLEU and RG
denotes ROUGE. BLEU, ROUGE and BERTScore are in percentage values and others are in absolute values. The
best results are boldfaced, and the second best are underlined. * indicates p < 0.05 for significance test over the
second best baseline.

NRT
Fairness on Qfeat Utility

Ind-CF↓ Grp-CF↓ DDP↓ BL1↑ BL4↑ RG1↑ RG2↑ RGL↑ BERT↑ FeatCov

Amazon Games (User’s Gender as Protected Attribute)
RAW - - 1.42 8.33 1.30 19.21 3.97 14.35* 13.79 6.48
ADV - - 1.25 8.13 1.29 17.67 3.37 13.27 12.85 6.08

NORM - - 1.79 8.17 1.26 19.89* 4.27* 13.65 13.49 4.80
BT - - 1.47 8.34 1.17 16.44 2.71 12.23 10.73 5.29

NATTR - - 0.12 8.39 1.39 13.07 2.71 10.83 11.11 5.83
ATTR 6.70 1.46 1.65 8.98 1.29 18.94 3.89 14.29 13.84 6.23

COFFEE 1.81 0.52 0.51 8.91 1.30 17.94 3.50 13.63 13.83 6.30
COFFEE-NT 0.77* 0.02* 0.04 8.67 1.26 17.11 3.11 12.46 13.69 6.27

Amazon Movies & TV (User’s Gender as Protected Attribute)
RAW - - 0.46 10.55 1.86 18.37 3.98 15.16 19.20 5.46
ADV - - 0.24 10.48 1.83 18.44 3.95 15.10 19.09 5.18

NORM - - 0.46 10.53 1.91 18.09 3.89 14.96 19.03 4.62
BT - - 0.43 10.63 1.62 14.84 1.87 11.95 14.36 5.06

NATTR - - 0.33 9.84 2.07 15.90 3.37 13.77 16.57 4.75
ATTR 1.74 0.14 0.48 10.53 1.84 18.68* 4.10 15.34* 19.21 5.07

COFFEE 1.23 0.04 0.24 11.05 2.08 17.90 4.02 15.11 19.27 5.48
COFFEE-NT 1.10* 0.04 0.19* 10.52 2.02 17.04 3.92 14.77 19.35* 5.27

Yelp (Restaurant’s Price as Protected Attribute)
RAW - - 0.56 10.09 1.49 19.14 3.17 14.83 19.50 3.76
ADV - - 0.21 10.35 1.97 16.78 2.49 13.14 17.88 3.24

NORM - - 0.15 9.88 1.42 19.20 3.14 14.85 19.48 3.04
BT - - 0.30 10.56* 1.52 16.44 2.31 13.24 18.95 3.10

NATTR - - 0.19 10.38 2.23* 15.89 2.26 12.58 17.26 3.04
ATTR 1.58 0.42 0.50 10.08 1.85 18.92 3.09 14.72 19.74 3.22

COFFEE 0.93 0.17 0.10 10.25 1.75 18.34 2.92 14.33 19.49 3.70
COFFEE-NT 0.69* 0.09* 0.02 10.45 2.07 18.65 2.86 14.25 19.67 3.52
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