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Abstract
In-context learning is the paradigm that adapts
large language models to downstream tasks by
providing a few examples. Few-shot selection—
selecting appropriate examples for each test in-
stance separately—is important for in-context
learning. In this paper, we propose SKILL-
KNN, a skill-based few-shot selection method
for in-context learning. The key advantages of
SKILL-KNN include: (1) it addresses the prob-
lem that existing methods based on pre-trained
embeddings can be easily biased by surface
natural language features that are not impor-
tant for the target task; (2) it does not require
training or fine-tuning of any models, making
it suitable for frequently expanding or chang-
ing example banks. The key insight is to opti-
mize the inputs fed into the embedding model,
rather than tuning the model itself. Techni-
cally, SKILL-KNN generates the skill-based
descriptions for each test case and candidate
example by utilizing a pre-processing few-shot
prompting, thus eliminating unimportant sur-
face features. Experimental results across five
cross-domain semantic parsing datasets and six
backbone models show that SKILL-KNN sig-
nificantly outperforms existing methods.

1 Introduction

In-context learning (Brown et al., 2020) has be-
come a prevailing paradigm for utilizing large lan-
guage models (LLMs) (Hendrycks et al., 2020;
Patel and Pavlick, 2021; Rae et al., 2021; Zhang
et al., 2022a; Hoffmann et al., 2022; Srivastava
et al., 2022; Chowdhery et al., 2022; Smith et al.,
2022; Wei et al., 2022a). It employs a frozen task-
agnostic backbone model to serve various down-
stream tasks without requiring parameter updates
for each task. Under in-context learning, the LLMs
generate output for an input query by condition-
ing on the prompt that contains input-output exam-
ples. Due to limited context length of the language
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Input Query:

Example Bank

Similar Example:

In-Context Learning Wrong Result !

Prompt

Generate

In which city do the most employees live and 

how many live there?

Which cities do more than one employee under 

age 30 come from?

Select

(a) Raw-Input-Based Selection

Input Query:

Example Bank

Similar Example:

Select

In-Context Learning Correct Result !
Generate

The number of schools that have more than 

one donator whose amount is less than 8.5.

Which cities do more than one employee under 

age 30 come from?

Prompting LLMs to Generate

Skill-Based 

Description:
This task requires the greater-than and less-

than constraints.

Prompt

(b) Skill-Based Selection

Figure 1: In-context learning with different selection
methods. (a) Examples from raw-input-based selection
just share similar entities with the input query. (b) With
the skill-based description, the selected examples con-
tain the desired task-specific skills.

model, only a few examples can be presented in the
prompt. Prior studies have found that the perfor-
mance of in-context learning is sensitive to the se-
lected in-context examples (Liu et al., 2022; Zhang
et al., 2022b; Chen et al., 2023b). Therefore, one
essential research question is: how to select proper
examples from a large example bank?

Raw-input-based selection is one widely applied
solution (Gao et al., 2021; Liu et al., 2022; Hu
et al., 2022). It involves embedding raw inputs of
examples using an off-the-shelf embedding model
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DB Schema: employee (name, age, city, …) …
Question: Which cities do more than one 
employee under age 30 come from?

Prompting-Based Rewriting

Off-the-Shelf

Embedding Model

Skill-Based Descriptions

Input Query

Candidate 1:This task requires the greater-than 

and less-than constraints.

Candidate 2:This task requires to apply two

constraints on one selected column.

Candidate … 

…

Example Bank

Skill-Based Selection
DB Schema: cinema (name, capacity, location, …) …
Question: Find the locations that have more than one 

movie theater with capacity above 300.

SQL Query: SELECT … WHERE capacity  >  300 GROUP 
BY location HAVING count(*)  >  1

DB Schema: endowment (school, donator, amount, …) …
Question : Find the number of schools that have more 

than one donator whose donation amount is less than 8.5.

SQL Query: SELECT ... WHERE amount  >  8.5 GROUP 

BY school HAVING count(*)  >  1

…

Context

DB Schema: employee (name, age, city, …) …
Question: Which cities do more than one employee under 

age 30 come from?

In-Context Learning

SQL Query: SELECT city FROM employee WHERE age 

< 30 GROUP BY city HAVING count(*) > 1 

Figure 2: The bird’s-eye view of SKILL-KNN, a rewrite-then-retrieve selection method to facilitate in-context
learning with skill-based descriptions.

and then selecting the most similar examples. It
can be conveniently applied in various downstream
tasks. However, this method can be easily biased
by surface natural language features that are not im-
portant for the target task. For instance, in semantic
parsing tasks1, the raw-input-based selection just
finds out examples with similar entities (as illus-
trated in Figure 1a), while the better in-context
examples should contain the required executable
operations in logical forms, which can be regarded
as the task-specific skills.

To overcome this limitation, we aim to make
this embedding-based selection better aware of the
intrinsic skills behind the raw inputs. We consider
to harness the power of prompting LLMs to con-
vert the desired skills from raw inputs, which
maintains the training-free advantage during selec-
tion. There has been much work trying to fine-tune
the embedding model for each task based on the
example bank (Rubin et al., 2022; Poesia et al.,
2022; Hu et al., 2022; Ye et al., 2023). However,
fine-tuning-based methods are difficult to apply in
practical scenarios: it is laborious to train and save
the embedding model for each task, and it is also
inconvenient to re-train the model on a dynamic
example bank that can be updated frequently.

Specifically, we introduce SKILL-KNN, a
training-free, skill-based selection method (briefly
illustrated in Figure 1b). Overall, SKILL-KNN will
first generate skill-based descriptions from raw
input queries, then feed these descriptions into an
off-the-shelf embedding model to select most simi-
lar examples. To generate skill-based descriptions,
we prompt a frozen LLM with just a few human-

1Semantic parsing means to parse an NL utterance into a
machine-understandable logical form (e.g., a SQL query).

annotated demonstrations, which does not require
any fine-tuning process and has no rule-based con-
straint. Additionally, to alleviate the sensitivity to
the order of annotated demonstrations during gener-
ation, we design two variants of SKILL-KNN: we
sample a set of candidate descriptions by shuffling
annotated demonstrations, then select candidate
based on consistency and distinctiveness, respec-
tively.

The experimental results show that SKILL-KNN
brings a considerable boost for in-context learning
compared to the raw-input-based selection. We
evaluate SKILL-KNN on five challenging semantic
parsing datasets: Spider (Yu et al., 2018b), Dr. Spi-
der (Chang et al., 2023), KaggleDBQA (Lee et al.,
2021), BIRD (Li et al., 2023c), and COGS (Kim
and Linzen, 2020). We take six models for
in-context learning: text-chat-davinci-002, code-
davinci-002, text-davinci-003, code-cushman-002,
gpt-35-turbo, and gpt-4. Across these tasks and
models, SKILL-KNN consistently performs best
among non-oracle selection methods and, at times,
is even comparable to oracle methods. For instance,
with text-chat-davinci-002, SKILL-KNN achieves
78.3% execution accuracy on Spider, while the best
raw-input-based selection method reaches 74.6%
and Target-KNN2 attains 78.6%. Furthermore, our
ablation study indicates that SKILL-KNN retains
its superiority when constraints are imposed on the
annotated demonstrations, including reducing the
number of demonstrations, restricting the database
diversity, and decreasing the operation coverage.

Our contributions are three-fold: 1) we propose
a skill-based few-shot selection method SKILL-
KNN, which leverages the power of prompting

2One of the oracle methods, detailed in Section 4.2.
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Table 1: Part of our annotated skill-based descriptions for text-to-SQL tasks.

Input Query Database Schema Skill-Based Description

Show all majors.
allergy type [allergy, allergytype]
has allergy [stuid, allergy]
student [stuid, lname, fname, age, sex, major, ...]

To solve this task in the database, we need to select distinct
values in the column.

Count the number of different colleges that players
who play for Columbus Crew are from.

team [team id, name]
country [country id, country name, capital, ...]
match season [season, player, position, country, team, ...] ...

To solve this task in the database, we need to join two tables
and count the number of distinct values in the column.

Which catalog contents have a product stock number
that starts from "2"? Show the catalog entry names.

catalogs [catalog id, catalog name, catalog publisher, ...]
catalog structure [catalog level number, catalog id, ...]
catalog contents [catalog entry id, catalog level number, ...] ...

To solve this task in the database, we need to select one column
and apply a constraint on the format of values in this column.

