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Abstract

Using model weights pretrained on a high-
resource language as a warm start can reduce
the need for data and compute to obtain high-
quality language models for other, especially
low-resource, languages. However, if we want
to use a new tokenizer specialized for the tar-
get language, we cannot transfer the source
model’s embedding matrix. In this paper,
we propose FOCUS – Fast Overlapping Token
Combinations Using Sparsemax, a novel em-
bedding initialization method that initializes
the embedding matrix effectively for a new
tokenizer based on information in the source
model’s embedding matrix. FOCUS represents
newly added tokens as combinations of tokens
in the overlap of the source and target vocab-
ularies. The overlapping tokens are selected
based on semantic similarity in an auxiliary
static token embedding space. We focus our
study on using the multilingual XLM-R as a
source model and empirically show that FOCUS
outperforms random initialization and previous
work in language modeling and on a range of
downstream tasks (NLI, QA, and NER). We
publish our checkpoints and code on GitHub.1

1 Introduction

Research on large language models is advancing
rapidly with powerful new models being published
at a break-neck pace (e.g., Zeng et al., 2022a;
Le Scao et al., 2022; Touvron et al., 2023). Al-
though multilingual models have been released,
many of the world’s languages are not covered.
Multilingual models have also been shown to
have subpar performance on under-resourced lan-
guages (Wu and Dredze, 2020). Therefore, it is cru-
cial to develop methods that harness these advances
and make them available for further languages, es-
pecially low-resource ones.

A promising line of work in this regard focuses
on crosslingual transfer of Transformer models pre-

1https://github.com/konstantinjdobler/focus
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Figure 1: Illustration of FOCUS’s initialization strategy
for embeddings of new tokens (blue dot): Find similar
tokens (orange dots) in an auxiliary fastText embedding
space; then initialize the new token as their weighted
mean in the pretrained embedding space.

trained on high-resource languages. Crosslingual
transfer directly copies the pretrained weights in
the Transformer layers to the target language model.
Subsequently, the model is further adapted to the
target language by continued pretraining on unla-
beled target language text using the original self-
supervised pretraining objective. This sort of train-
ing regimen is also known as language adaptive
pretraining (LAPT; Chau et al., 2020).

However, the pretrained model’s embedding ma-
trix cannot be directly transferred if we use a new
tokenizer for the target language (Artetxe et al.,
2020; de Vries and Nissim, 2021). Using ap-
propriate tokenizers has been shown to be impor-
tant for the model’s performance on downstream
tasks (Rust et al., 2021) and is crucial if the source
and target language use different scripts.

We present FOCUS, an embedding initialization
method that allows us to transfer information from
the source model’s pretrained embedding matrix to
a new embedding matrix for the target language’s
tokenizer. FOCUS is illustrated in Figure 1. The
key idea is to use overlapping tokens between both
tokenizers as anchor points and represent new tar-
get language tokens as a weighted mean of over-
lapping tokens’ embeddings. This enables us to
initialize the new embedding matrix in the same
semantic space as the pretrained embedding ma-
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trix. We empirically show in extensive experiments
across a range of different high-resource and low-
resource target languages that FOCUS outperforms
various strong baselines both in language modeling
as well as on downstream tasks (Natural Language
Inference, Question Answering, and Named Entity
Recognition).

In our experiments, we focus on the multilingual
XLM-R (Conneau et al., 2020) as a source model
and specialize it for a single language. FOCUS is
particularly well-positioned to take advantage of
multilingual source models due to their larger vo-
cabulary and the fact that they have already been
pretrained to a certain extent on many potential tar-
get languages. Additionally, we show that FOCUS

still improves significantly over random initializa-
tion even if only minimal vocabulary overlap is
available.2

In previous work, a common approach has been
to adapt multilingual models to target languages
while simply keeping or extending the original vo-
cabulary (Wang et al., 2019; Chau et al., 2020;
Wang et al., 2020; Chau and Smith, 2021). When
extending the vocabulary, FOCUS can also be ap-
plied to initialize embeddings just for the new to-
kens. However, we advocate considering the set-
ting of full vocabulary replacement. Only a fraction
of the multilingual vocabulary is actually used for
any single language, so by fully replacing the large
multilingual vocabulary with a language-specific
smaller vocabulary we can enable faster training
times and smaller models. XLM-R’s vocabulary
has 250k tokens, and replacing this with a language-
specific 50k token vocabulary reduces the model
size quite dramatically, by over 55%.3 In our ex-
periments, training with a language-specific 50k
token vocabulary is 40% faster than extending the
original 250k token vocabulary.4 We summarize
the contributions of our paper as follows:

• We propose FOCUS, a novel embedding initial-
ization method that effectively transfers knowl-
edge from a pretrained embedding matrix to one
for a new, language-specific tokenizer.

• We empirically verify the effectiveness of FO-
CUS for language modeling and downstream

2We study a minimal overlap consisting exclusively of
tokens that are numbers, punctuation, and whitespace.

3Comparing 278 million parameters at ≈ 1.1 GB to 124
million parameters at ≈ 0.5 GB.

4Comparing a 50k token vocabulary to an extended
273k token vocabulary with HuggingFace tokenizers and
transformers on two Nvidia A100 80GB GPUs.

tasks in extensive experiments using XLM-R
as a source model on a range of high- and low-
resource languages.

• We further show that FOCUS is effective also
when the target language was not part of the
source models’ pretraining or only a minimal
vocabulary overlap is available.

