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Abstract

Recent advances in multimodal pre-trained
models have significantly improved informa-
tion extraction from visually-rich documents
(VrDs), in which named entity recognition
(NER) is treated as a sequence-labeling task
of predicting the BIO entity tags for tokens,
following the typical setting of NLP. However,
BIO-tagging scheme relies on the correct order
of model inputs, which is not guaranteed
in real-world NER on scanned VrDs where
text are recognized and arranged by OCR
systems. Such reading order issue hinders the
accurate marking of entities by BIO-tagging
scheme, making it impossible for sequence-
labeling methods to predict correct named
entities. To address the reading order issue,
we introduce Token Path Prediction (TPP),
a simple prediction head to predict entity
mentions as token sequences within documents.
Alternative to token classification, TPP models
the document layout as a complete directed
graph of tokens, and predicts token paths within
the graph as entities. For better evaluation
of VrD-NER systems, we also propose two
revised benchmark datasets of NER on scanned
documents which can reflect real-world sce-
narios. Experiment results demonstrate the
effectiveness of our method, and suggest its
potential to be a universal solution to various
information extraction tasks on documents.

1 Introduction

Visually-rich documents (VrDs), including forms,
receipts and contracts, are essential tools for
gathering, carrying, and displaying information
in the digital era. The ability to understand and
extract information from VrDs is critical for real-
world applications. In particular, the recognition
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Figure 1: A document image with its layout and entity
annotations. (a) Sequence-labeling methods are not
suitable for VrD-NER as model inputs are disordered in
real situation. (b) We address the reading order issue by
treating VrD-NER as predicting word sequences within
documents.

and comprehension of scanned VrDs are necessary
in various scenarios, including legal, business, and
financial fields (Stanisławek et al., 2021; Huang
et al., 2019; Stray and Svetlichnaya, 2020). Re-
cently, several transformer-based multimodal pre-
trained models (Garncarek et al., 2020; Xu et al.,
2021a; Li et al., 2021a; Hong et al., 2022; Huang
et al., 2022; Tu et al., 2023) have been proposed.
Known as document transformers, these models
can encode text, layout, and image inputs into a
unified feature representation, typically by marking
each input text token with its xy-coordinate on the
document layout using an additional 2D positional
embedding. Thus, document transformers can
adapt to a wide range of VrD tasks, such as Named
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Entity Recognition (NER) and Entity Linking (EL)
(Jaume et al., 2019; Park et al., 2019).

However, in the practical application of infor-
mation extraction (IE) from scanned VrDs, the
reading order issue is known as a pervasive
problem that lead to suboptimal performance of
current methods. This problem is particularly
typical in VrD-NER, a task that aims to identify
word sequences in a document as entities of
predefined semantic types, such as headers, names
and addresses. Following the classic settings of
NLP, current document transformers typically treat
this task as a sequence-labeling problem, tagging
each text token using the BIO-tagging scheme
(Ramshaw and Marcus, 1999) and predicting the
entity tag for tokens through a token classification
head. These sequence-labeling-based methods
assumes that each entity mention is a continuous
and front-to-back word sequence within inputs,
which is always valid in plain texts. However,
for scanned VrDs in real-world, where text and
layout annotations are recognized and arranged
by OCR systems, typically in a top-to-down
and left-to-right order, the assumption may fail
and the reading order issue arises, rendering the
incorrect order of model inputs for document
transformers, and making these sequence-labeling
methods inapplicable. For instance, as depicted
in Figure 1, the document contains two entity
mentions, namely "NAME OF ACCOUNT" and "# OF

STORES SUPPLIED". However, due to their layout
positions, the OCR system would recognize the
contents as three segments and arrange them in
the following order:(1)"# OF STORES"; (2)"NAME

OF ACCOUNT"; (3)"SUPPLIED". Such disordered
input leads to significant confusion in the BIO-
tagging scheme, making the models unable to
assign a proper label for each word to mark the
entity mentions clearly. Unfortunately, the reading
order issue is particularly severe in documents
with complex layouts, such as tables, multi-column
contents, and unaligned contents within the same
row or column, which are quite common in scanned
VrDs. Therefore, we believe that the sequence-
labeling paradigm is not a practical approach
to address NER on scanned VrDs in real-world
scenarios.

To address the reading order issue, we introduce
Token Path Prediction (TPP), a simple yet strong
prediction head for VrD-IE tasks. TPP is compat-
ible with commonly used document transformers,

Figure 2: The reading order issue of scanned documents
in real-world scenarios. Left: The entity "TOTAL
230,000" is disordered when reading from top to down.
The entity "CASH CHANGE" lies in multiple rows and is
separated to two segments. Right: The entity "TOTAL
30,000" is interrupted by "(Qty 1.00)" when reading from
left to right. All these situations result in disordered
model inputs and affect the performance of sequence-
labeling based VrD-NER methods. More real-world
examples of disordered layouts are displayed in Figure
7 in Appendix.