LLMs to generate skill-based descriptions; 2) we
design two variants of SKILL-KNN based on con-
sistency and distinctiveness, respectively; 3) our
comprehensive experiments across various seman-
tic parsing tasks and backbone models demonstrate
the effectiveness of SKILL-KNN, and our analy-
sis of annotated demonstrations provides further
insights for better utilization of SKILL-KNN.

2 Preliminaries

In this section, we introduce embedding-based few-
shot selection as the preliminary of our method.

2.1 In-Context Learning with Few-Shot
Selection

Consider a downstream task T that contains a set
of input-output examples {(xi → yi)}n (termed
example bank B)3 , and a pre-trained large language
model with frozen parameters θ. Given a test input
query xt, the large language model with in-context
learning will generate an output yt by sampling
from the following distribution,

yt ∼ LLMθ,τ [R(xt,B)⊕ xt], (1)

in which τ is the sampling temperature, R(xt,B)
returns a sequence of examples selected from B
according to xt, and ⊕ means to sequentially con-
catenate two sequences. In the later part of the
paper, we omit the frozen θ and set τ = 0 by de-
fault, which means to perform greedy decoding.

Few-shot selection aims to design the algorithm
R(xt,B) that can work well for task T .

2.2 Embedding-Based Few-Shot Selection
A standard implementation of R(xt,B) is to lever-
age an off-the-shelf embedding model Emb(·)
and calculate the embedding similarity of raw in-
puts (Liu et al., 2022),

sim(xt, xi) =
Emb(xt)Emb(xi)

T

|Emb(xt)||Emb(xi)|
, (2)

3In semantic parsing tasks, each input query contains a
natural language question along with the database schema.

in which xi is the input4 of one example (xi, yi) ∈
B. Based on Equation 2, we can select k most
similar examples from B. In addition, these exam-
ples will be sorted in the prompt according to their
similarities to the test input query: examples with
higher similarity scores will be placed closer to the
test input query.

This standard implementation of R(xt,B) is a
raw-input-based selection. It just searches for ex-
amples with similar inputs (i.e., the xt and xi in
Equation 2). Some recent researches propose to
fine-tune the embedding model (from Emb(·) to
Emb′(·)) (Rubin et al., 2022; Poesia et al., 2022;
Hu et al., 2022; Ye et al., 2023). In this paper, we
want to explore how to improve the effectiveness of
few-shot selection without training or fine-tuning
of any models.

3 SKILL-KNN

SKILL-KNN involves a rewrite-then-retrieve pro-
cess to better exploit the potential of in-context
learning. Figure 2 gives a bird’s-eye view of
our method. To mine and utilize task-specific
skills, SKILL-KNN contains a prompting-based
rewriting stage and a skill-based selection stage.
Prompting-based rewriting will prompt LLMs to
generate skill-based descriptions from the given
input query. Skill-based selection will return few-
shot examples based on these generated descrip-
tions. In the following, we elaborate the design of
SKILL-KNN.

3.1 Generating Skill-Based Descriptions

We prompt a frozen large language model to rewrite
each input query as a skill-based description, which
does not require any fine-tuning process. Specifi-
cally, we first annotate the skill-based descriptions
for 16 examples in B, then prompt the large lan-

4For raw-input-based selection, we only use the question in
the input query for embedding and omit the database schema,
as it contains much trivial and redundant information for the
question and could confuse the embedding model.
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guage model with these annotated demonstrations
and generate for other examples in B and for each
test input query.

Note that we annotated skills with natural lan-
guage descriptions rather than rule-based con-
straints. It is important to note that off-the-shelf
embedding models are primarily pre-trained on nat-
ural language (NL) data and may not be well-suited
for handling specifically designed structural con-
straints. By annotating skills with NL descriptions,
we can better align with the off-the-shelf embed-
ding models, which in turn allows us to leverage
their generalizability when encoding unannotated
NL descriptions more effectively. Thus, these natu-
ral language skills can better suit the off-the-shelf
embedding model, and our annotated demonstra-
tions can better generalize to unseen data.

Formally, with a set of annotated demonstrations
{xa → sa} in which sa is the annotated skill-based
description for the raw input xa, we generate the
si for each unannotated input xi by prompting the
large language model,

si = LLM[{xa → sa} ⊕ xi], (3)

then, these descriptions are fed into the off-the-
shelf embedding model to select similar examples,

sim(st, si) =
Emb(st)Emb(si)

T

|Emb(st)||Emb(si)|
. (4)

Table 1 shows part of our annotated demonstrations
for text-to-SQL tasks, and all our annotations are
contained in Appendix E. Note that different text-
to-SQL tasks can share the same set of annotated
demonstrations in our experiments.

Equation 4 defines the basic version of SKILL-
KNN. Moreover, we notice that the generated skill-
based descriptions sometimes could be sensitive
to the order of annotated demonstrations. Such
a sensitivity is also observed in some previous
work (Zhao et al., 2021; Lu et al., 2022). Therefore,
we design two variants of SKILL-KNN to further
address this sensitivity issue.

3.2 Variants
To alleviate the influence from the sensitivity to
prompt order, we design two variants of SKILL-
KNN that change the order of annotated demonstra-
tions and perform rewriting multiple times. Specifi-
cally, for each input xi, both two variants generate a
set of candidate descriptions Si = {s1i , s2i , ..., smi }
according to Equation 3 by changing the order in

Consistency-Based Distinctiveness-Based

Candidate Skill-Based Representations

Central Similarity Maximum Similarity

Figure 3: Two variants of SKILL-KNN. The blue and
green points represent two candidate sets of skill-based
representations.

{xa → sa}. Then, two variants use these can-
didate descriptions from the view of consistency
and distinctiveness, respectively. Figure 3 briefly
illustrates the basic ideas behind these two vari-
ants. Appendix B.1 provides further analysis for
the motivation behind the design of two variants.

Consistency-Based Variant. From the view of
consistency, we take the central embedding of all
candidate descriptions during selecting examples,

simc(St, Si) =
et ei

T

|et| |ei|
, e =

1

m

∑

sj∈S
Emb(sj),

(5)
in which St and Si represent two sets of candidate
descriptions for the test input xt and one example
(xi, yi) ∈ B, respectively. This variant is inspired
by prior work on improving the consistency of
chain-of-thought reasoning (Wang et al., 2022; Li
et al., 2022a). As illustrated in the left in Figure 3,
Equation 5 can be regarded as an embedding-level
majority voting among all candidate descriptions
during selection.

Distinctiveness-Based Variant. Considering
that the central embedding can sometimes be
overwhelmed by trivial candidates, we want to
highlight the most distinctive and informative
description among all candidates. Formally, we
consider the maximum similarity score between
two sets for selection,

simd(St, Si) = max
j,k

Emb(sjt )Emb(ski )
T

|Emb(sjt )||Emb(ski )|
, (6)

in which sjt ∈ St and ski ∈ Si. As illustrated in the
right in Figure 3, Equation 6 means that we take
the minimum distance among two set of candidates
for selecting similar examples.

4 Experimental Setup

In this section, we will introduce the tasks, com-
pared selection methods, backbone models, and
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Table 2: Our main experimental results (%) across various LLMs and tasks. Numbers in bold are the best results
across non-oracle methods, and results with underlines can outperform at least one oracle method.

Backbone Method Spider
Dr. Spider

KDBQA BIRD
COGS

#Wins
DB NLQ SQL P.S. P.A.

text-chat-davinci-002

Random 72.9 54.1 58.1 68.2 24.1 35.7 59.1 61.5 0
KNN w/ SBERT (Liu et al., 2022) 73.0 51.6 58.2 67.3 24.3 38.3 78.5 71.1 0
KNN w/ OpenAI Babbage (Liu et al., 2022) 74.0 53.2 61.0 69.2 35.3 38.1 88.3 74.1 0
KNN w/ OpenAI Ada (Liu et al., 2022) 72.8 51.8 59.2 69.6 31.9 37.1 81.3 64.2 0
MMR w/ OpenAI Ada (Ye et al., 2022) 74.6 54.1 60.7 71.3 37.3 37.2 86.8 78.9 0

SKILL-KNN w/ SBERT (base) 76.8 55.3 60.3 72.1 34.7 38.9 93.8 88.3 0
+ consistency 76.0 54.8 60.3 71.9 33.8 38.2 94.3 87.9 0
+ distinctiveness 78.3 57.0 61.4 72.2 40.0 38.0 92.6 88.8 5

