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Abstract

Unsupervised paraphrase generation is a chal-
lenging task that benefits a variety of down-
stream NLP applications. Current unsuper-
vised methods for paraphrase generation typ-
ically employ round-trip translation or denois-
ing, which require translation corpus and re-
sult in paraphrases overly similar to the orig-
inal sentences in surface structure. Most of
these methods lack explicit control over the
similarity between the original and generated
sentences, and the entities are also less cor-
rectly kept. To obviate the reliance on transla-
tion data and prompt greater variations in sur-
face structure, we propose a self-supervised
pseudo-data construction method that gen-
erates diverse pseudo-paraphrases in distinct
surface structures for a given sentence. To con-
trol the similarity and generate accurate enti-
ties, we propose an unsupervised paraphrasing
model that encodes the sentence meaning and
the entities with discrete and continuous vari-
ables, respectively. The similarity can be con-
trolled by sampling discrete variables and the
entities are kept substantially accurate due to
the specific modeling of entities using contin-
uous variables. Experimental results on two
benchmark datasets demonstrate the advan-
tages of our pseudo-data construction method
compared to round-trip translation, and the su-
periority of our paraphrasing model over the
state-of-the-art unsupervised methods.

1 Introduction

The task of paraphrase generation aims to re-
construct a sentence in a different surface struc-
ture (grammar and words) while preserving its
underlying semantics. It plays an essential role
in many downstream tasks like text summariza-
tion (Cao et al., 2017; Zhao et al., 2018), ma-
chine translation (Zhou et al., 2019; Thompson
and Post, 2020), question answering (Dong et al.,
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2017; Buck et al., 2018; Zhang et al., 2022), doc-
ument modeling (Zhang et al., 2021), and oth-
ers. Supervised paraphrase generation methods re-
quire large-scale, manually annotated paraphrase
datasets, which are labor-intensive to build. This
makes unsupervised paraphrasing an emerging re-
search direction.

Existing unsupervised paraphrase generation
methods primarily employ round-trip transla-
tion (Mallinson et al., 2017; Wieting and Gimpel,
2018; Guo et al., 2021) or denoising (Hegde and
Patil, 2020; Guo et al., 2021; Niu et al., 2021),
which leads to four flaws. Firstly, round-trip
translation requires extra translation corpus. Sec-
ondly, the generated paraphrases are similar to the
original sentences in surface structure, as faithful
round-trip translation and denoising tend to main-
tain the syntax, sentence pattern, and tense of the
original sentence. Thirdly, most existing methods
cannot explicitly control the similarity of the gen-
erated paraphrases to the original sentences. Ex-
plicitly controlling the similarity allows for greater
variations in surface structure and the generation
of diverse paraphrases meets the requirements of
different downstream tasks. Lastly, the existing
methods all ignore the importance of generating
accurate entities, while entity errors usually lead
to serious factual errors (e.g. paraphrasing "Jobs
created Apple" to "Gates created Apple").

To produce paraphrases with great variation in
surface structure without translation data, we pro-
pose a self-supervised pseudo-data construction
method. Also, to enable explicit control of simi-
larity and accurate generation of entities, we pro-
pose a paraphrasing model which unifies discrete
and continuous variables to encode sentences.1

The pseudo-data constructor is trained on non-
parallel sentences in a self-supervised manner,
eliminating the need for translation data. From

1The discrete and continuous variables here are both
dense representations in neural networks.
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Tom wants to buy a Mercedes Benz. 

Continuous

Variables

Tom wishes to buy a Mercedes Benz.

Tom likes to buy a Mercedes Benz. 

[PER] wishes to buy a [PRO]. 

Discrete

Variables

[PER] likes to buy a [PRO]. 

[PER]  Tom

[PRO]  Mercedes Benz

original sentence

paraphrases

Figure 1: The paraphrasing model unifies discrete and
continuous variables to represent the complete seman-
tics. The "[PER]" and "[PRO]" mean the category "per-
son" and "product" of the entities, respectively.

the candidates generated by the constructor, se-
mantically similar and structurally dissimilar para-
phrases are selected to train the paraphrasing
model, resulting in greater variations in surface
structure. The paraphrasing model is inspired by
the ideas of applying VQ-VAE to unsupervised
paraphrasing (Roy and Grangier, 2019) and the
separate modeling of the sentence meaning and
the entities (Gu et al., 2016). The model employs
discrete variables to encode the sentence mean-
ing and continuous variables to model the entities.
As an example, the sentence "Tom wants to buy
a Mercedes Benz" could be split into the meaning
"someone wants to buy a product" and the enti-
ties "someone: Tom, product: Mercedes Benz" as
illustrated in Figure 1. The similarity can be con-
trolled by sampling discrete variables at different
distances from the original representation. The en-
tities are kept substantially accurate with the spe-
cific modeling using continuous variables.