and can be adapted to various VrD-IE and VrD
understanding (VrDU) tasks, such as NER, EL,
and reading order prediction (ROP). Specifically,
when using TPP for VrD-NER, we model the token
inputs as a complete directed graph of tokens, and
each entity as a token path, which is a group
of directed edges within the graph. We adopt
a grid label for each entity type to represent the
token paths as n ∗ n binary values of whether two
tokens are linked or not, where n is the number
of text tokens. Model learns to predict the grid
labels by binary classification in training, and
search for token paths from positively-predicted
token pairs in inference. Overall, TPP provides
a viable solution for VrD-NER by presenting
a suitable label form, modeling VrD-NER as
predicting token paths within a graph, and proposes
a straightforward method for prediction. This
method does not require any prior reading order
and is therefore unaffected by the reading order
issue. For adaptation to other VrD tasks, TPP is
applied to VrD-ROP by predicting a global path
of all tokens that denotes the predicted reading
order. TPP is also capable of modeling the entity
linking relations by marking linked token pairs
within the grid label, making it suitable for direct
adaptation to the VrD-EL task. Our work is related
to discontinuous NER in NLP as the tasks share
a similar form, yet current discontinuous NER
methods cannot be directly applied to address the
reading order issue since they also require a proper
reading order of contents.

For better evaluation of our proposed method,
we also propose two revised datasets for VrD-NER.
In current benchmarks of NER on scanned VrDs,
such as FUNSD (Jaume et al., 2019) and CORD
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(Park et al., 2019), the reading order is manually-
corrected, thus failing to reflect the reading order
issue in real-world scenarios. To address this
limitation, we reannotate the layouts and entity
mentions of the above datasets to obtain two
revised datasets, FUNSD-r and CORD-r, which
accurately reflect the real-world situations and
make it possible to evaluate the VrD-NER methods
in disordered scenarios. We conduct extensive
experiments by integrating the TPP head with
different document transformer backbones and
report quantitative results on multiple VrD tasks.
For VrD-NER, experiments on the FUNSD-r and
CORD-r datasets demonstrate the effectiveness of
TPP, both as an independent VrD-NER model,
and as a pre-processing mechanism to reorder
inputs for sequence-labeling models. Also, TPP
achieves SOTA performance on benchmarks for
VrD-EL and VrD-ROP, highlighting its potential
as a universal solution for information extraction
tasks on VrDs. The main contribution of our work
are listed as follows:
1. We identify that sequence-labeling-based VrD-

NER methods is unsuitable for real-world sce-
narios due to the reading order issue, which is
not adequately reflected by current benchmarks.

2. We introduce Token Path Prediction, a simple
yet strong approach to address the reading order
issue in information extraction on VrDs.

3. Our proposed method outperforms SOTA meth-
ods in various VrD tasks, including VrD-NER,
VrD-EL, and VrD-ROP. We also propose two
revised VrD-NER benchmarks reflecting real-
world scenarios of NER on scanned VrDs.

2 Related Work

Sequence-labeling based NER with Document
Transformers Recent advances of pre-trained
techniques in NLP (Devlin et al., 2019; Zhang
et al., 2019) and CV (Dosovitskiy et al., 2020;
Li et al., 2022c) have inspired the design of pre-
trained representation models in document AI, in
which document transformers (Xu et al., 2020,
2021a; Huang et al., 2022; Li et al., 2021a,c; Hong
et al., 2022; Wang et al., 2022; Tu et al., 2023) are
proposed to act as a layout-aware representation
model of document in various VrD tasks. By
the term document transformers, we refer to
transformer encoders that take vision (optional),
text and layout input of a document as a token
sequence, in which each text token is embedded

together with its layout. In sequence-labeling based
NER with document transformers, BIO-tagging
scheme assigns a BIO-tag for each text token to
mark entities: B-ENT/I-ENT indicates the token to
be the beginning/inside token of an entity with type
ENT, and O indicates the word does not belong
to any entity. In this case, the type and boundary
of each entity is clearly marked in the tags. The
BIO-tags are treated as the classification label of
each token and is predicted by a token classification
head of the document transformer. As illustrated
in introduction, sequence-labeling methods are
typical for NER in NLP and is adopted by current
VrD-NER methods, but is not suitable for VrD-
NER in real-world scenarios due to the reading
order issue.

Reading-order-aware Methods Several studies
have addressed the reading order issue on VrDs
in two directions: (1) Task-specific models that
directly predict the reading order, such as Lay-
outReader, which uses a sequence-to-sequence
approach (Wang et al., 2021b). However, this
method is limited to the task at hand and cannot be
directly applied to VrD-IE tasks. (2) Pre-trained
models that learn from supervised signals during
pre-training to improve their awareness of reading
order. For instance, ERNIE-Layout includes a
pre-training objective of reading order prediction
(Peng et al., 2022); XYLayoutLM enhances the
generalization of reading order pre-training by
generating various proper reading orders using an
augmented XY Cut algorithm (Gu et al., 2022).
However, these methods require massive amount
of labeled data and computational resources during
pre-training. Comparing with the above methods,
our work is applicable to multiple VrD-IE tasks of
VrDs, and can be integrated with various document
transformers, without the need for additional
supervised data or computational costs.