2 FOCUS

Our goal is to initialize embeddings for tokens in
a new, language-specific target vocabulary in the
same semantic space as the source model’s em-
beddings. In this study, we mainly focus on the
multilingual source model XLM-R although FO-
CUS can in principle also be applied to monolin-
gual source models.5 We copy all embeddings
of shared tokens between source and target tok-
enizer for our new embedding matrix. If the target
language was already part of the source model’s
pretraining corpus, this takes advantage of target
language tokens with pretrained embeddings in the
source model’s tokenizer. In any case, we take
advantage of shared named entities, symbols, num-
bers, punctuation, and shared words resulting from
code-switching between the target and pretrained
vocabularies. Additional target language tokens
not present in the source model are represented as
a linear combination of embeddings of semanti-
cally similar shared tokens. Unlike previous work
on embedding initialization, this requires neither
bilingual dictionaries nor an alignment of embed-
ding spaces across different languages (Minixhofer
et al., 2022; Zeng et al., 2022b). Next, we formally
describe FOCUS.

Details of FOCUS. We obtain as input a source
vocabulary Vs with pretrained embeddings Es and
a target vocabulary Vt with embeddings Et, which
we seek to initialize. The target vocabulary Vt is
obtained by training a tokenizer on monolingual
text in the target language. We use #»e s

i and #»e t
i to

denote embeddings for individual tokens in Es and
Et, respectively. We denote the set of overlapping
tokens as O = Vs∩Vt. For each overlapping token
we can copy the pretrained embedding over into
our target embedding matrix:

∀o ∈ O : #»e t
o =

#»e s
o. (1)

5In Section 4, we also conduct experiments in a setting
with almost no vocabulary overlap, showing that FOCUS can
be used to transfer a model to previously unseen languages.
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Note that we make an assumption here: tokens that
are part of the overlap O have sufficiently similar
semantics in our source and target vocabularies.
For multilingual source models, we can exploit
already existing tokens from the target language.
Otherwise, this will obviously not always be the
case6, but through common named entities, code-
switched tokens, symbols, numbers, and punctu-
ation this assumption will hold reasonably often.
We provide an in-depth analysis in Appendix B.

Finding an initialization in the same semantic
space as the pretrained embeddings is not as easy
for the set of non-overlapping (“additional”) tokens
A = Vt \O. To initialize embeddings for the addi-
tional tokens, we first train auxiliary embeddings
X for all target tokens Vt (i.e., both O and A).7 In
our experiments, we apply fastText on unlabeled
target language data pre-tokenized with the target
tokenizer for Vt. Individual embeddings in X are
denoted by #»x i. Next, we compute the pairwise co-
sine similarities between the auxiliary embeddings
#»x i of tokens in A and O so that for any a ∈ A:

#»c a = [sim(a, o1), . . . , sim(a, on)] (2)

where oi is the overlapping token at index i and:

sim(a, o) :=
#»xa · #»xo

∥ #»xa∥∥ #»xo∥
. (3)

We convert the similarity scores #»c a to weights by
applying sparsemax (Martins and Astudillo, 2016)
over each #»c a. Sparsemax is a sparse variant of
softmax that assigns zero probability mass to low-
probability elements, which has previously been
used by Tran (2020) in a similar setting. Using
sparsemax has the advantage of being able to dy-
namically accommodate different degrees of skew
in the similarity distribution. In some cases we
might have only one or two very similar tokens,
in other cases, we might have significantly more.
Accordingly, the weights #»wa of the overlapping
tokens are:

#»wa= sparsemax( #»c a) = argmin
#»p∈∆

∥ #»p − #»c a∥2 (4)

with ∆ denoting the (|O|−1)−dimensional proba-
bility simplex, i.e.,

∆ := { #»p ∈ R|O| | #»
1 · #»p = 1, #»p ≥ 0}. (5)

6Consider words known as false friends: words with the
same spelling but different meanings across languages.

7In principle, we could instead also obtain token embed-
dings from already pretrained fastText word embeddings fol-
lowing Minixhofer et al. (2022). We show in Section 4 that
training fastText directly at the token level provides a better
initialization.

We then initialize the target embeddings for each
additional token a as a weighted mean over pre-
trained embeddings of the overlapping tokens
from Es, with the weights given by #»wa. Due to
sparsemax, most of the elements in each #»wa will
be zero. Note that we use the pretrained embed-
dings Es instead of the auxiliary embeddings X,
as only the pretrained embeddings are in the same
semantic space as the rest of the transferred Trans-
former layers. Therefore:

∀a ∈ A : #»e t
a =

∑

o∈O
wa,o

#»e s
o. (6)

Summary. FOCUS uses cheap and fast-to-train
static embeddings for tokens in the target vocab-
ulary to select semantically similar overlapping
tokens for each additional target token. The pre-
trained embeddings of the overlapping tokens are
then used to initialize embeddings for the additional
target tokens. In Appendix B, we provide further
implementation details as well as a detailed analy-
sis of the different types of overlapping tokens we
encountered in our experiments.

3 Experimental Setup

We perform experiments using XLM-R as our mul-
tilingual source model, due to its popularity and
widespread use.8 We use the base variant for
all experiments. Our language-specific tokeniz-
ers are trained in the same way as XLM-R for
comparability, specifically SentencePiece tokeniza-
tion (Kudo and Richardson, 2018) with the Uni-
gram algorithm (Kudo, 2018). We use Hugging-
Face tokenizers and a vocabulary size of 50k
tokens for all languages.

3.1 Baselines

To evaluate FOCUS, we compare against multiple
strong baselines for embedding initialization as
well as other methods of adapting XLM-R to a
target language. We always transfer all layers of
XLM-R, except for the embedding. Minixhofer
et al. (2022) already demonstrate the superiority of
this over random initialization of all weights, so
we do not compare against the weak baseline of
training a model completely from scratch.

XLM-R with the original vocabulary. We re-
port results of using XLM-R off-the-shelf without

8As of October 2023, XLM-R has 12.2 million downloads
per month on the HuggingFace Hub.
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language-adaptive pretraining (LAPT) as well as
after adapting XLM-R to the target language with
the original vocabulary kept as-is.