We evaluate our method on two benchmark
datasets, WikiAnswers (Fader et al., 2013) and
QQP2. The automatic evaluations indicate that our
pseudo-data construction method surpasses round-
trip translation and encourages more varied sur-
face structures. The automatic and human evalu-
ations demonstrate that our paraphrase generation
method outperforms the state-of-the-art unsuper-
vised methods on semantic preservation, surface
structure variation, and entity retention.

Besides, commonly used metrics such as
BLEU (Papineni et al., 2002) and Self-BLEU do
not perform a fair evaluation of entity accuracy. To
more effectively evaluate the accuracy of gener-
ated entities, we introduce a metric called Entity-

2https://www.kaggle.com/datasets/quora/
question-pairs-dataset.

Score, which performs an evaluation of the preci-
sion and recall of the entities and correlates sig-
nificantly better with human evaluation than the
existing metrics on the entity.

2 Related Works

Unsupervised paraphrase generation methods of-
ten employ translation or denoising. Mallinson
et al. (2017) and Guo et al. (2021) employ a
straightforward round-trip translation approach.
Guo et al. (2021) propose a hybrid decoder
taking the hidden states of a set-to-sequence
model (Vinyals et al., 2016) and a round-trip trans-
lation model. Hu et al. (2019a) and Hu et al.
(2019b) expand translation datasets into para-
phrase datasets with lexically constrained decod-
ing (Hokamp and Liu, 2017; Post and Vilar, 2018).
Principled Paraphrasing introduces an adversarial
reconstruction decoder to encourage the removal
of structural information from the original sen-
tence, followed by a translation task to ensure the
retention of semantics (Ormazabal et al., 2022).
These methods rely on translation datasets and of-
ten produce paraphrases that resemble the origi-
nal sentences. As for denoising, Liu et al. (2020)
model paraphrase generation as an optimization
problem and design a sophisticated objective func-
tion to enhance semantic preservation, expression
diversity, and fluency of paraphrases, failing to ex-
plicitly control the similarity to generate diverse
paraphrases. Niu et al. (2021) propose Dynamic
Blocking to enforce a surface structure dissimilar
from the input, which easily leads to key phrases
being blocked. Roy and Grangier (2019) pro-
pose to learn paraphrasing models from unlabeled
monolingual corpus with VQ-VAE (van den Oord
et al., 2017). Yet discrete variables are expres-
sively less powerful than continuous variables (Liu
et al., 2021), and it is difficult to encode large
quantities of entities with a limited number of dis-
crete variables in a codebook.

We present a self-supervised Pseudo-data Con-
structor that generates paraphrase-like data for
training the paraphrasing model, which eliminates
the need for the translation corpus. And we pro-
pose a paraphrasing model to generate diverse
paraphrases with controlled similarity through
sampling discrete variables and generate accurate
entities through specific modeling entities with
continuous variables.
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pivot sentence original entities

[S] A [PRO] is what [PER] wants to buy. 
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concatenated input

Tom wants to buy a Mercedes Benz.

original sentence

3) Train Paraphrasing ModelTom, wants, buy, Mercedes Benz.
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Tom wants to buy a Mercedes Benz.
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input

4) Inference

[S] [PER] wants to buy a [PRO].

[sep] [PER] Lee [PRO] Switch .

generated paraphrase

Paraphrasing Model

Paraphrasing Model

Figure 2: Overview of our approach. The dashed lines with arrow indicate inferencing.

3 Approach

We describe the proposed approach in this section.
Besides, there are some efforts that show similari-
ties to our work, we give detailed comparisons be-
tween them and our method in Appendix A.

3.1 Overall Training Procedure

The overview of our approach is depicted in Fig-
ure 2. The training is conducted in three steps.

1) Train pseudo-data constructor. Traditional
pseudo-paraphrase construction methods which
rely on round-trip translation introduce two lim-
itations: the need for the translation corpus and
domain gaps between the translation corpus and
the paraphrase corpus. To remove these limita-
tions, we train a pseudo-data constructor in a self-
supervised manner on the non-parallel paraphrase
data. As shown in step 1 of Figure 2, we remove
the stop words from a sentence and split the re-
maining words into words and noun chunks as the
input keywords. The constructor is trained by re-
constructing the original sentence with ordered in-
put keywords.

2) Construct training data for paraphrasing
model. As depicted in step 2 of Figure 2, we
generate paraphrase candidates with varied word
orders using the constructor and filter the candi-
dates for semantically similar but structurally dis-
similar pseudo-paraphrases to train the paraphras-
ing model. This encourages variations in word or-
der while preserving semantics. Specifically, we
shuffle the keywords of a sentence multiple times
and feed them into the constructor. The construc-
tor outputs several candidates corresponding to the
orders of the keywords, as the order of the key-
words in the target sentence is consistent with the

input within the training. We filter the candidates
using BERTScore (Zhang et al., 2020) and Self-
BLEU because not all keywords orders yield valid
paraphrases. Then each selected candidate and the
original sentence form an input-target pair.