Discontinuous NER The form of discontinuous
NER is similar to VrD-NER, as it involves identi-
fying discontinuous token sequences from text as
named entities. Current methods of discontinuous
NER can be broadly categorized into four groups:
(1) Sequence-labeling methods with refined BIO-
tagging scheme (Tang et al., 2015; Dirkson et al.,
2021), (2) 2D grid prediction methods (Wang et al.,
2021a; Li et al., 2022b; Liu et al., 2022), (3)
Sequence-to-sequence methods (Li et al., 2021b;
He and Tang, 2022), and (4) Transition-based
methods (Dai et al., 2020). These methods all rely
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on a proper reading order to predict entities from
front to back, thus cannot be directly applied to
address the reading order issue in VrD-NER.

3 Methodology

3.1 VrD-NER

The definition of NER on visually-rich documents
with layouts is formalized as follows. A visually-
rich document with ND words is represented as
D = {(wi,bi)}i=1,...,ND , where wi denotes the
i-th word in document and bi = (x0i , y

0
i , x

1
i , y

1
i )

denotes the position of wi in the document layout.
The coordinates (x0i , y

0
i ) and (x1i , y

1
i ) correspond

to the bottom-left and top-right vertex of wi’s
bounding box, respectively. The objective of
VrD-NER is to predict all the entity mentions
{s1, . . . , sJ} within document D, given the pre-
defined entity types E = {ei}i=1,...,NE . Here,
the j-th entity in D is represented as sj =
{ej , (wj1 , . . . , wjk)}, where ej ∈ E is the entity
type and (wj1 , . . . , wjk) is a word sequence, where
the words are two-by-two different but not necessar-
ily adjacent. It is important to note that sequence-
labeling based methods assign a BIO-label to each
word and predict adjacent words (wj , wj+1, . . . ) as
entities, which is not suitable for real-world VrD-
NER where the reading order issue exists.

3.2 Token Path Prediction for VrD-NER

In Token Path Prediction, we model VrD-NER
as predicting paths within a graph of tokens.
Specifically, for a given document D, we construct

a complete directed graph with the ND tokens
{wi}i=1,...,ND in D as vertices. This graph
consists of n2 directed edges pointing from each
token to each token. For each entity sj =
{ej , (wj1 , . . . , wjk)}, the word sequence can be
represented by a path (wj1 → wj2 , . . . , wjk−1

→
wjk) within the graph, referred to as a token path.

TPP predicts the token paths in a given graph by
learning grid labels. For each entity type, the token
paths of entities are marked by a n ∗ n grid label
of binary values, where n is the number of text
tokens. In specific, for each edge in every token
path, the pair of the beginning and ending tokens
is labeled as 1 in the grid label, while others are
labeled as 0. For example in Figure 3, the token
pair "(NAME, OF)" and "(OF, ACCOUNT)" are marked 1
in the grid label. In this way, entity annotations can
be represented as NE grids of n ∗ n binary values.

The learning of grid labels is then treated as
NE binary classification tasks on n2 samples,
which can be implemented using any classification
model. In TPP, we utilize document transformers
to represent document inputs as token feature
sequences, and employ Global Pointer (Su et al.,
2022) as the classification model to predict the
grid labels by binary classification. Following (Su
et al., 2022), the weights are optimized by a class-
imbalance loss to overcome the class-imbalance
problem, as there are at most n positive labels out
of n2 labels in each grid. During evaluation, we
collect the NE predicted grids, filtering the token
pairs predicted to be positive. If there are multiple
token pairs with same beginning token, we only
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Figure 4: The grid label design of TPP for VrD-EL
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to 3.2/3.0 so each token between the two entities are
linked. For VrD-ROP, the reading order is represented
as a global path including all tokens starting from an
auxiliary beginning token <s>, in which the linked
token pairs are marked.

keep the pair with highest confidence score. After
that, we perform a greedy search to predict token
paths as entities. Figure 3 displays the overall
procedure of TPP for VrD-NER.

In general, TPP is a simple and easy-to-
implement solution to address the reading order
issue in real-world VrD-NER.

3.3 Token Path Prediction for Other Tasks

We have explored the capability of TPP to address
various VrD tasks, including VrD-EL and VrD-
ROP. As depicted in Figure 4, these tasks are
addressed by devising task-specific grid labels for
TPP training. For the prediction of VrD-EL, we
gather all token pairs between every two entities
and calculate the mean logit score. Two entities are
predicted to be linked if the mean score is greater
than 0. In VrD-ROP, we perform a beam search
on the logit scores, starting from the auxiliary
beginning token to predict a global path linking
all tokens. The feasibility of TPP on these tasks
highlights its potential as a universal solution for
VrD tasks.

4 Revised Datasets for Scanned VrD-NER

In this section, we introduce FUNSD-r and CORD-
r, the revised VrD-NER datasets to reflect the real-
world scenarios of NER on scanned VrDs. We
first point out the existing problems of popular
benchmarks for NER on scanned VrDs, which indi-
cates the necessity of us to build new benchmarks.
We then describe the construction of new datasets,

including selecting adequate data resources and the
annotating process.