SKILL-KNN w/ OpenAI Ada (base) 77.1 55.4 60.5 70.9 38.7 38.9 94.9 95.6 1
+ consistency 77.2 54.8 59.6 71.1 40.0 38.3 95.2 93.5 2
+ distinctiveness 77.2 56.5 59.8 70.1 39.5 38.3 93.3 97.0 1

Target-KNN (oracle) 78.6 56.6 65.5 75.5 37.8 41.7 86.8 83.2 -
Target Sketch Matching (oracle) 79.5 54.2 65.1 76.2 40.4 40.8 96.9 95.7 -

code-davinci-002

Random 74.2 53.9 59.3 70.2 27.9 38.4 56.1 63.1 0
KNN w/ SBERT (Liu et al., 2022) 73.1 51.2 58.6 69.1 31.2 39.9 75.4 64.7 0
KNN w/ OpenAI Babbage (Liu et al., 2022) 73.6 50.7 59.6 69.1 37.5 38.2 85.4 72.4 0
KNN w/ OpenAI Ada (Liu et al., 2022) 72.7 50.4 60.2 69.5 35.7 38.2 77.3 60.3 0
MMR w/ OpenAI Ada (Ye et al., 2022) 74.8 53.7 60.7 69.4 37.8 37.9 84.9 75.4 0

SKILL-KNN w/ SBERT (base) 76.4 53.0 60.2 72.4 38.6 40.2 93.1 86.8 1
+ consistency 77.1 51.1 60.7 72.4 36.8 40.1 93.5 87.1 1
+ distinctiveness 77.4 55.0 60.9 71.0 43.0 38.9 91.9 88.4 3

SKILL-KNN w/ OpenAI Ada (base) 76.2 54.7 61.4 70.2 39.8 40.3 94.0 92.9 1
+ consistency 76.4 54.9 60.2 71.8 39.5 40.8 96.2 88.8 2
+ distinctiveness 76.6 55.0 60.6 70.2 38.9 40.8 93.5 94.0 3

Target-KNN (oracle) 78.8 56.1 68.2 76.4 44.5 44.3 85.9 79.7 -
Target Sketch Matching (oracle) 80.9 54.0 66.7 77.9 44.9 43.8 95.0 94.8 -

text-davinci-003

Random 69.0 52.2 55.1 64.5 20.6 36.0 65.5 61.2 0
KNN w/ SBERT (Liu et al., 2022) 69.9 50.2 56.1 67.2 21.0 37.7 82.1 71.1 0
KNN w/ OpenAI Babbage (Liu et al., 2022) 72.2 53.4 58.0 69.5 26.8 37.7 88.8 77.2 0
KNN w/ OpenAI Ada (Liu et al., 2022) 70.8 50.3 57.2 66.3 30.3 36.5 82.8 64.2 0
MMR w/ OpenAI Ada (Ye et al., 2022) 72.4 53.3 58.6 69.9 31.4 37.7 87.1 81.0 0

SKILL-KNN w/ SBERT (base) 74.9 54.4 59.0 70.2 32.9 38.0 94.8 88.4 0
+ consistency 75.3 54.8 59.0 70.6 32.0 38.1 94.3 89.2 0
+ distinctiveness 76.6 54.1 58.9 70.6 36.8 37.4 93.3 87.5 2

SKILL-KNN w/ OpenAI Ada (base) 74.2 55.2 59.5 68.5 34.0 38.4 95.7 94.3 1
+ consistency 74.3 55.0 59.5 71.0 36.8 40.2 96.7 92.7 5
+ distinctiveness 73.7 56.2 59.4 70.6 32.4 37.9 93.8 97.4 2

Target-KNN (oracle) 75.6 54.2 63.9 73.3 35.1 40.0 87.8 84.5 -
Target Sketch Matching (oracle) 76.4 52.5 61.4 72.0 31.6 39.8 97.6 95.3 -

code-cushman-002

Random 72.2 51.5 56.6 66.8 26.1 35.3 56.7 55.6 0
KNN w/ SBERT (Liu et al., 2022) 67.6 47.8 54.4 64.6 29.4 37.0 70.3 62.5 0
KNN w/ OpenAI Babbage (Liu et al., 2022) 71.6 48.6 56.4 66.8 36.4 36.4 77.5 71.6 0
KNN w/ OpenAI Ada (Liu et al., 2022) 68.9 48.1 57.3 67.4 31.9 34.8 71.3 54.7 0
MMR w/ OpenAI Ada (Ye et al., 2022) 69.3 49.8 57.1 68.6 36.2 36.8 75.6 72.8 0

SKILL-KNN w/ SBERT (base) 74.5 52.1 58.0 69.3 35.1 37.0 90.6 84.1 0
+ consistency 74.7 52.3 58.0 69.6 35.3 38.3 91.1 86.6 1
+ distinctiveness 72.8 52.0 58.8 67.2 40.8 35.9 91.8 83.2 2

SKILL-KNN w/ OpenAI Ada (base) 73.6 52.4 58.4 69.0 38.4 37.9 93.2 86.6 0
+ consistency 73.5 53.0 57.9 69.8 40.0 38.6 95.0 82.8 4
+ distinctiveness 73.7 51.2 57.6 67.9 38.9 37.3 91.9 90.9 1

Target-KNN (oracle) 77.6 52.5 65.6 73.8 40.8 41.7 77.0 72.8 -
Target Sketch Matching (oracle) 77.2 51.7 62.2 73.2 39.7 39.8 91.9 94.0 -

hyper-parameters in our experiments.

4.1 Tasks
We evaluate on five challenging cross-domain se-
mantic parsing datasets. Due to the cross-domain
property, the model can not easily solve these tasks
by just copying some similar surface features from
the provided in-context examples.

Spider (Yu et al., 2018b) is a large-scale text-to-
SQL dataset. It contains a train set with 7,000 ex-
amples and a dev set with 1,034 examples. More-
over, the train set and dev set do not share any
database. We take the train set of Spider as the
example bank, and evaluate on the dev set.

Dr. Spider (Chang et al., 2023) is a diagnostic
evaluation benchmark constructed based on Spider.
It contains 15,269 examples which can be divided
into 3 sub-tasks, according to the type of designed
perturbations: database perturbations (DB), natural
language question perturbations (NLQ), and SQL
query perturbations (SQL). We take the train set
of Spider as the example bank, since Dr. Spider is
purely an evaluation benchmark.

KaggleDBQA (Lee et al., 2021) (KDBQA) is a
small while complex dataset towards realistic eval-
uation of text-to-SQL semantic parsers. It contains
8 real Web databases with original formatting and
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Table 3: Performance of gpt-35-turbo and gpt-4 on Spi-
der dev set.

Backbone Method Exec. Acc.

gpt-4

Random 76.1
KNN w/ SBERT (Liu et al., 2022) 76.7
Din-SQL (Pourreza and Rafiei, 2023) 74.2

SKILL-KNN w/ SBERT (base) 81.3
+ consistency 82.7
+ distinctiveness 82.3

gpt-35-turbo

Random 74.3
KNN w/ SBERT (Liu et al., 2022) 73.7
KNN w/ OpenAI Babbage (Liu et al., 2022) 73.4

SKILL-KNN w/ SBERT (base) 76.2
+ consistency 76.3
+ distinctiveness 76.8

Table 4: Comparison with the fine-tuning-based selec-
tion methods on Spider dev set.

Backbone Method Exec. Acc.

text-chat-davinci-002

EPR (Rubin et al., 2022) 74.4
CEIL (Ye et al., 2023) 75.0
TST (Poesia et al., 2022) 76.3

SKILL-KNN w/ SBERT (base) 76.8

code-davinci-002

EPR (Rubin et al., 2022) 75.9

SKILL-KNN w/ SBERT (base) 76.4
+ consistency 77.1
+ distinctiveness 77.4

text-davinci-003

EPR (Rubin et al., 2022) 69.7

SKILL-KNN w/ SBERT (base) 74.9
+ consistency 75.3
+ distinctiveness 76.6

code-cushman-002

EPR (Rubin et al., 2022) 74.6

SKILL-KNN w/ SBERT (base) 74.5
+ consistency 74.7
+ distinctiveness 72.8

275 unrestricted questions. Since ther is not much
data in KDBQA, we take it as a pure test set and
use the train set of Spider as the example bank.

BIRD (Li et al., 2023c) is a large scale text-to-SQL
dataset with real-world database contents. It has
9,428 training examples and 1,534 test cases in
the dev set. Each case in BIRD is equipped with
a description of the required external knowledge,
which is not contained in above three text-to-SQL
tasks. Since the database schema in BIRD is too
large, we first take grounding to reduce the size of
schema (detailed in Appendix D.4).