To separate modeling the sentence meaning and
entities for explicitly controlling the similarity
without destroying entities, we further split the
meaning and the entities of the input sentence. We
replace the entities in the input sentence with the
entity categories (e.g. replace "Mercedes Benz"
with "[PRO]") to obtain the entity-replaced pivot
sentence and concatenate several special tokens,
the pivot sentence, a special separator, and the cor-
rect entities from the target sentence to serve as the
input to the paraphrasing model.3

3) Train paraphrasing model. The paraphras-
ing model is able to produce paraphrases with lexi-
cal variations and accurate entities. The model uti-
lizes discrete variables to encode sentence mean-
ings and stores these variables in a codebook. The
close variables in the codebook tend to express dif-
ferent words with similar semantics and we sam-
ple the discrete variables to bring lexical variation.
The entities are specifically modeled with contin-
uous variables, which ensures the accuracy of the
generated entities. During training, the paraphras-
ing model takes the concatenated sequence con-
structed in step 2 as input and outputs the original
sentence. We train the paraphrasing model in a
standard sequence-to-sequence manner.

3In this study, we use Spacy (https://spacy.io, v3.4,
"en_core_web_trf" model) as the NER tool.
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Figure 3: Encoder architecture of the paraphrasing
model. "si" denotes a special token to be quantized,
in this figure we take two special tokens as an example.

3.2 Paraphrasing Model

Given an original sentence x = {w1, w2, ..., wt}
and its paraphrase y generated by the pseudo-data
constructor, we construct the input as described in
step 2 in Section 3.1. Following Roy and Grangier
(2019), we quantize the representation of special
tokens added at the beginning of the input to en-
code the sentence meaning. We denote the special
tokens with s = {s1, ..., sm}, the entity-replaced
pivot sentence with y−, the special separator with
[sep], and the entities in x with ax = {ax1 , ..., axn}.
The input to the paraphrasing model would be:
x̂ = {s; y−; [sep]; ax}.

The paraphrasing model is an encoder-decoder
architecture that features a codebook containing
K vectors. As shown in Figure 3, the encoder
is a transformer encoder with a quantization pro-
cess that converts continuous variables into dis-
crete variables. The input x̂ is fed into N-layer
self-attention blocks, and the last block outputs the
hidden states h = {hs1, ..., hsm, hy

−
, h[sep], ha

x} of
each token. The output hs = {hs1, ..., hsm} of the
special tokens are quantized as:

hqj = ck,where k = argmin
i

∥hsj − ci∥2,

where ci denotes the i-th vector in the code-
book. The hidden states of the pivot sen-
tence y− are dropped, while the hidden states
ha

x
= {hax1 , ..., ha

x

n } of the entities ax are re-
tained and output as continuous variables with-
out being quantized. We concatenate the discrete
variables and the continuous variables, i.e. henc =
{hq1, ..., hqm, ha

x

1 , ..., ha
x

n }, as the final output (also
referred to as memory) of the encoder.

A transformer decoder serves as our decoder,
which takes henc as input and outputs the original

sentence x. The cross attention to the encoder out-
put allows the model to automatically learn when
to focus on discrete variables that represent the
sentence meaning and when to focus on contin-
uous variables that represent the entities.

3.3 Inference Step

In inference, given a sentence x, the entities ax are
recognized from x using a NER tool and replaced
with entity categories to form the pivot sentence
x−. The special tokens, the pivot sentence, the
separator token, and the correct entities sequence
are concatenated, similar to the training step 2, to
form the input x̂ = {s;x−; [sep]; ax}. Different
from training, each hsj is quantized to hqj by sam-
pling a vector from the codebook according to the
probability:

p(hqj) = Softmax(−d

τ
),

where d = {d1, d2, ..., dK} means the distances
of hsj to each vector ci in the codebook, di =

∥hsj − ci∥2, and τ is the sampling temperature that
we set manually to control the similarity of the
generated and original sentences. As the temper-
ature increases, it becomes more likely to sample
discrete variables that are farther away from hs,
leading to a greater dissimilarity. Finally, the dis-
crete and continuous variables are fed into the de-
coder to generate the paraphrase autoregressively.

4 Experiments

4.1 Datasets

We evaluate our approach on two benchmark
datasets, WikiAnswers (Fader et al., 2013)
and QQP4. The WikiAnswers dataset contains
18,000k question-paraphrase pairs scraped from
the WikiAnswers website. The QQP dataset com-
prises over 400k lines of potential question du-
plicate pairs. We adopt the unsupervised setting
as Guo et al. (2021). For WikiAnswers, we ran-
domly select 500k non-parallel sentences, 3k par-
allel paraphrases, and 20k parallel paraphrases for
training, validation, and testing. For QQP, we ran-
domly select 400k non-parallel sentences, 3k par-
allel paraphrases, and 20k parallel paraphrases for
training, validation, and testing. The statistics of
the processed datasets are in Appendix B. In the

4https://www.kaggle.com/datasets/quora/
question-pairs-dataset.
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pseudo-data constructing step, we pick the candi-
dates with Self-BLEU below 60 and BERTScore
above 85 as pseudo data.