Random Initialization. For vocabulary replace-
ment with a language-specific tokenizer and ran-
dom embedding initialization, we copy the orig-
inal pretrained embeddings following Zoph et al.
(2016). This randomly maps pretrained embed-
dings to tokens in the new vocabulary and per-
formed slightly better than other types of random
initialization in preliminary experiments.9 In this
case, we also consider the variant of training just
the embeddings for an additional 20% of training
steps before unfreezing the rest of the network
(called 2-STAGE-LAPT). De Vries and Nissim
(2021) note that this allows the new embeddings to
adapt to the transferred Transformer layers to pre-
vent catastrophic forgetting. Therefore, this strong
baseline is trained 20% longer than other methods.

WECHSEL. We additionally compare against us-
ing WECHSEL (Minixhofer et al., 2022) to initial-
ize the embedding matrix for the language-specific
tokenizer. WECHSEL is a method for embedding
initialization originally designed for transferring
monolingual source models. It relies on aligning
pretrained word embeddings for the source and
target languages using the Orthogonal Procrustes
method (Schönemann, 1966) with bilingual dictio-
naries as seed data. Then, each source and target
token is embedded into the same semantic space
using the out-of-vocabulary method of fastText, re-
sulting in aligned static token embeddings for both
languages.

To faithfully apply WECHSEL with a multilin-
gual source model, we would need to provide a
word embedding space for all the languages that
are part of the multilingual models’ pretraining cor-
pus. Also, gathering bilingual dictionaries from
all source languages to the target language would
become a challenge. Instead, we apply WECHSEL

as-is using only pretrained English fastText word
embeddings for the source model. This effectively
assumes that all pretrained source token embed-
dings are English, which is a rough but not entirely
unreasonable assumption given the predominance
of English over other languages in the pretraining
corpus of XLM-R. We can further commit to this
assumption by deleting all non-English tokens from

9We refer to this as random initialization. Random map-
ping performed slightly better than initialization from a normal
or uniform distribution.

Language Dataset Size (GB)

German 18 GB
Arabic 5.4 GB
Kiswahili 0.3 GB
Hausa 0.06 GB
isiXhosa 0.03 GB

Table 1: Size of datasets from CC100 used for LAPT.

the pretrained vocabulary before applying WECH-
SEL, which we dub WECHSELEN. This yields an
initialization method similar to the mixture map-
ping method proposed by Wang et al. (2019).

Vocabulary Extension. We also run experiments
with vocabulary extension following Wang et al.
(2020) by extending with the top 30k tokens of
the language-specific tokenizer as well as using
FOCUS to initialize embeddings for the extended
tokens.

3.2 Language-Adaptive Pretraining (LAPT)
For LAPT, we use the same self-supervised Masked
Language Modeling (MLM) objective as in the
original pretraining of XLM-R. We use the CC100
corpus to obtain unlabeled text in our target lan-
guages, which was also already used for the pre-
training of XLM-R (Conneau et al., 2020). There-
fore, we do not introduce any new unseen data. We
show dataset sizes for our target languages in Ta-
ble 1. We use the same hyperparameters for all
languages, as detailed in Appendix A. In particular,
we use a batch size of 128 with chunked sequences
of 256 tokens and train our models on 50 million
samples (resulting in a total of 12.8 billion training
tokens and 390k optimizer steps).

3.3 Evaluation
We also evaluate our models on downstream tasks
in their respective target languages. We perform
downstream task evaluation on five languages: Ger-
man, Arabic, Kiswahili, isiXhosa, and Hausa. They
were chosen to provide a mix of high-, medium-
and low-resource languages, typological and script
diversity while satisfying the practical constraints
of available evaluation datasets. We refer to Ger-
man as high-resource, Arabic and Kiswahili as
medium-resource, and isiXhosa and Hausa as low-
resource languages.

We use the translated training sets of XNLI (Con-
neau et al., 2018) to evaluate Natural Language
Inference (NLI) in the translate–train setting. To
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evaluate Question Answering, we use German-
QuAD (for German, Möller et al., 2021) and Ty-
DiQA GoldP (for Swahili and Arabic; Clark et al.,
2020). We perform Named Entity Recognition
(NER) experiments using the balanced train–dev–
test split of WikiANN (Rahimi et al., 2019; Pan
et al., 2017). Additionally, we evaluate NER for
German on the GermEval2014 dataset (Benikova
et al., 2014) and for Swahili, Hausa, and isiXhosa
using MasakhaNERv2 (Adelani et al., 2022). If
there is no dedicated dev split, we construct our
own with a random sample of 10% of the train-
ing data. We perform model selection on the dev
split and report the selected checkpoint’s result on
the test set. We report accuracy for XNLI and F1-
scores otherwise. We run all experiments five times
with different random seeds and report the mean
and standard deviation. Hyperparameters for all
evaluation tasks are given in Appendix A.

Furthermore, we evaluate the initialization per-
formance of FOCUS without further training mea-
sured by the MLM loss on a held out set on five
additional very low-resource languages (Scottish
Gaelic, Luxembourgish, Cebuano, Samoan, and
Hmong). For these languages, we use mC4 (Raf-
fel et al., 2020) and OSCARv23.01 (Abadji et al.,
2022) as additional data sources for unlabeled text.

4 Results

We present downstream task results for NLI and
QA in Table 2 and for NER in Table 3. In the fol-
lowing, we discuss various aspects of these results.
In Figure 2, we show loss curves on a held out
set when adapting XLM-R with custom tokenizers.
In Table 4, we report the masked language mod-
eling (MLM) loss of various methods right after
initialization (no further training performed).