4.1 Motivation
FUNSD (Jaume et al., 2019) and CORD (Park et al.,
2019) are the most popular benchmarks of NER
on scanned VrDs. However, these benchmarks are
biased towards real-world scenarios. In FUNSD
and CORD, segment layout annotations are aligned
with labeled entities. The scope of each entity
on the document layout is marked by a bounding
box that forms the segment annotation together
with each entity word. We argue that there are
two problems in their annotations that render them
unsuitable for evaluating current methods. First,
these benchmarks do not reflect the reading order
issue of NER on scanned VrDs, as each entity
corresponds to a continuous span in the model
input. In these benchmarks, each segment models a
continuous semantic unit where words are correctly
ordered, and each entity corresponds exactly to one
segment. Consequently, each entity corresponds
to a continuous and front-to-back token span in
the model input. However, in real-world scenarios,
entity mentions may span across segments, and
segments may be disordered, necessitating the
consideration of reading order issues. For instance,
as shown in Figure 5, the entity "Sample Requisition

[Form 02:02:06]" is located in a chart cell spanning
multiple rows; while the entity is recognized as
two segments by the OCR system since OCR-
annotated segments are confined to lie in a single
row. Second, the segment layout annotations in
current benchmarks vary in granularity, which is
inconsistent with real-world situations. The scope
of segment in these benchmarks ranges from a
single word to a multi-row paragraph, whereas
OCR-annotated segments always correspond to
words within a single row.

Therefore, we argue that a new benchmark
should be developed with segment layout anno-
tations aligned with real-world situations and entity
mentions labeled on words.

4.2 Dataset Construction
As illustrated above, current benchmarks cannot
reflect real-world scenarios and adequate bench-
marks are desired. That motivates us to develop
new NER benchmarks of scanned VrDs with real-
world layout annotations.

We achieve this by reannotating existing bench-
marks and select FUNSD (Jaume et al., 2019)
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Figure 5: A comparison of the original (left) and
revised (right) layout annotation. The revised layout
annotation reflects real-world situations, where (1)
character-level position boxes are annotated rather than
word-level boxes, (2) every segment lies in a single row,
(3) spatially-adjacent words are recognized into one
segment without considering their semantic relation,
and (4) missing annotation exists.

and CORD (Park et al., 2019) for the following
reasons. First, FUNSD and CORD are the most
commonly used benchmarks on VrD-NER as they
contains high-quality document images that closely
resemble real-world scenarios and clearly reflect
the reading order issue. Second, the annotations on
FUNSD and CORD are heavily biased due to the
spurious correlation between its layout and entity
annotations. In these benchmarks, each entity
exactly corresponds to a segment, which leaks the
ground truth entity labels during training by the 2D
positional encoding of document transformers, as
tokens of the same entity share the same segment
2D position information. Due to the above issues,
we reannotate the layouts and entity mentions
on the document images of the two datasets.
We automatically reannotate the layouts using an
OCR system, and manually reannotate the named
entities as word sequences based on the new layout
annotations to build the new datasets. The proposed
FUNSD-r and CORD-r datasets consists of 199
and 999 document samples including the image,
layout annotation of segments and words, and
labeled entities. The detailed annotation pipeline
and statistics of these datasets is introduced in
Appendix A. We publicly release the two revised
datasets at GitHub. 1

5 Experiments

5.1 Datasets and Evaluation

The experiments in this work involve VrD-NER,
VrD-EL, and VrD-ROP. For VrD-NER, the experi-
ments are conducted on the FUNSD-r and CORD-r

1https://github.com/chongzhangFDU/TPP

datasets proposed in our work. The performance
of methods are measured by entity-level F1 on
these datasets. Noticing that previous works on
FUNSD and CORD have used word-level F1 as
the primary evaluation metric, we argue that this
may not be entirely appropriate, as word-level F1
only evaluates the accuracy of individual words, yet
entity-level F1 assesses the entire entity, including
its boundary and type. Compared with word-level
F1, entity-level F1 is more suitable for evaluation
on NER systems in pratical applications. For VrD-
EL, the experiments are conducted on FUNSD and
the methods are measured by F1. For VrD-ROP,
the experiments are conducted on ReadingBank.
The methods are measured by Average Page-level
BLEU (BLEU for short) and Average Relative
Distance (ARD) (Wang et al., 2021b).

5.2 Baselines and Implementation Details
For VrD-NER, we compare the proposed TPP with
sequence-labeling methods that adopts document
transformers integrated with token classification
heads. As these methods suffer from the reading
order issue, we adopt a VrD-ROP model as the
pre-processing mechanism to reorder the inputs,
mitigating the impact of the reading order issue.
We adopt LayoutLMv3-base (Huang et al., 2022)
and LayoutMask (Tu et al., 2023) as the backbones
to integrate with TPP or token classification heads,
as they are the SOTA document transformers
in base-level that use "vision+text+layout" and
"text+layout" modalities, respectively. For VrD-
EL and VrD-ROP, we introduce the baseline
methods with whom we compare the proposed
TPP in Appendix B. The implementation details of
experiments are illustrated in Appendix C.