4.2 Baselines
We compare our method with four unsupervised
paraphrase generation methods, including round-
trip translation, Set2seq+RTT (Guo et al., 2021),
TA+SS+DB (Niu et al., 2021), and Principled
Paraphrasing (Ormazabal et al., 2022). While
some of the baseline methods employ parallel
translation corpus, we consider them as unsuper-
vised baselines for comparison since they do not
rely on parallel paraphrase data.

Set2seq+RTT trains a set2seq (Vinyals et al.,
2016) model and a pair of round-trip translation
models separately. In generating, a hybrid decoder
takes a weighted sum of the hidden states from
the set2seq model and the translation model as the
probability of the next token. TA+SS+DB applies
Dynamic-Blocking to generate paraphrases with
no identical n-grams to the input. We note that
we prevent the blocking of entities in our repli-
cation to generate more accurate entities. Princi-
pled Paraphrasing introduces an additional adver-
sarial reconstruction decoder to remove as much
structural information from the original sentence
as possible. Subsequently, a traditional transla-
tion loss is employed to preserve the semantic in-
formation. This method allows for the control of
similarity to the original sentence by adjusting the
weights of the adversarial loss and translation loss
during training. These aforementioned methods
represent the current state-of-the-art in unsuper-
vised paraphrase generation. By comparing with
these approaches, we aim to demonstrate the su-
periority of our approach in preserving semantics
and entities while altering surface structures.

For reference, we also present the results of two
supervised methods, BART+finetune (Lewis et al.,
2020) and DNPG (Li et al., 2019), and a large lan-
guage model, GPT-3.5-turbo5, in Appendix D.

4.3 Training Details
For the pseudo-data constructor, we finetune a
BART (Lewis et al., 2020) model from Hugging-
face’s checkpoint6 on the non-parallel training set.
The paraphrasing model contains 267M parame-
ters, including a codebook that contains 50M pa-

5https://platform.openai.com/docs/models/
gpt-3-5.

6https://huggingface.co/facebook/bart-base.

rameters. We use the same pre-trained BART-
base checkpoint as in the constructor to initialize
the paraphrasing model except for the codebook.
The codebook contains 32,768 vectors of dimen-
sion 768. To initialize these vectors, we train
the paraphrasing model in a completely continu-
ous style, skipping the quantization, for 4 epochs.
Then we feed partial training data into the encoder
and cluster the hidden states of the special token
into 32,768 classes using k-means to assign val-
ues to the vectors in the codebook. In quantiza-
tion, the hidden states of special tokens are quan-
tized separately with the same codebook. Follow-
ing van den Oord et al. (2017), the model is trained
with straight-through gradient estimation and ex-
ponentiated moving averages. The paraphrasing
models are trained on the corresponding datasets
with 10 epochs on a single 32G Tesla V100 GPU
for about 60 minutes per epoch.

4.4 Evaluation Metrics

4.4.1 Automatic Evaluation
Recent works on paraphrase generation typically
take BLEU (Papineni et al., 2002), Self-BLEU,
and iBLEU (Sun and Zhou, 2012) as evaluation
metrics. Niu et al. (2021) propose BERT-iBLEU
which leverages BERTScore and Self-BLEU to
measure the semantics and surface structure. Fol-
lowing their works, We take BLEU, Self-BLEU,
iBLEU, and BERT-iBLEU7 as the metrics.

Existing evaluation metrics fail to perform a fair
evaluation of entities. To address this limitation,
we propose Entity-Score, an F1-score-like evalua-
tion method that performs a holistic evaluation of
the precision and recall of the generated entities.
Entity-Score calculates precision by determining
whether the entity in the paraphrase appears in the
input, and recall by assessing whether the entity
in the input is present in the paraphrase. The fi-
nal Entity-Score is then computed as the F1 score
based on precision and recall. A more detailed de-
scription of the Entity-Score is in Appendix C. We
adopt Entity-Score as an evaluation metric.

4.4.2 Human Evaluation
We randomly select 50 examples containing en-
tities from QQP, and three annotators are asked
to rate the paraphrases generated by our method

7Follow Niu et al. (2021), we use "roberta-
large_L17_no-idf_version=0.3.0(hug_trans=2.3.0)" to
calculate BERTScore.
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Method BLEU↑ Self-BLEU↓ iBLEU↑ BERT-iBLEU↑ Entity-Score↑
round-trip translation 27.85 55.66 19.50 75.49 49.67
TA+SS+DB 30.56 47.29 22.78 81.65 67.83
Set2seq+RTT 33.82 48.76 25.56 80.46 69.91
Principled Paraphrasingα 33.69 55.53 24.77 77.31 56.04
Principled Paraphrasingβ 31.25 44.18 23.71 82.01 49.00
Ours(τ=5) 38.57 48.52 29.86 81.16 85.10
Ours(τ=11) 34.17 35.78 27.18 85.32 81.27
Ours(τ=12) 31.59 32.11 25.22 86.15 80.79

Table 1: Evaluation results on WikiAnswers dataset. τ means the sampling temperature in quantization. Principled
Paraphrasingα uses λ = 0.85 and K = 0.70. Principled Paraphrasingβ uses λ = 0.80 and K = 0.70. And λ
and K are hyper-parameters in Ormazabal et al. (2022). The best and second best results are indicated in bold and
underlined, respectively.