Effectiveness of FOCUS. Table 4 shows the effec-
tiveness of FOCUS initialization for vocabulary re-
placement. Directly after initialization without fur-
ther training, FOCUS significantly outperforms all
other initialization methods. In Figure 2, we show
loss curves over the course of language-adaptive
pretraining (LAPT). For random initialization, we
only plot the second stage after the embeddings
have already been trained for an additional 20% of
total training steps. FOCUS yields a lower loss than
random initialization even at the end of training,
despite random initialization having been trained
for more steps in total. WECHSEL starts off worse
than FOCUS but catches up over the course of train-

ing. Naturally, the effect of initialization is less
pronounced the longer we train the models. We
have deliberately constructed a difficult evaluation
with our long training regime of 12.8 billion tokens.
In settings where less compute is available, FOCUS

may be even more beneficial.
The improved effectiveness on the pretraining

objective also translates to gains in downstream
tasks, as reported in Table 2 and Table 3. FO-
CUS initialization outperforms random initializa-
tion across all downstream tasks and languages
(except for Arabic TyDiQA). WECHSEL also im-
proves over random initialization, but FOCUS ob-
tains superior results. FOCUS can also be applied
for vocabulary extension instead of vocabulary re-
placement. Here, we see less of an improvement
over the random initialization baseline. This could
be due to the smaller impact of FOCUS, since only
a relatively small percentage of the large extended
vocabulary is affected.

Vocabulary Extension or Replacement? We
find that vocabulary extension generally performs
worse on downstream tasks than keeping the origi-
nal vocabulary. This finding is in line with results
reported by Ebrahimi and Kann (2021) on a set
of 30 typologically diverse languages. Prior stud-
ies proposing vocabulary extension (Chau et al.,
2020; Wang et al., 2020; Chau and Smith, 2021)
used mBERT and were motivated by the possibility
of out-of-vocabulary (OOV) tokens. For XLM-R
using SentencePiece with 100% character set cov-
erage or byte-level tokenizers, OOV tokens can
always be represented at the character or byte level.
Therefore, the benefits of vocabulary extension
might be less pronounced in these cases because
the OOV problem is less relevant to begin with.

On average, when combined with FOCUS ini-
tialization, vocabulary replacement outperforms
both vocabulary extension and keeping the origi-
nal vocabulary. Nevertheless, keeping the original
vocabulary intact proves to be a strong baseline
and for the high-resource language German even
outperforms vocabulary replacement with FOCUS.
However, vocabulary replacement paired with FO-
CUS performs better on medium- and low-resource
languages, results in smaller models, and is thus
faster to train.

Low-Resource Languages. Focusing on lesser-
resourced languages, FOCUS outperforms random
initialization and LAPT with the original vocabu-
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XNLI (translate-train) GermanQuAD / TyDiQA

Method German Arabic Kiswahili Avg. German Arabic Kiswahili Avg.

XLM-R (original vocab)
- off-the-shelf 78.8 ± 0.3 74.8 ± 0.4 69.1 ± 0.4 74.2 71.3 ± 0.4 78.4 ± 0.9 73.9 ± 1.4 74.5
- LAPT 78.9 ± 0.4 75.1 ± 0.6 72.4 ± 0.4 75.5 70.5 ± 0.8 78.9 ± 0.5 75.8 ± 1.0 75.0

XLM-R (replaced vocab)
- Random + LAPT† 77.6 ± 0.4 74.6 ± 0.4 71.2 ± 0.3 74.5 69.1 ± 0.7 79.3 ± 0.6 74.2 ± 1.0 74.2
- WECHSELEN + LAPT 77.7 ± 0.5 75.4 ± 0.3 72.0 ± 0.2 75.0 71.0 ± 0.4 79.3 ± 1.0 75.2 ± 0.7 75.2
- WECHSEL + LAPT 78.2 ± 0.2 76.0 ± 0.2 72.3 ± 0.3 75.5 70.5 ± 0.5 79.4 ± 0.9 75.5 ± 1.5 75.1
- FOCUS + LAPT 78.3 ± 0.6 76.5 ± 0.4 72.9 ± 0.5 75.9 71.3 ± 0.2 79.1 ± 0.4 76.5 ± 1.5 75.6

XLM-R (extended vocab)
- Random + LAPT 77.7 ± 0.6 75.2 ± 0.6 71.8 ± 0.4 74.9 69.8 ± 0.6 77.7 ± 0.6 76.3 ± 0.8 74.6
- FOCUS + LAPT 78.0 ± 0.4 75.5 ± 0.4 72.1 ± 0.2 75.2 69.5 ± 0.3 77.8 ± 1.0 77.0 ± 0.6 74.7

Table 2: Results on Natural Language Inference and Question Answering tasks. Details on the datasets used for
evaluation are given in Section 3.3. We bold the best result in each section and underline the overall best result.
LAPT is short for language-adaptive pretraining; we perform LAPT for 50 million samples on unlabeled target texts.
†: For random initialization, we train just the embeddings for an additional 20% of training steps before full LAPT
to create a stronger baseline.

WikiANN GermEval14 / MasakhaNERv2

Method German Arabic Kiswahili Avg. German Kiswahili Hausa isiXhosa Avg.

- off-the-shelf 86.3 ± 0.2 85.7 ± 0.3 86.6 ± 0.5 86.2 85.6 ± 0.3 92.0 ± 0.1 84.2 ± 0.5 85.5 ± 0.3 87.1
- LAPT 86.7 ± 0.1 87.1 ± 0.1 86.9 ± 0.6 86.9 86.8 ± 0.2 92.5 ± 0.2 85.6 ± 0.4 88.3 ± 0.2 88.3

XLM-R (replaced vocab)
- Random + LAPT† 86.0 ± 0.1 87.5 ± 0.1 85.8 ± 0.5 86.4 85.9 ± 0.3 92.3 ± 0.2 85.0 ± 0.3 87.4 ± 0.2 87.8
- WECHSELEN + LAPT 86.4 ± 0.1 87.8 ± 0.1 86.6 ± 0.9 87.0 86.4 ± 0.2 92.3 ± 0.1 –‡ –‡ –
- WECHSEL + LAPT 86.5 ± 0.2 87.9 ± 0.3 87.4 ± 0.6 87.3 86.7 ± 0.1 92.2 ± 0.1 –‡ –‡ –
- FOCUS + LAPT 86.6 ± 0.2 87.9 ± 0.1 86.9 ± 0.4 87.1 86.6 ± 0.0 92.6 ± 0.1 86.0 ± 0.4 88.5 ± 0.4 88.4