5.3 Evaluation on VrD-NER
In this section, we display and discuss the per-
formance of different methods on VrD-NER in
real-world scenario. In all, the effectiveness of
TPP is demonstrated both as an independent VrD-
NER model, and as a pre-processing mechanism
to reorder inputs for sequence-labeling models. By
both means, TPP outperforms the baseline models
on two benchmarks, across both of the integrated
backbones. It is concluded in Table 1 that: (1)
TPP is effective as an independent VrD-NER
model, surpassing the performance of sequence-
labeling methods on two benchmarks for real-
world VrD-NER. Since sequence-labeling methods
are adversely affected by the disordered inputs,
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Backbone Method Pre. Cont. (%) F1

LayoutLMv3
Sequence
Labeling

None 95.74 78.77
LR 95.53 78.37

TPPR 97.29 79.72
TPP None - 80.40

LayoutMask
Sequence
Labeling

None 95.74 77.10
LR 95.53 77.24

TPPR 97.29 80.70
TPP None - 78.19

(a) VrD-NER on FUNSD-r

Backbone Method Pre. Cont. (%) F1

LayoutLMv3
Sequence
Labeling

None 92.10 82.72
LRC 82.10 70.33
TPPC 92.43 83.24

TPP None - 91.85

LayoutMask
Sequence
Labeling

None 92.10 81.84
LRC 82.10 68.05
TPPC 92.43 81.90

TPP None - 89.34

(b) VrD-NER on CORD-r

Table 1: The VrD-NER performance of different methods on FUNSD-r and CORD-r. Pre. denotes the pre-processing
mechanism used to re-arrange the input tokens, where LR∗/TPP∗ denotes that input tokens are reordered by a
LayoutReader/TPP-for-VrD-ROP model, LR and TPPR are trained on ReadingBank, and LRC and TPPC are
trained on CORD. Cont. denotes the continuous entity rate, higher for better pre-processing mechanism. The best
F1 score and the best continuous entity rates are marked in bold. Note that TPP-for-VrD-NER methods do not
leverage any reading order information from ground truth annotations or pre-processing mechanism predictions.

their performance is constrained by the ordered
degree of datasets. In contrast, TPP is not affected
by disordered inputs, as tokens are arranged during
its prediction. Experiment results show that TPP
outperforms sequence-labeling methods on both
benchmarks. Particularly, TPP brings about a +9.13
and +7.50 performance gain with LayoutLMv3
and LayoutMask on the CORD-r benchmark. It
is noticeable that the real superiority of TPP for
VrD-NER might be greater than that is reflected
by the results, as TPP actually learns a more
challenging task comparing to sequence-labeling.
While sequence-labeling solely learns to predict
entity boundaries, TPP additionally learns to
predict the token order within each entity, and still
achieves better performance. (2) TPP is a desirable
pre-processing mechanism to reorder inputs for
sequence-labeling models, while the other VrD-
ROP models are not. According to Table 1, Lay-
outReader and TPP-for-VrD-ROP are evaluated as
the pre-processing mechanism by the continuous
entity rate of rearranged inputs. As a representative
of current VrD-ROP models, LayoutReader does
not perform well as a pre-processing mechanism,
as the continuous entity rate of inputs decreases
after the arrangement of LayoutReader on two
disordered datasets. In contrast, TPP performs
satisfactorily. For reordering FUNSD-r, TPPR

brings about a +1.55 gain on continuous entity rate,
thereby enhancing the performance of sequence-
labeling methods. For reordering CORD-r, the
desired reading order of the documents is to read
row-by-row, which conflicts with the reading order
of ReadingBank documents that are read column-

by-column. Therefore, for fair comparison on
CORD-r, we train LayoutReader and TPP on
the original CORD to be used as pre-processing
mechanisms, denoted as LRC and TPPC . As
illustrated in Table 1, TPPC also improves the
continuous entity rate and the predict performance
of sequence-labeling methods, comparing with the
LayoutReader alternative. Contrary to TPP, we
find that using LayoutReader for pre-processing
would result in even worse performance on the
two benchmarks. We attribute this to the fact
that LayoutReader primarily focuses on optimizing
BLEU scores on the benchmark, where the model
is only required to accurately order 4 consecutive
tokens. However, according to Table 4 in Appendix
A, the average entity length is 16 and 7 words in the
datasets, and any disordered token within an entity
leads to its discontinuity in sequence-labeling.
Consequently, LayoutReader may occasionally
mispredict long entities with correct input order,
due to its seq2seq nature which makes it possible to
generate duplicate tokens or missing tokens during
decoding.

For better understanding the performance of
TPP, we conduct ablation studies to determine the
best usage of TPP-for-VrD-NER by configuring
the TPP and backbone settings. The results and
detailed discussions can be found in Appendix D.

5.4 Evaluation on Other Tasks

Table 2 and 3 display the performance of VrD-
EL and VrD-ROP methods, which highlights the
potential of TPP as a universal solution for VrD-IE
tasks. For VrD-EL, TPP outperforms MSAU-PAF,
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Figure 6: Case study of Token Path Prediction for VrD-NER, where entities of different types are distinguished by
color, and different entities of the same type are distinguished by the shade of color.