Method BLEU↑ Self-BLEU↓ iBLEU↑ BERT-iBLEU↑ Entity-Score↑
round-trip translation 23.25 68.12 14.11 67.56 80.76
TA+SS+DB 14.35 36.19 9.30 84.83 74.80
Set2seq+RTT 22.41 51.78 14.99 80.44 74.17
Principled Paraphrasingα 24.53 73.39 14.74 63.39 55.04
Principled Paraphrasingβ 15.60 35.81 10.46 85.78 34.18
Ours(τ=5) 25.58 62.78 16.74 73.51 95.35
Ours(τ=10) 23.80 57.82 15.64 76.80 94.58
Ours(τ=18) 14.22 33.37 9.46 86.44 91.44

Table 2: Evaluation results on QQP dataset. Principled Paraphrasingα uses λ = 0.90 and K = 0.70. Principled
Paraphrasingβ uses λ = 0.73 and K = 0.70.

(τ = 5 and τ = 10) and three strong baselines ac-
cording to the semantics, structure, and entity on a
scale of 1 to 3, the higher, the better. The seman-
tics measures the degree of preservation of seman-
tics. The structure evaluates the extent of variation
in surface structure. The entity measures the ac-
curacy and completeness of the generated entities.
The details of the human evaluation settings are
given in Appendix F.

4.5 Evaluation Results

4.5.1 Automatic Evaluation Results
We select the models that perform best on the dev
set and report their performances on the test set.
Table 1 and Table 2 present the results on WikiAn-
swers and QQP. Several generated examples are
provided in Appendix H. The following conclu-
sions can be drawn from the results:

1) Our approach outperforms the state-of-
the-art unsupervised methods on existing met-
rics at appropriate temperatures. To ensure a
fair and unbiased comparison, we carefully select
sampling temperatures that generate paraphrases
with comparable BLEU scores to the baseline
methods. The results presented in Table 1 indi-

cate that our proposed method exhibits superior
performance in BLEU, iBLEU, and Entity-Score
when τ=11. Furthermore, when τ=12, our method
outperforms the baseline methods in Self-BLEU,
BERT-iBLEU, and Entity-Score. Similar trends
can be observed in the results displayed in Table 2.

2) Our approach showcases exceptional
proficiency in generating accurate entities.
Our method consistently achieves a significantly
higher Entity-Score compared to other methods,
and the Entity-Score remains high as the tempera-
ture rises, which demonstrates the effectiveness of
our method in preserving entities.

3) The similarity between the generated
paraphrases and the original sentences in sur-
face structure can be explicitly controlled by
adjusting the sampling temperature during
quantization. At low sampling temperatures, our
method maintains good semantics, scoring high
in BLEU and Self-BLEU. While at high sam-
pling temperatures, our method generates para-
phrases with greater variation in surface structure
and scores well in Self-BLEU. The detailed eval-
uation results on different sampling temperatures
can be found in Appendix E.
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Method BLEU↑ Self-BLEU↓ iBLEU↑ BERT-iBLEU↑ Entity-Score↑

WikiAnswers
Round-trip Translation 27.85 55.66 19.50 75.49 49.67
Pseudo-data Constructor 32.08 28.20 26.05 88.84 77.12

QQP
Round-trip Translation 23.25 68.12 14.11 67.56 80.76
Pseudo-data Constructor 17.35 34.11 12.20 88.12 85.25

Table 3: Experimental results of different pseudo-data construction methods.

Semantic Structure Entity

Set2seq+RTT 2.37 2.03 2.67
TA+SS+DB 2.11 2.26 2.52
Principledα 2.30 1.89 2.06
Principledβ 1.95 2.12 1.75
Ours(τ=5) 2.77 2.10 2.97
Ours(τ=10) 2.55 2.41 2.89

Agreement 0.45 0.46 0.87

Table 4: The results of human evaluation. "Principled"
means Principled Paraphrasing. Principledα uses λ =
0.90 and K = 0.70. Principledβ uses λ = 0.73 and
K = 0.70. We use Fleiss’ Kappa (Fleiss, 1971) to
measure the inter-rater agreement. The scores between
0.40-0.60 mean "moderate agreement", and the scores
above 0.80 mean "very good agreement".

Metric Correlation Value

BLEU 0.257 (p < 0.01)
Self-BLEU 0.256 (p < 0.01)
iBLEU 0.185 (p < 0.01)
BERT-iBLEU -0.152 (p < 0.01)
Entity-Score 0.579 (p < 0.01)

Table 5: Spearman’s correlation between the automatic
evaluation and the human evaluation score on entity.