XLM-R (extended vocab)
- Random + LAPT 85.6 ± 0.2 85.2 ± 0.3 86.2 ± 0.7 85.6 85.4 ± 0.3 92.0 ± 0.2 84.1 ± 0.2 87.2 ± 0.4 87.5
- FOCUS + LAPT 86.0 ± 0.1 85.3 ± 0.3 86.2 ± 0.3 85.8 85.6 ± 0.2 92.1 ± 0.2 84.9 ± 0.4 87.7 ± 0.3 87.9

Table 3: Results on Named Entity Recognition (NER) tasks. Details on the datasets used for evaluation are given in
Section 3.3. We bold the best result in each section and underline the overall best result. †: For random initialization,
we train just the embeddings for an additional 20% of training steps before full LAPT to create a stronger baseline.
–‡: Languages not covered by the pretrained fastText word embeddings used by WECHSEL.

0 10 20 30 40 50
training progress (in million samples seen)

1.5

2.0

2.5

3.0

M
L

M
lo

ss

German

Random

Wechsel

Focus

0 10 20 30 40 50
training progress (in million samples seen)

2.0

2.5

3.0

3.5

4.0

4.5

M
L

M
lo

ss

Arabic

Random

Wechsel

Focus

0 10 20 30 40 50
training progress (in million samples seen)

1.5

2.0

2.5

3.0

3.5

4.0

M
L

M
lo

ss

Kiswahili

Random

Wechsel

Focus

Figure 2: Masked Language Modeling (MLM) loss of different methods for vocabulary replacement over the course
of further pretraining (LAPT), evaluated on a held out set. The first data point is logged at 1 million samples. For
random initialization, we plot only the second stage, i.e., after already training just the embeddings for 10 million
samples. This allows us to compare FOCUS and WECHSEL embedding initialization directly with gradient descent
training of the embeddings.
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Part of XLM-R’s pretraining Not Part of XLM-R’s pretraining

Data source → CC100 OSCARv23.01 mC4

Initialization ↓ German Arabic Kiswahili isiXhosa Hausa Scott. Gaelic Luxembourgish Cebuano Samoan Hmong

Random 24.0 24.1 24.2 25.5 23.7 22.8 24.4 22.5 21.9 22.8

FOCUS 4.0 5.2 4.8 7.6 6.0 6.1 8.2 6.3 4.9 5.7
- Word-fastText 4.3 5.5 6.0 –† –† 7.5 8.7 6.7 –† –†

- Symbolic Overlap 10.6 10.6 10.7 10.4 10.4 10.4 10.2 9.7 8.4 8.1

WECHSEL 8.3 9.8 11.2 –† –† 11.1 10.9 10.1 –† –†

Table 4: MLM loss on a held-out set immediately after initialization (no training performed) with full vocabulary
replacement. We use the same vocabulary for all methods in a single language. Symbolic Overlap restricts
overlapping tokens to numbers, punctuation, or whitespace. Word-fastText uses WECHSEL’s method of turning
pretrained word embeddings into token embeddings instead of our proposed directly trained token-level embeddings.
–†: Languages are not covered by the pretrained fastText word embeddings used by WECHSEL.

lary on NER for Hausa and isiXhosa. Furthermore,
we report the Masked Language Modeling loss di-
rectly after initialization on a number of very low-
resource languages in Table 4. We see that across
all languages, including the very low-resource ones,
FOCUS achieves the best results. FOCUS also pro-
vides a good initialization even when the target
language was not part of the source model’s pre-
training.

In low-resource settings, a key advantage of
FOCUS is that we only need unlabeled target lan-
guage data to train our auxiliary embeddings – a
resource already needed for LAPT in any case. Un-
like WECHSEL, no bilingual dictionary is required,
the quality and coverage of which might also be
insufficient in low-resource settings. Some low-
resource languages, such as Hausa and isiXhosa,
are also not covered by WECHSEL’s source of pre-
trained word embeddings.10

Effect of Vocabulary Overlap. Naturally, the
quality and quantity of overlapping tokens influ-
ences the success of FOCUS. To investigate this,
we conducted empirical analyses in two settings:
using the full overlap and using only overlapping
tokens that are symbols, numbers, or punctuation
(Symbolic Overlap). Full overlap can take advan-
tage of the source model’s multilingual pretraining
if the target language or a closely related language
were part of the pretraining corpus. In any case,
however, symbolic tokens such as whitespace, num-
bers, and punctuation should generally be available,
allowing us to transfer a model to any language.
In Table 4, we show that even when using only
symbolic overlapping tokens, FOCUS outperforms
WECHSEL on medium to low-resource languages
(e.g., Scottish Gaelic, Luxembourgish, Kiswahili,

10https://fasttext.cc/docs/en/crawl-vectors.html

and others). For Arabic and German, FOCUS with
only symbolic overlapping tokens performs slightly
worse than WECHSEL. In practice however, we
will generally have numerous further overlapping
tokens such as named entities and code-switched
tokens. This is demonstrated by our results for
Luxembourgish, Cebuano, Samoan, and Hmong –
all languages that XLM-R and XLM-R’s tokenizer
were not pretrained on. Here, using the full overlap
outperforms using only symbols, suggesting more
beneficial overlapping tokens beyond the ones in-
cluded in our symbolic overlap. Overall, these
results show that FOCUS can provide a good initial-
ization even when the target language was not part
of the source model’s pretraining.