Method F1
GNN+MLP (Carbonell et al., 2021) 39

SPADE (Hwang et al., 2021) 41.3
Doc2Graph (Gemelli et al., 2022) 53.36

LayoutXLM (Xu et al., 2021b) 54.83
SERA (Zhang et al., 2021) 65.96
BROS (Hong et al., 2022) 71.46

MSAU-PAF (Dang et al., 2021) 75
TPP 79.23

Table 2: The VrD-EL performance of different methods
on FUNSD. The best result is marked in bold.

a competitive method, by a large margin of 4.23
on F1 scores. The result suggests that the current
labeling scheme for VrD-EL provides adequate
information for models to learn from. For VrD-
ROP, TPP shows several advantages comparing
with the SOTA method LayoutReader: (1) TPP
is robust to input shuffling. The performance of
TPP remains stable when train/evaluation inputs
are shuffled as TPP is unaware of the token input
order. However, LayoutReader is sensitive to
input order and its performance decreases sharply
when evaluation inputs are shuffled. (2) In
principle, TPP is more suitable to act as a pre-
processing reordering mechanism compared with
LayoutReader. TPP surpasses LayoutReader by
a significant margin on ARD among six distinct
settings, which is mainly attributed to the paradigm
differences. Specifically, TPP-for-VrD-ROP guar-
antees to predict a permutation of all tokens as
the reading order, while LayoutReader predicts

Order Method
Avg. Page-level BLEU (%)
r=100% r=50% r=0%

OCR
LayoutReader 97.65 97.88 98.19

TPP 98.18 98.13 98.16

Shfl.
LayoutReader 97.72 97.70 17.83

TPP 98.16 98.09 98.12

(a) The average page-level BLEU of methods (higher is better).

Order Method
ARD

r=100% r=50% r=0%

OCR
LayoutReader 2.50 2.24 1.75

TPP 0.29 0.35 0.37

Shfl.
LayoutReader 2.48 2.46 72.94

TPP 0.37 0.39 0.39

(b) The average relative distance of methods (lower is better).

Table 3: The VrD-ROP performance of different
methods on ReadingBank. For the Order setting, OCR
denotes that inputs are arranged left-to-right and top-
to-bottom in evaluation. Shfl. denotes that inputs are
shuffled in evaluation. r is the proportion of shuffled
samples in training. The best results are marked in bold.

the reading order by generating a token sequence
and carries the risk of missing some tokens in
the document, which results in a negative impact
the ARD metric, and also make LayoutReader
unsuitable for use as a pre-processing reordering
mechanism. (3) TPP surpasses LayoutReader
among five out of six settings on BLEU. TPP
is unaware of the token input order, and the
performance of it among different settings is
influenced only by random aspects. Although
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LayoutReader has a higher performance in the
setting where train and evaluation samples are
both not shuffled, it is attributed to the possible
overfitting of the encoder of LayoutReader on
global 1D signals under this setting, where global
1D signals strongly hint the reading order.

5.5 Case Study

For better understanding the strength and weakness
of TPP, we conduct a case study for analyzing
the prediction results by TPP in VrD-NER. As
discussed, TPP-for-VrD-NER make predictions
by modeling token paths. Intuitively, TPP should
be good at recognizing entity boundaries in VrDs.
To verify this, we visualize the predict result of
interested cases by TPP and other methods in
Figure 6. According to the visualized results,
TPP is good at identifying the entity boundary
and makes accurate prediction of multi-row, multi-
column and long entities. For instance, in the Multi-
row Entity case, TPP accurately identifies the entity
"5/3/79 10/6/80, Update" in complex layouts. In the
Multi-column Entity case, TPP identifies the entity
"TOTAL 120,000" with the interference of the injected
texts within the same row. In the Long Entity case,
the long entity as a paragraph is accurately and
completely extracted, while the sequence-labeling
method predicts the paragraph as two entities.

Nevertheless, TPP may occasionally misclassify
entities as other types, resulting in suboptimal
performance. For example, in the Entity Type
Identification case, TPP recognizes the entity
boundaries of "SEPT 21" and "NOV 9" but fails to
predict their correct entity types. This error can
be attributed to the over-reliance of TPP on layout
features while neglecting the text signals.

6 Conclusion and Future Work

In this paper, we point out the reading order issue
in VrD-NER, which can lead to suboptimal perfor-
mance of current methods in practical applications.
To address this issue, we propose Token Path
Prediction, a simple and easy-to-implement method
which models the task as predicting token paths
from a complete directed graph of tokens. TPP can
be applied to various VrD-IE tasks with a unified
architecture. We conduct extensive experiments to
verify the effectiveness of TPP on real-world VrD-
NER, where it serves both as an independent VrD-
NER model and as a pre-processing mechanism to
reorder model inputs. Also, TPP achieves SOTA

performance on VrD-EL and VrD-ROP tasks. We
also propose two revised VrD-NER benchmarks
to reflect the real situations of NER on scanned
VrDs. In future, we plan to further improve our
method and verify its effectiveness on more VrD-
IE tasks. We hope that our work will inspire future
research to identify and tackle the challenges posed
by VrD-IE in practical scenarios.