4.5.2 Human Evaluation Results

Table 4 shows the results of human evaluation on
QQP. Our method with τ=10 outperforms other
baselines in three metrics and our method with
τ=5 shows significant superiority over other base-
lines in semantics and entities. As the sampling
temperature rises, the variation in the paraphrases
generated by our method increases. Furthermore,
our method obtains significantly higher scores in
entity, which highlights the superiority of our
method in generating accurate entities. The results
of the human evaluation are compatible with the
results of the automatic evaluation.

4.6 Analyses

4.6.1 Pseudo-data Constructor
To compare the performance of our Pseudo-data
Constructor and Round-trip Translation in con-
structing pseudo-data, we apply the Pseudo-data
Constructor and Round-trip Translation directly
on the test sets of WikiAnswers and QQP datasets.
For both the Constructor and Round-trip trans-
lation8, we generate 5 candidates for each sen-
tence and then select the best one as the pseudo-
paraphrase based on BERT-iBLEU.9 We employ
nucleus sampling (Holtzman et al., 2020) with
p=0.95 to generate multiple candidates in transla-
tion because the translation models do not feature
diverse generation.

As shown in Table 3, the Pseudo-data Construc-
tor outperforms Round-trip Translation in most
metrics. Particularly, the Pseudo-data Constructor
far outperforms Round-trip Translation on Self-
BLEU, which demonstrates that the Pseudo-data
Constructor is more likely to generate pseudo-
data with greater variation in surface structure.
Notably, the accuracy of the entities generated
by Round-trip Translation on the two different
datasets varies substantially, and our constructor
generates entities with higher accuracy on both
datasets. This might be related to the domain of
the training data for the translation models.

4.6.2 Effectiveness of Entity-Score
To verify the effectiveness of Entity-Score, we
compute the Spearman’s correlation between the
automatic evaluation scores and the human eval-
uation score of the entity. As shown in Table 5,
Entity-Score correlates clearly better with human
evaluation than existing metrics in evaluating gen-
erated entities. More details about the correlation
are given in Appendix G.

8We use the translation models on Huggingface’s check-
point (https://huggingface.co/facebook/wmt19-en-de
and https://huggingface.co/facebook/wmt19-de-en).

9BERT-iBLEU is a composite metric calculated by
BERTScore and Self-BLEU, which makes the filtering cri-
teria here coincide with Section 3.1.
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Method BLEU↑ Self-BLEU↓ iBLEU↑ BERT-iBLEU↑ Entity-Score↑
round-trip translation 23.25 68.12 14.11 67.56 80.76

+LCD 23.39(+0.14) 71.06(-2.94) 13.95(-0.16) 64.85(-2.71) 83.82(+3.06)

Principled Paraphrasing 24.53 73.39 14.74 63.39 55.04
+LCD 25.18(+0.65) 76.24(-2.85) 15.04(+0.3) 60.13(-3.26) 72.92(+17.88)

Ours (Discrete) 24.12 59.01 15.81 74.62 60.76
+LCD 18.78(-5.34) 60.35(-1.34) 10.87(-4.94) 73.04(-1.58) 86.57(+25.81)
+Continuous 25.58(+1.46) 62.78(-3.77) 16.74(+0.93) 73.51(-1.11) 95.35(+34.59)

Table 6: Results of methods combined with lexically constrained decoding (LCD). Discrete in our method means
that only discrete variables are used in inference. The results in brackets indicate the variation in performance after
combining the LCD and continuous variables, with "+" indicating an improvement and "-" indicating a decline.

Model BLEU↑ Self-BLEU↓ iBLEU↑ BERT-iBLEU↑ Entity-Score↑
Ours (τ=5) 25.58 62.78 16.74 73.51 95.35
w/o pseudo data 23.36 68.17 14.21 68.95 94.98
w/o entity 23.85 57.45 15.72 74.94 59.55
w/o continuous 24.12 59.01 15.81 74.62 60.67

Table 7: Evaluation results on ablation study. The sampling temperature is set to 5. Without pseudo data means we
train the paraphrasing model in a denoising manner without constructing pseudo data. Without entity means that
we do not feed the entities to the encoder and the decoder only takes the quantized hidden states of special tokens.
Without continuous means that we quantize the hidden states of special tokens and entities.

4.6.3 Comparison with Lexically
Constrained Decoding

Our paraphrasing model encodes entities individu-
ally using continuous variables to improve the ac-
curacy of the generated entities. Lexically con-
strained decoding (LCD) on entities offers the po-
tential to achieve this as well. On the QQP dataset,
we analyze the impact of LCD on our method
(only using discrete variables) and two baselines
that obtain near BLEU scores with our method,
to demonstrate the superiority of continuous en-
coding compared to LCD. Table 6 shows the ex-
perimental results. It can be seen that LCD im-
proves the entity accuracy on all methods, but our
method still far outperforms the others. In our ap-
proach, the use of continuous variables is more ef-
fective than LCD, and LCD causes a reduction in
the other metrics. The results demonstrate the va-
lidity of our use of continuous variables to encode
entities individually.