Auxiliary Embeddings. WECHSEL proposes a
method to use pretrained word-level fastText em-
beddings to obtain token-level embeddings. We
propose to directly train token-level fastText em-
beddings. In Table 4, we additionally show FO-
CUS’s initialization performance when using the
WECHSEL-style method to obtain token-level fast-
Text embeddings (Word-fastText). We see that us-
ing our directly trained token-level fastText embed-
dings results in a better initialization for low- and
high-resource languages.

WECHSELEN. On average, WECHSEL actually
fares slightly better than WECHSELEN, although
WECHSELEN also improves over random initializa-
tion. For WECHSELEN, we followed Wang et al.
(2019) in selecting English tokens in XLM-R’s
original vocabulary by taking the overlap with
a language-specific English tokenizer’s vocabu-
lary. Due to the substantial presence of English
in XLM-R’s original vocabulary, this may have
been too restrictive, excluding too many potentially
useful tokens.
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5 Related Work

We now discuss further related work apart from the
studies introduced in Section 1.

Language Adaptive Pretraining (LAPT). Alabi
et al. (2022) adapted XLM-R to up to 20 African
languages at the same time instead of specializing
on a single language. Ebrahimi and Kann (2021)
and Wang et al. (2022) used resources with much
higher language coverage than web-scraped mono-
lingual texts (the Bible and lexicons, respectively)
to adapt pretrained multilingual models to unseen
languages. Muller et al. (2021) transliterated un-
seen languages into Latin script to improve the
results when using an existing pretrained vocabu-
lary.

Adapters. In contrast to approaches changing all
pretrained model weights, Pfeiffer et al. (2020) in-
troduce additional adapter modules and only these
new weights are changed. This is more parameter-
efficient than full model adaptation, but gradients
still need to be backpropagated throughout the
model until the first adapter (Rücklé et al., 2021).
Also, adapters introduce additional computational
cost at inference time.

Bilingual Embedding Alignment. Vernikos and
Popescu-Belis (2021) propose SMALA to calculate
a mapping between embedding spaces for two lan-
guages to find semantically similar tokens across
languages. They also experiment with initializing
the remaining tokens based on this cross-lingual
mapping. WECHSEL (Minixhofer et al., 2022)
aligns word embeddings from two different lan-
guages. Such alignments operate under the as-
sumption of near-isomorphism between embedding
spaces of different languages (Vulić et al., 2020),
i.e., that they share a similar geometric structure.
Recent studies have challenged this assumption,
especially for language pairs with typological (Sø-
gaard et al., 2018; Patra et al., 2019; Ormazabal
et al., 2019) and resource (Vulić et al., 2020; Fu
et al., 2020) differences. This is especially detri-
mental in the case of language model transfer, as
we usually transfer from a high-resource language
such as English to less-resourced languages with
potentially different typology. FOCUS does not
require the alignment of embedding spaces.

For multilingual source models, WECHSEL also
disregards a valuable resource at our disposal: tar-
get language tokens that already have pretrained

embeddings in the multilingual source model. For
these tokens, we can copy their pretrained embed-
dings as a gold standard. Obtaining a different
initialization is likely to lead to a worse result. FO-
CUS is well-positioned to take advantage of these
pretrained embeddings of target language tokens.

Additionally, WECHSEL requires a bilingual dic-
tionary as an additional resource to seed the embed-
ding space alignment. For low-resource languages,
such a bilingual dictionary might be of lower qual-
ity or not available. FOCUS does not require bilin-
gual dictionaries as an additional resource.

Other Embedding Initialization Methods. In
concurrent work, Ostendorff and Rehm (2023) pro-
pose a similar method to FOCUS that initializes
an embedding matrix for a new vocabulary based
on combinations of overlapping tokens with a pre-
trained embedding matrix, but use the embedding
layer of a smaller pretrained Transformer model in-
stead of static fastText embeddings as an auxiliary
embedding space. However, their study only pro-
vides results on the high-resource language German
as a target language and they do not consider BERT-
style source models. If no smaller pretrained Trans-
former model with the desired tokenizer is avail-
able, training one from scratch comes with a much
higher computational cost than training the fastText
embeddings for FOCUS. Zeng et al. (2022b) create
a new vocabulary and embedding matrix for the
target language by translating tokens in the source
vocabulary with bilingual dictionaries.

6 Conclusion

We propose FOCUS, a novel embedding initializa-
tion method for the monolingual specialization of
language models with a language-specific tokenizer.
FOCUS uses the vocabulary overlap between source
and target languages to effectively transfer the pre-
trained embeddings to the new target tokenizer’s
embedding matrix. In a series of experiments
across a diverse set of languages and several differ-
ent tasks, we show that FOCUS outperforms other
available embedding initialization methods without
requiring additional resources like bilingual dictio-
naries. FOCUS can provide a good initialization
even if only a minimal vocabulary overlap is avail-
able and when the target language has not been part
of the source model’s pretraining. We release our
code and model checkpoints on GitHub.11

11https://github.com/konstantinjdobler/focus
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Limitations

We evaluate FOCUS only for BERT-like Trans-
former models. In principle, the method is applica-
ble to any model that uses a vocabulary, tokenizer,
and embedding matrix. In future work, we hope to
investigate the use of FOCUS on GPT decoder mod-
els, as explored by Ostendorff and Rehm (2023).

We conduct downstream task evaluations for
NLI, QA, and NER on German, Arabic, and
Swahili. For the low-resource languages isiXhosa
and Hausa, we conduct downstream task experi-
ments for NER. This provides a good mix of dif-
ferent levels of available resources, scripts, and ty-
pology. However, further evaluations on languages
covering more scripts and languages that were not
part of the source models’ pretraining are needed to
substantiate the effectiveness of FOCUS in these set-
tings. All our chosen languages have monolingual
texts available for further pretraining. As Wang
et al. (2022) note, this is not the case for many
other low-resource languages. Since further pre-
training on target language data is a key component
of our model adaptation strategy, the applicability
of FOCUS is also limited in this regard, although
such data can in some cases also be synthesized.