Limitations

Our method has the following limitations:
1. Relatively-high Computation Cost: Token Path

Prediction involves the prediction of grid labels,
therefore is more computational-heavily than
vanilla token classification, though it is still
a simple and generalizable method for VrD-
IE tasks. Towards training on FUNSD-r,
LayoutLMv3/LayoutMask with Token Path
Prediction requires 2.45x/2.75x longer training
time and 1.56x/1.47x higher peak memory occu-
pancy compared to vanilla token classification.
The impact is significant when training Token
Path Prediction on general-purpose large-scale
datasets.

2. Lack of Evaluation on Real-world Benchmarks:
To illustrate the effectiveness of Token Path
Prediction on information extraction of real-
world scenarios, we rely on adequate down-
stream datasets. However, benchmarks is
still missing of other IE tasks than NER,
and of other languages than English. We
appeal for more works to propose VrD-IE
and VrDU benchmarks that reflect real-world
scenarios, and the demonstration could be
more concrete of our method to be capable
of various VrD tasks, be compatible with
document transformers of different modalities
and multiple languages, and be open to future
work of layout-aware representation models.
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A The Annotation Pipeline and Statistics
of Revised Datasets

The annotation pipeline is introduced as follows.
First, we collect the document images of FUNSD
and CORD, and re-annotate the layout automati-
cally with an OCR system. We choose PP-OCRv3
(Li et al., 2022a) OCR engine as it is the SOTA
solution of general-purpose OCR and can extend to
multilingual settings. We operate each document
image of FUNSD and CORD, keeping layout
annotations with more than 0.8 confidence, and
filtering document images with more than 20 valid
words. After that, we manually annotate entity
mentions on the new layouts as word sequences,
based on the original entity annotations. Entity
mentions that cannot match a word sequence on the
new layout are deprecated. After the annotation, we
divide the train/validation/test splits according to
the original settings to obtain the revised datasets.

In all, the proposed FUNSD-r and CORD-r
datasets consists of 199 and 999 document samples
including the image, layout annotation of segments
and words, and labeled entities. Table 4 lists
the detailed summary statistics of the proposed
datasets. The total number of segments, words,
entities and entity types, the average length of
segments and entities, and the sample number
of data splits are displayed. Additionally, the
continuous entity rate is introduced as the rate of
entity whose tokens are continuous in the order
of segment words. When fed into model, the
continuous entities correspond to continuous token
spans within inputs and are able to be predicted
by sequence-labeling methods. Therefore, the
continuous entity rate indicates the ordered degree
of the document layouts in the dataset.

B Baselines for VrD-EL and VrD-ROP

For VrD-EL, we compare the proposed TPP with
the following strong baseline models:
• GNN-based document encoders: GNN+MLP

(Carbonell et al., 2021) is the pioneer to adopt
GNN as the document encoder for better mod-
eling of document inputs. Doc2Graph (Gemelli
et al., 2022) is an enhanced GNN-based docu-
ment encoder for VrD tasks.

• Transformer-based document encoders: Lay-
outXLM (Xu et al., 2021b) is a pre-trained
document encoder for multilingual document
inputs. BROS (Hong et al., 2022) is a pre-trained
document encoder focuses on achieving better
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Figure 7: Examples of disordered layouts in real-world scenarios. These examples are taken from (Yu et al., 2023).

Dataset # of
Segments

# of
Words

Avg. Length
of Segment

# of
Entities

Avg. Length
of Entity

Cont.
(%)

# of Entity
Types

# of Samples
(Train/Val/Test)

FUNSD-r 10,091 166,040 16.45 7,924 15.21 95.74 3 149/-/50
CORD-r 12,582 123,153 7.55 12,582 9.20 92.10 30 799/100/100

Table 4: Statistics of the proposed datasets. Cont. denotes the continuous entity rate, as the rate of entity whose
tokens are continuous in the order of segment words. Higher continuous entity rate indicates to more orderly layouts.

performance on key information extraction tasks.
• Parsing-based methods: SPADE (Hwang et al.,

2021) treats VrD-EL as spatial-aware depen-
dency parsing problem and adopts a spatial-
enhanced language model to address the task.
SERA (Zhang et al., 2021) also treats the task as
dependency parsing, and adopts a biaffine parser
together with a document encoder to address the
task.

• Detection-based methods: MSAU-PAF (Dang
et al., 2021) tackles the task by integrating the
MSAU architecture for detection (Dang and
Nguyen, 2021) and the PIF-PAF mechanism for
link prediction (Kreiss et al., 2019).

For VrD-ROP, we compare the proposed TPP
with LayoutReader (Wang et al., 2021b), which
is a sequence-to-sequence model achieving strong
performance on VrD-ROP. We refer to the reported
performance in the original papers of these baseline

methods in Table 2 and 3. The backbone of all
compared methods are of base-level.

C Implementation Details

The experiments in this work are divided into two
parts, as experiments on VrD-NER and on other
tasks.