COGS (Kim and Linzen, 2020) is a synthetic
benchmark for testing compositional generalization
in semantic parsing. It can also be regarded as a
cross-domain setting, containing a significant distri-
bution shift between train set and test set. The logi-
cal form in COGS represents the thematic roles in

Table 5: Performance of SKILL-KNN and two baselines
on GSM8K.

Backbone Method Accuracy

text-chat-davinci-002
Random 69.1
KNN w/ SBERT (Liu et al., 2022) 69.9

SKILL-KNN w/ SBERT (base) 71.0

the input query (detailed in Appendix D.3). We use
the output format designed in An et al. (2023) and
evaluate on two sub-tasks, primitive substitution
(P.S.) and primitive structural alternation (P.A.).

4.2 Selection Methods

We mainly compare SKILL-KNN with training-
free selection methods.

Random. We randomly select examples from B as
in-context examples. For each test case, we take
random selections 3 times and average the results.

KNN (Liu et al., 2022). We test three off-the-shelf
embedding models: Sentence-BERT (SBERT)
with all-mpnet-base-v2 checkpoint5 (Reimers and
Gurevych, 2019), OpenAI embedding model6 with
text-similarity-babbage-001 checkpoint (OpenAI
Babbage), and OpenAI embedding model with
text-embedding-ada-002 checkpoint (OpenAI Ada).
KNN with OpenAI embedding models can serve as
strong baselines for training-free selection methods,
as these large models have been well pre-trained for
judging text similarity (Neelakantan et al., 2022).

MMR (Ye et al., 2022) is a dynamic selection
method to enhance the diversity of selected exam-
ples from KNN. It adds a penalty term according
to the similarity to the already selected examples.
We take OpenAI Ada for embedding and follow
the implementation details in Ye et al. (2022).

SKILL-KNN (ours). We test SKILL-KNN with
SBERT and OpenAI Ada. For the base version
of SKILL-KNN (i.e., without consistency or dis-
tinctiveness), we shuffle the order of annotated
demonstrations to generate m = 5 skill-based de-
scriptions for each input query and average the
results. There is a balance between achieving op-
timal performance and minimizing computational
costs. We provide more experimental analysis in
Appendix B.2. For two variants, we take all 5 gen-
erated descriptions as the candidate set.

5https://www.sbert.net/.
6https://platform.openai.com/docs/guides/embe

ddings/what-are-embeddings.
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Figure 4: Performance of SKILL-KNN (base version) with different number of annotated demonstrations.

Besides these training-free baselines, we also
compare with three fine-tuning-based methods.
These methods leverage the example bank for fine-
tuning the embedding model.

EPR (Rubin et al., 2022) requires a scoring LM to
produce positive/negative examples for fine-tuning
the embedding model, and we use GPT-J (Wang
and Komatsuzaki, 2021), a 6B-parameter LM as
the scoring LM7.

CEIL (Ye et al., 2023) proposes a compositional
selection method for tn-context learning. It models
the compositional interaction between the given
input and in-context examples, and fine-tunes the
selection model through a carefully-designed con-
trastive learning objective.

TST (Poesia et al., 2022) retrieves few-shot exam-
ples from a training bank using target similarity
tuning. It learns to recognize utterances that de-
scribe similar target programs despite differences
in surface natural language features.

In addition, we also compare with two oracle
methods, in which ground truth output sequences
are allowed to be leveraged for few-shot selection.

Target-KNN (oracle). We select examples with
similar output embeddings. We use OpenAI Bab-
bage and OpenAI Ada to encode the ground truth,
and take the best result of two models for each task.

Target Sketch Matching (oracle). We select in-
context examples with similar sketches of ground
truth. For text-to-SQL tasks, we calculate the over-
lap of SQL key words (detailed in Appendix D.6).
For COGS, we follow the target-side structural sim-
ilarity setting in An et al. (2023).

4.3 Backbones and Hyper-parameters

We conduct experiments with six OpenAI language
models as the backbones8: text-chat-davinci-002,

7OpenAI language models cannot be used as the scoring
function since OpenAI API does not provide this functionality.

8In this work, the “backbone” refers to the frozen large
language model for prompting.

code-davinci-002, text-davinci-003, code-cushman-
002, gpt-35-turbo, and gpt-4. For generating skill-
based descriptions, we always use gpt-3.5-turbo,
as it is cheap and fast. We select k = 4 in-context
examples in all experiments. We use execution-
with-values accuracy9 as the evaluation metric for
text-to-SQL tasks and exact-match accuracy for
COGS.

5 Main Results

Table 2, Table 3, and Table 4 report the main exper-
imental results. We also count the number of wins,
i.e., how many tasks (and sub-tasks) the method
performs best on.

SKILL-KNN performs better than raw-input-
based selection methods. Across all backbone
models and tasks, our skill-based selections achieve
the best performance among non-oracle methods.
Especially, SKILL-KNN with SBERT can even
outperform KNN with OpenAI embedding models.
These results clearly demonstrates the necessity
and effectiveness of our prompting-based rewrit-
ing. Appendix A.2 contains more experimental
comparisons with existing selection methods.

SKILL-KNN performs comparable/better than
fine-tuning-based method. Results in Table 4
show that SKILL-KNN can perform comparable
or even better than fine-tuning-based methods. It
demonstrates that optimizing the input to the em-
bedding model can also effectively help down-
stream tasks without any fine-tuning.

Variants with consistency and distinctiveness
can outperform the base version of SKILL-KNN.
As shown in the #Wins column in Table 2, two vari-
ants of SKILL-KNN outperform the base version
in most situations. It demonstrates that injecting
consistency and distinctiveness can effectively al-
leviate the order sensitivity. Overall, we recom-
mend choosing the distinctiveness variant as it wins

9We use the official evaluation scripts for Spider in
https://github.com/taoyds/test-suite-sql-eval.
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Figure 5: Performance of SKILL-KNN (base version) with constraints on selecting examples for annotating.

more times than the consistency variant (19 vs 15).
When looking into detailed results, different mod-
els prefer different variants of SKILL-KNN: text-
chat-davinci-002 and code-davinci-002 prefer to
the distinctiveness variant, while text-davinci-003
and code-cushman-002 prefer to the consistency
variant. We identify the potential factor that could
lead to different preferences in Appendix B.5.

SKILL-KNN is more robust to perturbations
than raw-input-based selections. Results on Dr.
Spider reflect the robustness towards perturbations
in data. For instance, with text-chat-davinci-002,
KNN with SBERT performs lower than the random
baseline on two out of three types of perturbations,
while all three versions of SKILL-KNN outperform
the random baseline on all three perturbations. It
indicates that SKILL-KNN leads to more robust
in-context learning than raw-input-based methods.

SKILL-KNN can be effective in the math rea-
soning task. Our study primarily evaluated the
effectiveness of SKILL-KNN in the semantic pars-
ing/code generation field. To further examine the
generalizability of SKILL-KNN beyond semantic
parsing, we have applied it to a challenging math
reasoning task, GSM8K (Cobbe et al., 2021). Re-
sults in Table 5 evidence that SKILL-KNN can also
be effective in tasks beyond semantic parsing.

6 Analysis

The most important mechanism in SKILL-KNN
is the prompting-based rewriting which requires a
few manually annotated demonstrations. Here we
investigate how would these demonstrations affect
the performance of SKILL-KNN. We experimen-
tally analyze two factors: the number of annotated
demonstrations and the selection of examples for
annotation. The following analysis takes the base
version of SKILL-KNN with SBERT as the embed-
ding model and the Spider dataset for evaluation.

More annotated demonstrations bring marginal
improvements. We decrease the default number

of annotated demonstrations from 16 to 4/8/12. The
results depicted in Figure 4 illustrate that a gradual
increase in the number of annotated demonstra-
tions can yield marginal improvements. Note that
SKILL-KNN maintains the advantage compared
with the raw-input-based selection even with only
four annotated demonstrations. This indicates that
the LLM can effectively learn how to rewrite from
a limited number of examples and generalize to a
wider range of unseen skills. This generalizability
is also supported by our case study in Appendix C.

SKILL-KNN retains its superiority when the
selection of annotation examples is constrained.
We constrain the selection of annotation examples
from two perspectives (detailed in Appendix D.1):
first, we limit the SQL operation coverage in anno-
tation examples; second, we restrict the annotation
examples to a few databases. Figure 5 shows that
applying these constraints to the selection of anno-
tation examples leads to only a minor decline in
performance, while still maintaining a substantial
advantage over raw-input-based selection.