4.6.4 Ablation Study

To better observe what roles the different mod-
ules play in our approach, we remove one module
at a time from our approach and train paraphras-
ing models on the non-parallel training set. Ta-
ble 7 shows the performance of our approach on
QQP after removing different modules. Pseudo-

data constructor increases the variation in surface
structure as "w/o pseudo data" score higher in
Self-BLEU. Taking entities as part of the input
to the paraphrasing model and keeping the hidden
states of entities as continuous variables are cru-
cial to generate accurate entities, since "w/o en-
tity" and "w/o continuous" drop a lot in Entity-
Score. In our approach, various modules play
critical roles, cooperating to generate semantically
similar, surface-structurally distinct paraphrases
that contain accurate and complete entities in an
unsupervised setting.

5 Conclusion

In this paper, we propose a self-supervised
pseudo-data construction method that generates
paraphrases with more variation in surface struc-
ture than round-trip translation without the need
for translation data. We propose a paraphrasing
model that employs discrete and continuous vari-
ables to represent sentence meaning and entity
information respectively for unsupervised para-
phrase generation. Our approach achieves state-
of-the-art performance on two benchmark para-
phrase datasets and far outperforms other meth-
ods in terms of accuracy in generating entities. In
addition, we proposed an evaluation metric called
Entity-Score for evaluating the precision and recall
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of the generated entities. Entity-Score correlates
better with the human evaluation of entity than ex-
isting metrics. To the best of our knowledge, this
is the first work concerned with ensuring the qual-
ity of the generated entities in the paraphrase gen-
eration task. The framework encoding text with
discrete and continuous variables is promising on
many NLP tasks, e.g. summarization and trans-
lation. Future work will focus on extending our
model to a more general seq2seq framework.

Limitations

To the best of our knowledge, our approach has
the following two limitations. First, the paraphras-
ing model has great advantages when dealing with
sentences containing entities but will reduce to the
traditional VQ-VAE when dealing with sentences
that do not contain entities. Second, our approach
employs an additional named entity recognition
tool. The performance of the named entity recog-
nition tool we use will directly affect the perfor-
mance of our approach.

Regarding the Entity-Score, there are two lim-
itations that we are currently aware of. First,
like in our approach, the process of calculating
the Entity-Score requires the use of a named en-
tity recognition tool. Thus, the Entity-Score re-
sults are directly influenced by the tool. Second,
in the paraphrase generation tasks, some entities
can exist in different forms, such as "$2,000" and
"two thousand dollars". Currently, we do not opti-
mize the Entity-Score calculation process for these
kinds of cases.

In terms of experiments, we only conduct exper-
iments on two English question datasets, WikiAn-
swers and QQP. We choose these two datasets
because 1) they are two widely used benchmark
datasets, 2) they contain a large number of enti-
ties to validate the performance of our proposed
paraphrasing method and Entity-Score, and 3) we
follow the experimental settings with Niu et al.
(2021).

Regarding the choice of pre-trained model, we
only experiment on BART. We focus on the prob-
lem of accurate entity and controlled surface struc-
ture similarity in paraphrasing tasks, with the key
point being the coordination of discrete and con-
tinuous variables. We choose BART simply be-
cause it is a commonly used seq2seq pre-trained
model. We believe that using other pre-trained
models, such as T5 (Raffel et al., 2020), would not

affect our experimental conclusions.
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A Methodological Comparisons

A.1 Wordset for Paraphrasing
Our proposed Pseudo-data Constructor uses key-
words as input and outputs the original sentence
during training. In inference, we use the shuf-
fled keywords as input which prompt the construc-
tor to generate sentences that match the order of
the keywords, which makes it possible for each
sentence to correspond to multiple possible para-
phrases to enrich the diversity of pseudo data. We
additionally use BERT-iBLEU to filter data pairs
with large semantic offsets or too similar struc-
tures to ensure the quality of the pseudo-data.

There are some works that use the change of
the wordset orders to paraphrase. Fu et al. (2019)
first predict the neighbors of the words in the origi-
nal sentence to form the bag of words then sample
and reorganize the words into sentences. Huang
and Chang (2021) and Guo et al. (2021) encode
the input sentence using a transformer encoder
without positional encoding to ignore its surface
structure. Reconstructing the original sentence
using unordered keywords reduces the diversity
of paraphrases because the same wordset always
yields the same output regardless of the order of
the words. Therefore, we train the constructor
by preserving the order of keywords and infer-
ence by shuffling the keywords to obtain diverse
paraphrase pseudo-data. Goyal and Durrett (2020)
guide the decoder to output syntactically meeting
sentences by reordering the syntax of the input
and appending the new syntactic position informa-
tion to the encoder output. This approach requires
complex rearrangement and evaluation of the syn-
tax tree and uses it as additional input. Therefore,
we choose a simpler pseudo-data construction pro-
cess of shuffling and filtering.