Ethics Statement

In this work, we conduct the main part of our down-
stream task experiments on German, Arabic, and
Swahili. These choices stem from our desire to pro-
vide practically useful ideas that reflect the current
availability of models and to conduct experiments
on downstream tasks such as question answering,
NLI, and named entity recognition, for which we
need relevant ground truth data.

Finally, researchers and practitioners need to be
cognizant of the fact that adopting existing mono-
lingual or even multilingual models as a starting
point instead of training new models from scratch
can lead to remnant biases towards the original
pretraining data. Hence, there is a risk that a
model adopts certain forms of behavior that reflect
other languages and cultures than that of the lan-
guage community one is targeting. Also, web-scale
datasets used for pretraining such as CC100 might
contain personal and sensitive information. Such
behavior needs to be assessed very carefully before
any real-world deployment of the models.
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A Hyperparameters and Experiment
Details

We conducted all experiments on a heterogeneous
compute cluster with Nvidia V100 32GB, A100
40GB, A100 80GB, and A6000 48GB GPUs. De-
pending on availability we used one, two, or four
GPUs for our experiments and adjusted the batch
size per device so that we retain the same ef-
fective batch size. Depending on total model
size, we also used gradient accumulation with
smaller batch sizes to fit the model into GPU
memory. We used PyTorch (Paszke et al., 2019)
and pytorch-lightning (Falcon et al., 2019) as
well as the HuggingFace transformers (Wolf
et al., 2020), tokenizers (HuggingFace, 2021)
and datasets (Lhoest et al., 2021) libraries. We
used the fp16 mixed precision training imple-
mented by pytorch-lightning.

Further pretraining. We used the same hyper-
parameters for all target languages, as detailed
in Table 5. We trained for a total of 50 million
samples with batches of 128 sequences of 256 to-
kens. This results in a total of 390,625 optimizer
steps (weight updates). We used AdamW opti-
mization (Loshchilov and Hutter, 2019) as imple-
mented in torch.optim12 and a linear learning
rate warmup for 5 million samples (39,062 opti-
mizer steps) followed by a constant learning rate
at 5× 10−5. We used a constant schedule to allow
for more flexible experimentation regarding the to-
tal number of training steps and to ensure that the
impression of converged loss curves is not a false
positive induced by a decaying learning rate. We
also conducted preliminary experiments using a
cosine learning rate schedule and did not observe a
significant difference. We used the CC100 dataset
in line with its intended use for the pretraining of
language models. For German, our training does
not even complete a full epoch.

Datasets for low-resource languages. Compar-
ing OSCARv23.01 and mC4 as a data source for
low-resource languages, we observe that for Cor-
sican13, Cebuano and Luxembourgish, the qual-
ity in mC4 is quite poor. Training a tokenizer on
these datasets results in a tokenizer that, on aver-
age, encodes fewer characters per token than when

12Since we do not use weight decay, this is equivalent to
using Adam (Kingma and Ba, 2015).

13Results not included in the paper as the language is not
provided by OSCARv23.01.

Hyper-parameter Value

peak learning rate 5× 10−5

learning rate schedule constant
learning rate warmup 5 million samples
batch size 128
sequence length 256
gradient clipping 1.0
Adam ϵ 1× 10−8

Adam β1 0.9
Adam β2 0.999
training samples 50 million
resulting train steps 390625

Table 5: Hyper-parameters for further pretraining on
target language data.

using the original XLM-R tokenizer. Motivated
by this, we turned to OSCARv23.01 (for Cebunao
and Luxembourgish, since it does not contain Cor-
sican). We filter each dataset based on the qual-
ity warnings header, footer, and noisy provided
by OSCARv23.01. Training a tokenizer on this
data yielded the expected results. For Hmong and
Samoan, we did not observe such degraded tok-
enization training on mC4. Nevertheless, these cor-
pora (and all web-crawled corpora of low-resource
languages) can also be expected to be noisy.

Downstream tasks. We detail our hyperparame-
ters for all downstream tasks in Table 6. We largely
followed default values of finetuning scripts pro-
vided by Huggingface14, but adjusted the training
epochs depending on dataset size, added a linear
learning rate warmup for 10% of total training
steps, and adjusted the batch size based on used
GPU memory per task. Additionally, we used a
2× 10−5 peak learning rate for all non-QA tasks.
We repeated each experiment five times with the
random seeds {1,2,3,4,5} and report the mean
and standard deviation across runs. For XNLI,
we report accuracy, for TyDiQA, GermanQuAD,
WikiANN, MasakhaNERv2, and GermEval14, we
report the F1-Score.

Tokenizer training. Our language-specific tok-
enizers were trained in the same way as XLM-R
for comparability, specifically SentencePiece tok-
enization (Kudo and Richardson, 2018) with the
Unigram algorithm (Kudo, 2018). We used Hug-

14github.com/huggingface/transformers/tree/main/
examples/pytorch
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gingFace tokenizers and a vocabulary size of 50k
tokens for all languages. The resulting vocabular-
ies contain a large amount (roughly 10k tokens) of
emojis and Chinese, Japanese, and Korean single
characters, which is an artifact of SentencePiece’s
character_coverage parameter (which defaults
to 100%). Characters are included in the vocab-
ulary even if they appear only once in the large
amount of noisy web-scraped training documents.
This effectively means that our language-specific
vocabularies are roughly 10k tokens smaller in prac-
tice, as such single characters rarely occur in the
training data. In practice, one may wish to tune
the character_coverage carefully based on the
requirements of the target language if a smaller
model is desired.

B Further details for FOCUS

FastText training. To obtain static token embed-
dings for FOCUS, we train fastText embeddings on
tokenized target language training data. We mostly
used default hyper-parameters but increased the di-
mensionality to 300, as is commonly done in the
literature (Mikolov et al., 2013; Bojanowski et al.,
2017). We ran the training for three epochs. On
German, due to its corpus size, we ran only a single
epoch.