For VrD-NER, we adopt LayoutLMv3-base
(Huang et al., 2022) and LayoutMask (Tu et al.,
2023) as the backbones to integrate with Token
Path Prediction. The maximum sequence length
of textual tokens for both of them is 512. We use
Global 1D and Segment 2D position information
in LayoutLMv3, and Local 1D and Segment 2D
in LayoutMask, according to the preferred settings.
We adopt positional residual linking and multi-
dropout to improve the efficiency and robustness
in training TPP. Positional residual linking adds
the 1D positional embeddings of each token to the
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backbone outputs to enhance 1D position signals
that is crucial to the task. Multi-dropout duplicates
the last fully-connect layer of TPP. Following the
setting of (Inoue, 2019), the duplicated layers
are trained with different dropout noises and
their weights are shared, which enhances model
robustness towards randomness. The effectiveness
of these mechanisms are discussed in Appendix
D. In fine-tuning, we generally follow the original
setting of previous VrD-NER works (Huang et al.,
2022; Tu et al., 2023). We use an Adam optimizer,
with 1% linear warming-up steps, a 0.1 dropout
rate, and a 1e-5 weight decay. For Token Path
Prediction, the learning rate is searched from {3e-
5, 5e-5, 8e-5}. On FUNSD, the best learning rate is
5e-5/5e-5 for LayoutLMv3/LayoutMask, while on
CORD the learning rate is 3e-5/8e-5, respectively.
In fine-tuning the comparing token classification
models, we all set the learning rate to 5e-5. We
adopt positional residual linking and multi-dropout
in Token Path Prediction. We fine-tune FUNSD-r
and CORD-r by 1,000 and 2,500 steps on 8 Tesla
A100 GPUs, respectively, with a batch size of
16. The maximum number of decoded entities is
limited to 100.

Besides to VrD-NER, we conduct experiments
on VrD-EL and VrD-ROP adopting LayoutMask
backbone. For VrD-EL, TPP-for-VrD-EL is fine-
tuned by 1000 steps with a learning rate of 8e-5
and a batch size of 16, with the learning rate of
the global pointer weights is set as 10x for better
convergence. For VrD-ROP, TPP-for-VrD-ROP is
fine-tuned by 100 epochs with a learning rate of
5e-5 and a batch size of 16, following the settings
of (Wang et al., 2021b). The beam size is set to 8
during decoding. For all experiments, we choose
the model checkpoint with the best performance
on the validation set, and report its performance on
the test set.

D Ablation Studies to TPP on VrD-NER

For better understanding of TPP on VrD-NER, we
propose two questions: (1) from which setting TPP
benefits most of positional encoding of backbones,
and (2) by what means positional residual linking
and multi-dropout be helpful to TPP. We conduct
the ablation studies to answer the questions.

For the first question, we alter the choices of 1D
and 2D positional encoding of backbones, and the
results are reported in Table 5a. For FUNSD-r, the
preferred positional encoding setting of backbones

Backbone
Position

FUNSD-r CORD-r
1D 2D

LayoutLMv3
Global Segment 80.40 91.85
None Segment 74.15 89.91

Global Word 77.86 90.45

LayoutMask
Local Segment 78.19 89.34
Global Segment 66.24 87.36
None Segment 67.81 82.27
Local Word 75.96 89.45

(a) Ablation study on different 1D and 2D positional encoding
choices of backbones.

Backbone Method FUNSD-r CORD-r

LayoutLMv3
TPP 80.40 91.85

(w/o mul.) 79.61 90.99
(w/o mul. & res.) 78.93 91.14

LayoutMask
TPP 78.19 89.34

(w/o mul.) 75.34 87.96
(w/o mul. & res.) 65.53 89.55

(b) Ablation study on the design of Token Path Prediction.
Positional residual linking and multi-dropout are abbreviated
as res. and mul., respectively.

Table 5: Ablation studies to TPP-for-VrD-NER on
position encoding choices of backbones and model
design.

brings about the best performance. Although TPP
is unaware of the order of tokens, the incorporation
of better 1D positional signals can enhance the
contextualized representation generated by the
backbones, leading to improved performance. For
CORD-r, we note that in some occasions, using
word-level 2D position information brings about
better performance. This is because short entities
are the majority in CORD-r, especially entities with
only one char, such as numbers and symbols. For
these entities, word-level 2D position information
brings about a direct hint to the model in training
and prediction, resulting in better performance.

For the second question, we conduct an ablation
study by removing the positional residual linking
and multi-dropout of TPP. We observe from Table
5b that: (1) Positional residual linking and multi-
dropout are both essential due to their effectiveness
on the results of FUNSD-r. (2) Positional residual
linking enhances the 1D position signals in model
inputs. Comparing with vanilla TPP, TPP with posi-
tional residual linking behaves better on FUNSD-r
but slightly worse on CORD-r. This is because
segments in CORD-r are relatively short, when
inputs are disordered, 1D signals are much more
noisy and negatively affects model performance
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since they do not provide sufficient information.
The results verify the function of positional residual
linking as a enhancement mechanism of 1D signals.
(3) Multi-dropout enhances model robustness to
random aspects. TPP outperforms its variant
without multi-dropout among different backbones
and different benchmarks.
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