7 Related Work

In-context learning has recently become a stan-
dard paradigm for effectively leveraging large lan-
guage models (Brown et al., 2020; Hendrycks et al.,
2020; Patel and Pavlick, 2021; Rae et al., 2021;
Zhang et al., 2022a; Hoffmann et al., 2022; Srivas-
tava et al., 2022; Chowdhery et al., 2022; Smith
et al., 2022; Wei et al., 2022a). Such a convenient
paradigm has been widely applied in various sce-
narios such as code generation (Chen et al., 2021;
Bareiß et al., 2022; Li et al., 2022b; Chen et al.,
2023a; Li et al., 2023b), arithmetic reasoning (Wei
et al., 2022b; Wang et al., 2022; Li et al., 2022a;
Shi et al., 2023; Qin et al., 2023), and semantic
parsing. From the view of leveraging skills for in-
context learning, most existing work considered
explicitly injecting symbolic systems into the re-
sponse of the model (Cheng et al., 2023; Creswell
et al., 2023; Schick et al., 2023; Shen et al., 2023;
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Lu et al., 2023). This work aims to uncover the
intrinsic skills from the raw inputs of examples.

Semantic parsing with deep learning methods has
been explored in much existing work (Dong and
Lapata, 2016; Yu et al., 2018a; Xu et al., 2017; Guo
et al., 2019; Zhong et al., 2020; Wang et al., 2020;
Lin et al., 2020; Scholak et al., 2021; Qi et al.,
2022; Li et al., 2023a). Under the recent in-context
learning paradigm, there have been some prelimi-
nary observations: Shin et al. (2021) showed that
GPT-3 is better at generating English-like descrip-
tions rather than the raw logical forms; Rajkumar
et al. (2022) revealed that prompt design is essential
for semantic parsing with Codex; Liu et al. (2023)
showed that ChatGPT has a surprising zero-shot
performance on Spider and its variants; Pourreza
and Rafiei (2023) demonstrated that explicitly tak-
ing multiple stages for generating SQL leads to
better in-context learning performance. These ob-
servations indicate that in-context learning has a
great potential on solving semantic parsing tasks,
and this work aims to further activate this potential
from the view of improving few-shot selection.

Few-shot selection is one essential part for in-
context learning. The standard approach is to use
an off-the-shelf embedding model to encode raw
inputs and select top-k similar examples (Gao et al.,
2021; Liu et al., 2022; Hu et al., 2022). To improve
in semantic parsing tasks, much prior work tried
fine-tuning-based methods: Rubin et al. (2022) fine-
tuned the embedding model based on the condi-
tional probability under the language model; Poesia
et al. (2022) trained the model to fit the target-side
similarity; Hu et al. (2022) fine-tuned the model
based on the similarity of between state changes;
Ye et al. (2023) considered the interaction among in-
context examples during training the selector. Our
work points in a new direction that does not require
further fine-tuning: leveraging task-specific skills
by prompting large language models to rewrite in-
put queries. Beyond semantic parsing, some more
recent work tried to explore training-free selection
methods for in-context learning from different per-
spectives: Nguyen and Wong (2023) and Li and
Qiu (2023) tried to distill the whole example bank
into a small set of exemplars and focused on clas-
sification tasks; Wu et al. (2023) improved clas-
sification tasks through information compression;
Ye et al. (2022) and Ye and Durrett (2023) mainly
focused explanation-based tasks. This work pro-
poses prompting extremely large models to facili-

tate few-shot selection, which is a novel perspective
to harness the power of large language models.

8 Conclusion

This work proposes SKILL-KNN to facilitate in-
context learning on semantic parsing tasks. By gen-
erating skill-based descriptions without any fine-
tuning, SKILL-KNN and its two variant outper-
form raw-input-based selections in various tasks.

Limitations

GPU resources. Our experiments have a high
cost on GPU resources, since in-context learning
requires extremely large language models. Specif-
ically, all experiments are conducted on the 8 x
NVIDIA A100 GPU station. During inference time,
it takes about 2 x 8 GPU hours to generate for each
10,000 examples. Thus, it totally takes 400 ∼ 500
x 8 GPU hours to reproduce our Table 2.

Task type. We mainly evaluate SKILL-KNN on
cross-domain semantic parsing tasks, and we be-
lieve it can also help other challenging tasks where
some intrinsic task-specific skills are needed. How-
ever, for tasks that require only surface feature sim-
ilarity of in-context examples, we suppose the ad-
vantage of SKILL-KNN could be diminished.

Individual variants. We design two variants of
SKILL-KNN based on consistency and distinctive-
ness, respectively. An ideal variant should take into
account both these two aspects. We take this as a
future direction for our work.

Ethics Statement

Due to the use of pre-trained language models, this
work can be exposed to potential ethical risks as-
sociated with general deep learning models, such
as social bias and privacy breaches. We suppose
this work would be helpful to alleviate potential
ethical issues for in-context learning as it can better
overcome the surface-form biases in example bank.
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This is the Appendix of the paper: Skill-Based
Few-Shot Selection for In-Context Learning.

A More Experimental Results

We report more experimental results with SKILL-
KNN.

A.1 Recall@N Performance of SKILL-KNN

Table 6: Recall@N performance of SKILL-KNN with
distinctiveness on Spider dev set. The backbone model
is text-chat-davinci-002 and the sampling temperature
is 0.7.

Top-N 1 2 3 5 7 10

Recall@N (%) 80.3 85.0 87.4 89.2 89.9 90.8

Besides the performance of greedy-decoding,
we also evaluate the top-k recall performance of
SKILL-KNN. Since we cannot take beam search
with OpenAI interfaces, we implement the top-N
selection with sampling and re-ranking, following
the self-consistency setting (Wang et al., 2022).
Specifically, we first sample 100 sequences and
then select the k most frequently occurring se-
quences and evaluate their execution accuracy.

We take the text-chat-davinci-002 as the back-
bone model and set the sampling temperature as
0.7. We evaluate SKILL-KNN with distinctiveness
on Spider dev set. Table 6 shows that the recall rate
gradually goes up with increasing N and can even
achieve higher than 90% when we set N = 10.
Moreover, the top-1 in Table 6 is 80.3% which is
higher than the greedy-search performance (78.3%
in Table 2). It means that our SKILL-KNN can
obtain further gains from ensemble methods such
as self-consistency.

A.2 Comparison with More Baseline Methods

Table 7: Comparison with more baselines on Spider dev
set.

Backbone Method Exec. Acc.

text-chat-davinci-002

Random 72.9
Best-of-5 (Nakano et al., 2022) 73.7
K-Center (Sener and Savarese, 2018) 73.4
Influence (Nguyen and Wong, 2023) 73.4
DDP (Ye et al., 2023) 74.6

SKILL-KNN w/ SBERT (base) 76.8

Despite the baselines mentioned in Section 4.2,
here we reproduce more selection methods. Results

in Table 7 further demonstrate the advantage of
SKILL-KNN.

B More Analysis

B.1 Motivation Behind Two Variants of
SKILL-KNN

The motivation behind the two variants stems from
our consideration of disturbances from the prompt-
order sensitivity as additive noises to the ground-
truth skills during the rewriting process. The two
variants are designed to address two types of noise:

Zero-mean white noise which frequently occurs
in results and originates from a zero-mean distri-
bution (e.g., zero-mean Gaussian distribution). We
assume its magnitude is relatively small compared
to the ground truth. Zero-mean white noise can
cause the loss or redundancy of partial information
in the ground truth.

Spike noise which occasionally occurs in results
and has a much larger magnitude than the ground
truth. It strongly influences the information in the
ground truth and causes outliers.

The consistency-based variant is more effec-
tive at addressing zero-mean white noise, as the
averaging operation reduces the variance of zero-
mean noise. The distinctiveness-based variant is
better suited for handling spike noise, as it miti-
gates the influence of outliers. The final results in
our Table 2 indicate that both types of noise occur
in our LLM-based rewriting, as evidenced by the
close win times of the two variants (19 vs 15).

To further support that two variants are better at
tackling two different types of noise, we conduct
additional analysis from two perspectives.

Table 8: The selection accuracy of different variants
under different noise patterns.