Additionally, we set a minCount of 10 for to-
kens during fastText training to filter out very rare
tokens. These rare tokens are initialized from a nor-
mal distribution with mean and standard deviation
per dimension calculated from the source embed-
ding matrix, as done by WECHSEL for tokens that
have no subwords in the pretrained word embed-
ding. Setting minCount also helps with filtering the
noisy single characters that are part of our tokeniz-
ers due to SentencePiece’s character_coverage
parameter.

Vocabulary Overlap. FOCUS relies on overlap-
ping tokens between the new and pretrained vocab-
ularies. Ideally, an overlapping token would have
the same semantics in the target language vocabu-
lary and in the pretrained vocabulary. If the target
language was already part of the pretraining, this is
most obviously true for (sub-)words that only occur
in the target language. Differences in script or pe-
culiarities of the target language (such as German
umlauts and other language-specific accented char-
acters) help facilitate such occurrences. In many
languages, especially online, there is widespread
code-switching with English, leading to English

words being interspersed within native sentences,
which also contributes to shared semantics. A con-
siderable share of tokens is also made up of names,
named entities, symbols, numbers, and punctuation.
While these are not exclusive to any particular lan-
guage, they are likely to possess the same semantics
across languages, making them good overlapping
tokens. We report the number of overlapping to-
kens for languages used during training in Table 8.

Additionally, we manually classified a random
sample of 500 overlapping tokens for German and
report the results in Table 7. The overlap is cal-
culated between XLM-R’s original tokenizer and
our newly trained, language-specific German one.
For this analysis, we excluded the noisy single-
character tokens mentioned in Appendix A. We
conclude that a considerable share of the overlap-
ping tokens for German does indeed possess sim-
ilar semantics in the pretrained and new vocabu-
laries. For less-resourced languages than German
that were still part of the multilingual models’ pre-
training, we can expect fewer overlapping tokens
that are directly part of the target language. High-
resource languages have a larger share of language-
specific tokens in the vocabulary of XLM-R. How-
ever, for languages with an uncommon or unique
script, tokens are more likely to be exclusive to the
target language. During the pretraining of XLM-R,
low-resource languages are also oversampled (Con-
neau et al., 2020). Therefore, tokens that are shared
between low and high-resource languages are more
likely to also have the low-resource language se-
mantics encoded in their embeddings than would
otherwise be the case.

Overlaps between different tokenizers. In gen-
eral, we only consider tokens as overlapping if they
are an exact match (including case and the “be-
ginning of word” (BOW) signifier. However, for
tokens that only consist of numbers, punctuation, or
whitespace, we implement fuzzy matching where
we disregard the case and the BOW signifier.

A peculiarity of calculating token overlaps be-
tween different kinds of tokenizers is the repre-
sentation of tokens that are BOW tokens and non-
ASCII characters. For example, the HuggingFace
implementation of Byte-Level BPE uses Ġ as a pre-
fix for BOW tokens, whereas XLM-R’s tokenizer
uses _. To complicate things, BERT’s tokenizer
WordPiece (Devlin et al., 2019) prefixes tokens
that are not BOW with ##. Also, Byte-level BPE
represents non-ASCII characters in tokens differ-
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Hyper-parameter XNLI QA WikiANN GermEval14 MasakhaNERv2

epochs 2 5* 5* 25 25
peak learning rate 2× 10−5 5× 10−5 5× 10−5 5× 10−5 2× 10−5

lr schedule linear linear linear linear linear
lr warmup ratio 10% 10% 10% 10% 10%
batch size 128 64 128 128 128
sequence length 256 384 256 256 256
gradient clipping 1.0 1.0 1.0 1.0 1.0
Adam ϵ 1× 10−8 1× 10−8 1× 10−8 1× 10−8 1× 10−8

Adam β1 0.9 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999 0.999

Table 6: Hyper-parameters for our downstream tasks. *: After observing high variance due to smaller training set
sizes, we adjusted the number of epochs for Swahili to 25 for QA (on TyDiQA GoldP) and NER (on WikiANN).
We evaluate every 5% of total training steps and report the best checkpoint’s results on the test set.

Category Share Examples

Symbols & Numbers 9% 3.5, 1919, 3500, ..., ;-), !!!, 1%, [6]
Names & Entities 10% BlackBerry, Oscar, Messi, JavaScript
German (sub-)words 46% Bewerber, Wahl, günstig, fallen
English & Code-switched 18% Smoothie, FAQ, Backup, Settings
Not assignable 17% ik, Kri, kub, rez, zy, BF, oka

Table 7: Investigation of overlapping tokens on German. The evaluation was conducted manually by one of the
authors on a random sample of 500 overlapping tokens. In the examples, leading spaces are omitted and we further
exclude the “noisy” single-character tokens mentioned in Appendix A.

Tokens in Overlap

Language minCount = 10 Full

German 14,485 18,986
Arabic 10,658 13,996
Swahili 10,443 12,353
Hausa 11,481 14,806
isiXhosa 6,222 8,333

Table 8: Number of tokens in the overlap between
language-specific and XLM-R’s original vocabulary.
For learning fasttext embeddings with FOCUS, we set
minCount = 10, which filters out very rare and noisy
tokens.

ently than XLM-R’s tokenizer. In our experiments
in this paper, we only use the XLM-R tokenizer,
which also matches the source model’s tokenizer,
and therefore avoid these problems. However, a cor-
rect canonicalization of tokens to a common form
is crucial to enable FOCUS when the tokenizers of
source and target model do not match. We imple-
ment such a canonicalization method for common
tokenizers and release it as part of our ready-to-use
implementation of FOCUS.15

15https://github.com/konstantinjdobler/focus
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