Zero-Mean White Noise Spike Noise

Consistency 95.4% 81.9%
Distinctiveness 90.4% 87.9%

Evaluation of selection performance. We ex-
amined the performance of each variant in select-
ing better examples from the example bank under
the two noise patterns. We construct some syn-
thetic data for automated evaluation: we take 1,000
unique embeddings of skill-based descriptions as
ground truth, then we add noise on each ground-
truth embedding to construct the sample set, and
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finally we assess whether each sample set could
correctly select the original ground-truth embed-
ding. The accuracies are shown in Table 8.

Human evaluation of rewriting. In Spider dev
set, we first identified examples where one vari-
ant can always succeed with different LLMs
while the other variant always failed. Then, we
check the frequency of spike noise occurrences
in these examples through human evaluation. We
checked 23 examples and found that: for examples
where the consistency-based variant wins, the spike
noise occurs in 0.4 sample/set; for examples that
distinctiveness-based variant wins, the spike noise
occurs in 1.6 sample/set.

The results of the above analysis further evi-
dence that the consistency-based variant performs
better than the distinctiveness-based variant under
the zero-mean white noise but performs worse un-
der the spike noise.

B.2 The Choice of Hyper-Parameter m

Table 9: Performance with m = 3/5/7/9 (Dataset:
Spider, LLM: code-cushman-002, variant: consistency).

m 3 5 7 9

Exec. Acc. (%) 72.8 74.7 75.1 75.0

The two variants of SKILL-KNN require to gen-
erate m candidate skill-based descriptions. In our
experiments, we set m = 5 as a trade-off be-
tween achieving optimal performance and minimiz-
ing computational costs. During our initial explo-
ration, we had experimented with m = 3/5/7/9.
As shown in Table 9, the performance improves
marginally when m > 5. Therefore, we decided to
set m = 5.

B.3 Measuring Diversity of SKILL-KNN and
Oracle methods

Table 10: Number of different databases among selected
examples. This can reflect the diversity of in-context
examples selected by different methods.

Number of Different Databases Spider Dr. Spider KDBQA

SKILL-KNN (distinctiveness) 2.83 2.84 2.88
Target-KNN (oracle) 2.18 2.16 2.21

A surprising observation in Table 2 is that with
the same backbone model for in-context learning,
our SKILL-KNN could sometimes outperforms or-
acle methods. Specifically, SKILL-KNN consis-

tently outperforms at least one oracle method on
the DB sub-task in Dr. Spider and two sub-tasks
in COGS (marked with underlines). Such an ob-
servation could be caused by the different diversity
in selected examples. As indicated in Levy et al.
(2022) and An et al. (2023), beyond the similar-
ity to the test case, a higher diversity among in-
context examples could also help better perform
cross-domain generalization under in-context learn-
ing. Oracle methods directly seek higher similarity,
thus the selected examples may be less diverse,
which could slightly hamper the generalization per-
formance. To reflect the diversity of in-context ex-
amples, we count the number of different databases
among selected examples. Statistics in Table 10
shows that SKILL-KNN can lead to a higher diver-
sity than oracle method, which is in line with our
hypothesis.

B.4 Why do skill-based descriptions perform
better?

Since both SKILL-KNN and raw-input-based meth-
ods use the embedding similarity for selection, we
suppose that the higher performance of SKILL-
KNN can be contributed by some desired prop-
erties in the embedding space of skill-based de-
scriptions. Based on this inspiration, we visualize
the embedding space of both raw input queries
and skill-based descriptions with t-SNE (Van der
Maaten and Hinton, 2008). More details are con-
tained in Appendix D.7.

Under the embedding space of skill-based de-
scriptions, the distribution of test cases is closer
to that of the example bank, thus benefiting
cross-domain generalization. For the raw-input-
based embeddings of test cases, Figure 6a shows
that these embeddings are mainly centralized in
some local parts. On the one hand, the example
bank can not be fully utilized under this embedding
space, since the top-k similar examples must be
around the local parts of test cases. On the other
hand, the different distributions represent that this
space does not reveal the inner similarity between
test cases and example bank, thus is helpless to
facilitate cross-domain generalization. Under the
skill-based embedding space (shown in Figure 6b),
the distributions of test cases and the example bank
are better matched. Therefore, the cross-domain
generalization gap can be better bridged with skill-
based descriptions.
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Figure 6: T-SNE visualization for the embedding space of (a) raw input queries and (b) skill-based descriptions.
The orange points are from the dev set in Spider while the gray points are from example bank.

The skill-based embedding space is more sparse,
thus the boundary of similar examples is more
clear and can be more robust to perturbations.
As shown in Figure 6a, the raw-input-based embed-
ding space is almost evenly distributed. It means
that for one embedding in this space, the bound-
ary to determine "which examples are similar" is
not clear enough. Without a clear boundary for
selecting similar examples, the performance could
be non-robust to perturbations in data. Compared
with the embeddings of raw inputs, the skill-based
embeddings shown in Figure 6b are more clustered,
thus the KNN-based selection can be more robust
to data perturbations.

B.5 What factors cause the different
performances of two variants?

As mentioned in Section 5, different backbone mod-
els prefer different variants of SKILL-KNN. As
both two methods aim to improve skill-based simi-
larity, such performance differences indicate that
beyond similarity, some other factors also influence
in-context learning. An et al. (2023) and Rajkumar
et al. (2022) indicated that the complexity of se-
lected examples could be one potential factor. Here,
we explore whether the two variants differ in the
complexity of the selected examples.

Consistency-based variant always leads to
more complex in-context examples than
distinctiveness-based variant. Here, we mainly
check the complexity of in-context examples for
text-to-SQL tasks from two perspectives: (1)
the average number of tables, which reflects the
complexity of database, and (2) the average length
of SQL queries, which reflects the hardness of
searching. As shown in Figure 7, consistency-
based variant leads to higher complexity than

distinctiveness-based variant in all tasks and under
both perspectives. It can help to explain why
different models prefer different variants: text-chat-
davinci-002 and code-davinci-002 prefer simpler
in-context examples while text-davinci-003 and
code-cushman-002 are more robust to different
complexity.

C Case Study

Considering that the quality of generated skill-
based description can be one key factor that influ-
ences the effectiveness of SKILL-KNN, we man-
ually check the generated skills for 100 examples.
We find that 86/100 generated skills are exactly
correct; 12/100 are almost correct but need some
partial modifications (e.g., the number of joined
tables); and only 2/100 generated skills are totally
wrong.

Moreover, during manually checking the qual-
ity of generated skills, we surprisingly find that
there are some novel descriptions about skills that
are not presented in our annotated examples. Ta-
ble 11 shows some examples. It indicates that the
prompting-based rewriting can provide a degree of
generalization of unannotated skills.

D Detailed Settings of Experiments

In this section, we provide more details about our
experimental settings.

D.1 Select Examples for Annotation
In our default setting, we consider two principles to
select examples for annotating the required skills:
1) ensuring coverage of all logical operations found
in the example bank and 2) selecting examples
from diverse databases. Specifically, we first find
all used logical operations in the example bank and
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Figure 7: Two perspectives that reflect the complexity of selected in-context examples from two variants of SKILL-
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length of SQL queries (split by space).

Table 11: Case study for generated skill-based descriptions in Spider. Texts in purple are novel descriptions that are
not presented in our annotations.

Input Query Generated Skill SQL

display the emails of the employees who have no commission percentage and salary
within the range 7000 to 12000 and works in that department which number is 50.

To solve this task in the database, we need to select one column, apply an
interval constraint, apply a null constraint, and apply an equality constraint.

SELECT email FROM employees WHERE commission_pct = "null" AND
salary BETWEEN 7000 AND 12000 AND department_id = 50

What are the salaries and manager ids for employees who have managers?
To solve this task in the database, we need to select two columns and apply
a non-null constraint on the values in another column.

SELECT salary , manager_id FROM employees WHERE manager_id != "null"

What is all the information about the Marketing department?
To solve this task in the database, we need to select all columns and apply
a constraint on the values in one column.

SELECT * FROM departments WHERE department_name = ’Marketing’

greedily cover these operations in a few examples.
Then, we randomly select more examples from
various databases until there are 16 examples.

In our ablation study shown in Figure 5, to con-
strain the operation coverage, we just remove our
first selection step; to constrain the database diver-
sity, we just select examples from two databases.

D.2 Inference Hyper-Parameters

During inference, we set the max decoding length
to 200, and the sampling temperature to 0.

D.3 Input-Output Formats

Figure 8 shows some input-output examples to il-
lustrate the data formats in our experiments.

Note that the output format of COGS follows the
transformation in An et al. (2023) which converts
the original long-chain format into a more com-
pact function-calling format. Such a transforma-
tion is similar to the conversion from Lambda cal-
culus to FunQL in Geo domain(Zelle and Mooney,
1996; Kate et al., 2005; Zettlemoyer and Collins,
2012). It improves the human readability by omit-
ting two types of details in original format: the
special marker for definite descriptions and the
Skolem constants. Apart from the omitted details,
this transformation keeps the main semantics in the
domain of COGS, such as semantic roles, modifica-
tions, and orders among clauses and modifications.

D.4 Evaluation on BIRD

Different from other text-to-SQL tasks, BIRD ad-
ditionally provides “evidence” for each natural lan-

guage question. Therefore, we add the evidence
as part of the context for in-context learning. For
evaluating raw-input-based methods on BIRD, we
concatenate the natural language question and the
additional evidence to compute the embedding. For
our SKILL-KNN, we also provide the evidence for
rewriting, and we use 12 annotated demonstrations
with evidence (shown in Appendix E).

Since the database schema in BIRD is too large
to be fully contained in the context for LLM, we
reduce the size of schema through grounding in pre-
processing. Specifically, we calculate the embed-
ding similarity between the input question (along
with the evidence) and each table name and column
name. Based on this similarity, we preserve 8 tables
each with 16 columns for each schema-question
pair.

D.5 Evaluation on COGS

COGS totally contains 24,155 examples in train
set and 21,000 examples in gen set. To reduce
the high computational cost, we sample 2,000 ex-
amples from the train set as the example bank for
in-context learning, and sample 1,000 examples
from two sub-tasks primitive substitution (P.S.) and
primitive structural alternation (P.A.) which are de-
fined in An et al. (2023).

D.6 Target Sketch Matching for SQL

As mentioned in Section 4.2, to select in-context
examples with target sketch matching (oracle) in
text-to-SQL tasks, we calculate the overlap of SQL
key words between the example from example
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bank and the labeled SQL query of the test input
query. We mainly consider the following SQL key
words along with several operations for calcula-
tion: SELECT, WHERE, GROUP, HAVING, ORDER,
DESC, ASC, LIMIT, JOIN, INTERSECT, EXCEPT,
UNION, NOT, IN, OR, AND, BETWEEN, EXISTS,
LIKE, DISTINCT, COUNT, AVG, MIN, MAX, SUM,
CAST, CASE, WHEN, THEN, ELSE, END, IIF,
REAL, FLOAT, NULL, STRFTIME, *, /, =, >,
,<, !, +, -, %. Based on these key words, the
target sketch similarity between two SQL queries
yt and yi is calculated as follows,

simk(yt, yi) = |KW(yt) ∩KW(yi)|, (7)

in which KW(·) returns a set of contained key
words.

D.7 T-SNE Visualization
For the visualized embedding space in Figure 6,
we use Sentence-BERT as the embedding model
and take examples from both example bank and
dev set in Spider. For SKILL-KNN, we take its
consistency-based variant. To accelerate the vi-
sualization process, we just take examples with
medium hardness (defined in Yu et al. (2018b)). We
use the implementation of t-SNE from the sklearn
library10. We set the learning rate of t-SNE as
“auto”, init method as “random”, and perplexity as
3.

E Annotated Demonstrations

Table 12 lists 16 annotated demonstrations for text-
to-SQL tasks and Table 13 lists another 12 an-
notated demonstrations with evidence (which is
required in BIRD). Table 14 lists 16 annotated
demonstrations for COGS. Appendix D.1 intro-
duces how we select these examples.

10https://scikit-learn.org/stable/.
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Table 12: Annotated demonstrations for text-to-SQL tasks. All these examples are from the example bank of Spider.

DB ID Input Query Annotated Skill-Based Descriptions

allergy_1 Show all majors. To solve this task in the database, we need to select distinct values in the column.

match_season
Count the number of different colleges that players
who play for Columbus Crew are from.

To solve this task in the database, we need to join two tables and count the number
of distinct values in the column.

gymnast
What are the hometowns of gymnasts and the
corresponding number of gymnasts?

To solve this task in the database, we need to join two tables, select one column,
group these selections and count the number of selections in each group.

gas_company
Show minimum, maximum, and average market
value for all companies.

To solve this task in the database, we need to return the minimum value, the
maximum value, and the average of values in the column.

culture_company
Show the years, book titles, and publishers for all books,
in descending order by year.

To solve this task in the database, we need to select three columns and sort them
in descending order according to the values in one column.

product_catalog
Which catalog contents have a product stock number
that starts from "2"? Show the catalog entry names.

To solve this task in the database, we need to select one column and apply a
constraint on the format of values in this column.

bike_1
What are the dates in which the mean sea level pressure
was between 30.3 and 31?

To solve this task in the database, we need to select one column and apply a
constraint that the values in another column should in a certain range.

flight_1
What is the salary and name of the employee who has
the most number of certificates on aircrafts with distance
more than 5000?

To solve this task on the database, we need to join three tables, apply a
greater-than constraint, group the selections and calculate the number of each group,
sort the selections in descending order, and select the top result.

bike_1
What is the average longitude of stations that never had
bike availability more than 10?

To solve this task in the database, we need to calculate the average value in one
colum, apply an non-inclusion constraint with another set of selections, which
need to group the selctions and find which groups have a maximum value greater
than the threshold.

hr_1
display all the information of employees whose salary is
in the range of 8000 and 12000 and commission is not null
or department number does not equal to 40.

To solve this task in the database, we need to give full information about selections,
apply an interval constraint, and apply an optional constraint that two unequal
judgments should be satisfied at least one.

bike_1
What are the ids of stations that have latitude above 37.4
and never had bike availability below 7?

To solve this task in the database, we need to exclude the selections in the second set
from the first set: the first set of selections need to apply a greater-than constraint, and
the second set of selctions need to group the selctions and find which groups have a
minimum value lower than the threshold.

bike_1
What are the names and ids of stations that had more
than 14 bikes available on average or were installed
in December?

To solve this task in the database, we need to return the union of two set of selections:
the first set of selections need to join two tables, group the selections and find which
groups have an average value greater than the threshold, and the second set of selections
need to apply a constaint on the format of values.

storm_record
Show storm name with at least two regions and
10 cities affected.

To solve this task in the database, we need to return the intersection of two set of
selections: the first set of selections need to join two tables, group the selections and
find which groups have a number of selections greater than or equal to the threshold,
and the second set of selections need to join two tables, group the selections
and find which groups have a sum of values larger than or equal to the threshold.

formula_1
List the forenames of all distinct drivers in
alphabetical order?

To solve this task in the database, we need to select distinct values in one column
and sort these selections in ascending order according to the selected values.

hr_1
display job ID for those jobs that were done by two
or more for more than 300 days.

To solve this task in the database, we need to apply a greater-than constraint on
the difference between two values, group the selections and find which groups have
a number of selections greater than or equal to the threshold.

small_bank_1
Find the names and total checking and savings balances
of accounts whose savings balance is higher than the
average savings balance.

To solve this task in the database, we need to select one column and add the values
in another two columns, join three tables, and apply a greater-than constraint where
the threshold is the average of another set of selected values.

13490



For Rewriting: For Semantic Parsing:

Context:

Generate a SQL query for the given natural language task 

and database schema.

### Database schema:

department (Department_ID, Name, Creation, Ranking, 

Budget_in_Billions, Num_Employees)

head (head_ID, name, born_state, age)

management (department_ID, head_ID, temporary_acting)

### Task: How many acting statuses are there?

(Optional) ### Evidence: xxx

### SQL query: SELECT count(DISTINCT temporary_acting) 

FROM management

### Database schema:

…

### Database schema:

stadium (Stadium_ID, Location, Name, Capacity, Highest, 

Lowest, Average)

singer (Singer_ID, Name, Country, Song_Name, 

Song_release_year, Age, Is_male)

concert (concert_ID, concert_Name, Theme, Stadium_ID, 

Year)

singer_in_concert (concert_ID, Singer_ID)

### Task: How many singers do we have?

(Optional) ### Evidence: xxx

### SQL query:

Completion:

SELECT count(*) FROM singer

Context:

Generate the needed skills to solve the task on the database 

schema.

### Database schema:

allergy_type (allergy, allergytype)

has_allergy (stuid, allergy)

student (stuid, lname, fname, age, sex, major, advisor, 

city_code)

### Task: Show all majors.

(Optional) ### Evidence: xxx

### Skills: To solve this task in the database, we need to 

select distinct values in the column.

### Database schema

…

### Database schema:

department (department_id, name, creation, ranking, 

budget_in_billions, num_employees)

head (head_id, name, born_state, age)

management (department_id, head_id, temporary_acting)

### Task: What are the maximum and minimum budget of 

the departments?

(Optional) ### Evidence: xxx

### Skills: To solve this task in the database, we need to

Completion:

return the minimum value and the maximum value in one 

column.

(a) Formats of Text-to-SQL Tasks (with Optional Evidence for BIRD)

For Rewriting: For Semantic Parsing:

Context:

Please generate the semantic representations for the 

following sentences.

### Sentence: Emma proved that a citizen offered a frog a 

cake on the stage .

### Semantics: PROVE ( EMMA , NONE , NONE ) CCOMP 

OFFER ( CITIZEN , ON ( CAKE , STAGE ) , FROG )

### Sentence: A child attempted to smirk .

### Semantics: ATTEMPT ( CHILD , NONE , NONE ) XCOMP 

SMIRK ( CHILD , NONE , NONE )

…

### Sentence: The cookie beside a table was shortened .

### Semantics:

Completion:

SHORTEN ( NONE , BESIDE ( COOKIE , TABLE ) , NONE )

Context:

Generate the required skills to parse the following 

sentences.

### Sentence: Isabella liked that Elizabeth saw .

### Skill: This sentence contains a clause in which the verb 

'saw' has no object.

### Sentence: A sandwich was fed to a giraffe .

### Skill: This sentence is in the passive voice and has a 

prepositional phrase (i.e., 'to noun phrase') which describes 

the recipient of the verb.

…

### Sentence: A rose was helped by a dog .

### Skill:

Completion:

This sentence is in the passive voice and has a prepositional 

phrase (i.e., 'by noun phrase') which describes the agent of 

the verb.

(b) Formats of COGS

Figure 8: Input-output formats used in our experiments.
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Table 13: Annotated demonstrations for text-to-SQL task with evidence. All these examples are from the example
bank of BIRD.

DB ID Input Query Evidence Annotated Skill-Oriented Descriptions

superstore
Please list any three orders that caused a loss
to the company.

caused a loss to the company refers to Profit < 0
To solve this task in the database, we need to select one column,
apply a less-than constraint, and return three results.

disney
Calculate the percentage of voice actors whose
main character in the movie is in the Drama genre.

DIVIDE(COUNT(voice-actor where genre = ’Drama’),
COUNT(voice-actor)) as percentage;

To solve this task in the database, we need to join three tables and
calculate a percentage number. Additionally, to calculate the percentage
number, we need to count the number of values with an equivalent
constraint, cast the count into a real number, multiply this number
by 100, and divide it by the another count.

legislator
Among the legislators who will end in 2009,
how many are from the Republican party?

the legislators who will end in 2009 refers to END 2009;
from the Republican party refers to party = ’Republican’

To solve this task in the database, we need to select two columns,
apply an equivalent constraint on the time and an equivalent
constraint on the text value.

works_cycles
Calculate the average length of employment for
employee working in the Research and Development
deparment.

average length of employment =
AVG(subtract(2022, year(HireDate)))

To solve this task in the database, we need to get two times, calculate
the differences between two times, and calculate the average of these
differences. Additionally, we need to join three tables and apply an
equivalent constraint.

retail_complains
Among the teenager clients who use Google
account and Microsoft account, which group
of client is more than the other?

teenager refers to 13 < age < = 19; Google account refers
to email like ’%@gmail.com’; Microsoft account refers
to email like ’%@outlook.com’

To solve this task in the database, we need to compare the number of
values in two formats, and return the value that has a higher number.
Additionally, we need to apply a between-and constraint.

university
What are the top three universities with the most
international students?

most international students refers to MAX(SUM(DIVIDE(
MULTIPLE(pct_international_students, num_students), 100)));
name of university refers to university_name;

To solve this task in the database, we need to select distinct values
from one cloumn, join two tables, group the results, order the results
in descending order according to the sum of values, and return the top three
results. Additionally, during getting the sum of values, we need to multiply
the values in one column with percentages in another column and divide the
results by 100.

airline
What is the percentage of flights which landed
at Pittsburgh were faster than scheduled?

percentage = MULTIPLY(DIVIDE(SUM(
ACTUAL_ELAPSED_TIME < T2.CRS_ELAPSED_TIME),
COUNT(Code)), 100); landed at refers to DEST;
Pittsburgh refers to Description which contains ’Pittsburgh’;
faster than scheduled refers to
ACTUAL_ELAPSED_TIME < CRS_ELAPSED_TIME;

To solve this task in the database, we need to compare values in two
columns and convert the comparison result into a percentage. Additionally,
we need to join two tables, apply a constraint on the format of values in one
column, and ensure that the values in two columns are not null. Moreover, to
get the percentage number, we need to cast the sum of values into a real
number, multiply this number by 100, and divide it by the total count.

retail_complains
Between 1/1/2017 and 4/1/2017, what is the average
server time of calls under the server DARMON?

between 1/1/2017 and 4/1/2017 refers to Date received between
’2017-01-01’ and ’2017-04-01’;
average server time refers to avg(ser_time)

To solve this task in the database, we need to calculate the average of
the selected values and apply a between-and constraint. Additionally, to
obtain the times from values in text format, we need to extract substrings
from these texts and cast them into real numbers.

soccer_2016 When did Chennai Super Kings play its first match?
match date refers to Match_Date; Chennai Super Kings refers
to Team_Name = ’Chennai Super Kings’;
first match refers to min(Match_Date)

To solve this task in the database, we need to apply an either-or
constraint, sort the selected results in ascending order, and return the top
one result.

retails
Which ship mode has more "deliver in person"
instructions, rail or mail?

ship mode refers to l_shipmode; "deliver in person" instruction
refers to l_shipinstruct = ’DELIVER IN PERSON’

To solve this task in the database, we need to count the number of two
values in ome column and return the value with a larger count. Additionally,
we need to apply an equality constraint.

cookbook
Which ingredient appeared the most in recipes?
Calculate its amount of appearance in percentage.

ingredient appeared the most in recipes refers to MAX(
COUNT(ingredient_id)); calculation = MULTIPLY(DIVIDE(
COUNT(MAX(ingredient_id)), COUNT(ingredient_id)), 100)

To solve this task in the database, we need to select one column and
calculate one percentage number, join two tables, group the selected results,
and sort the results in descending order according to the size of each group.
Additionally, to calculate the percentage number, we need to cast the count
of vaules into a float number, multiply this number by 100, and divide it by
the another count.

Table 14: Annotated demonstrations for COGS. All these examples are from the example bank of COGS.

Input Query Annotated Skill-Based Descriptions

Isabella liked that Elizabeth saw . This sentence contains a clause in which the verb ’saw’ has no object.

A sandwich was fed to a giraffe .
This sentence is in the passive voice and has a prepositional phrase
(i.e., ’to noun phrase’) which describes the recipient of the verb.

Benjamin froze . The verb ’froze’ has no object.

Sophia was given a cookie by Emma .
This sentence is in the passive voice, has an object and has a prepositional
phrase (i.e., ’by noun phrase’) which describes the agent of the verb.

Sophia liked a box on the cake . This sentence has a single object with a modification phrase.

Emma sold the drink beside a road to a zebra .
This sentence has a direct object with a modification phrase and has a prepositional
phrase (i.e., ’to noun phrase’) which describes the recipient of th verb.

A lion ate . The verb ’ate’ has no object.

Eleanor was offered the ball . This sentence is in the passive voice and has an object.

A box was helped . This sentence is in the passive voice and has no object or prepositional phrase.

The fish dreamed to walk . This sentence has an infinitive verb.

A cat lended a lawyer the cake . This sentence has an indirect object and a direct object.

The basket was handed to a cat by Emma .
This sentence is in the passive voice and has two prepositional phrases: the first one
(i.e., ’to noun phrase’) describes the recipient of the verb and the second one (i.e., ’by noun phrase’)
describes the agent of the verb.

Sofia thought that a pancake rolled . This sentence contains a clause in which the verb ’rolled’ has no object.

Liam hoped that the boy wanted to dance . This sentence contains a clause that has an infinitive verb.

The cat gave Ethan a rose on the table . This sentence has an indirect object and a direct object with a modification phrase.

The duke was passed the shell on a table
in the house by Emma .

This sentence is in the passive voice, has an object with a nested modification phrase,
and has a prepositional phrase (i.e., ’by noun phrase’) which describes the agent of the verb.
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