A.2 Discrete and Continuous Variables
Our paraphrasing model uses discrete and contin-
uous variables to encode sentence meanings and
entities, respectively. Hosking and Lapata (2021);
Hosking et al. (2022) use discrete and continuous
variables to encode the syntax and semantics of the
sentences. In terms of the model structure, both of
their models and our paraphrasing model consist
of an encoder that outputs discrete and continuous
variables and a decoder that accepts discrete and
continuous variables. The differences are a) their
methods are supervised, b) their methods require
additional templates with the same syntax as the
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label as input, c) they train another syntax predic-
tor to identify the target syntax while we sample
the presentations with different surface structures
from discrete codebook, and d) they aim to gen-
erate paraphrases of different syntaxes while we
emphasize the accuracy of entities in generating
paraphrases of different surface structures.

A.3 Lexically Constrained Decoding
We use continuous variables in the paraphrasing
model to improve the accuracy of the entities and
lexically constrained decoding (Hokamp and Liu,
2017) has the potential to accomplish this task.
The difference is that our approach meets this con-
straint on the input and model side with a soft
training objective, while lexically constrained de-
coding implements this on the decoding side with
a hard occurrence constraint. This hard constraint
leads to a degradation of the generation quality be-
cause the constraint that some tokens must be gen-
erated results in the sampling of suboptimal text
during the generation process. We compare our
approach with the lexically constrained decoding
and demonstrate the superiority of our approach
in Section 4.6.3.

A.4 Explicit Control of Similarity
We adopt discrete variable sampling to obtain mul-
tiple paraphrases of the same sentence, and we
can control the similarity between the paraphrase
and the original sentence in terms of surface struc-
ture by adjusting the sampling temperature. Some
decoding strategies, such as top-k sampling (Fan
et al., 2018), nucleus sampling (Holtzman et al.,
2020), and DIPS (Kumar et al., 2019) support sim-
ilar functionality. The difference is that our dis-
crete variables encode the meaning and structure
of the whole sentence, and sampling on discrete
variables implies sampling at the sentence level,
while the sampling of the above decoding strate-
gies goes at the token level. Further, our sampling
is performed on the model side (input side for de-
coder) and the sampling of decoding strategies is
performed on the decoding side, which also means
that our method can be used simultaneously with
these decoding strategies without conflicts.

The existing works that can control the sim-
ilarity by hyperparameters also include VQ-
VAE (Roy and Grangier, 2019) and Principled
Paraphrasing (Ormazabal et al., 2022). Our ap-
proach draws on the discrete sampling method of
VQ-VAE, with the difference that a) VQ-VAE em-

ploys discrete variables to encode sentences while
we enhance the accuracy of entities with contin-
uous variables and b) VQ-VAE is trained using
a reconstruction objective while we use an addi-
tional Pseudo-data Constructor to further enhance
the diversity of paraphrases. Principled Paraphras-
ing uses an additional adversarial reconstruction
decoder to encourage the encoder to remove as
much structural information from the original sen-
tence as possible, and then employs a translation
task to motivate the encoder to retain the seman-
tics. This approach can control the similarity of
the paraphrases by controlling the loss weights of
reconstruction and translation. Besides the need
for additional parallel translation data, Principled
Paraphrasing requires setting the loss weights be-
fore training, which means that it requires train-
ing multiple models with different hyperparame-
ters to generate paraphrases with different degrees
of similarity. In contrast, our approach controls
the similarity by sampling discrete variables in the
inference phase, in other words, one trained model
can be used to generate diverse paraphrases.

B The Statistics of the Datasets

Table 8 shows the statistics of the processed
datasets.

Train / Val / Test Avg token Avg entity

Wiki 500k / 3k / 20k 8.25 0.26
QQP 400k / 3k / 20k 11.33 0.44

Table 8: Statistics of WikiAnswers and QQP. The train-
ing sets contain non-parallel sentences and the val/test
sets contain parallel paraphrase-pairs. "Avg token"
means the average number of tokens per sentence and
"avg entity" means the average number of entities per
sentence.

C Details of Entity-Score

We use N to denote the number of input sentences,
a to denote an entity, Ai

n, Ar
n, and Ag

n to denote
the set of entities in the n-th input sentence, in the
references of the n-th input sentence, and in the
generated paraphrase of the n-th input sentence.

In calculating the precision, we consider an en-
tity as true positive if the entity in the generated
paraphrase appears in the input sentence or refer-
ence sentences, otherwise false positive, i.e.
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Task Method BLEU↑ Self-BLEU↓ iBLEU↑ BERT-iBLEU↑ Entity-Score↑

WikiAnswers

bart+finetune 37.20 37.40 29.74 85.52 70.10
DNPG 41.64 33.26 34.15 - -
GPT-3.5-turbo 20.93 15.75 17.26 91.26 66.71
Ours(τ=5) 38.57 48.52 29.86 81.16 85.10

QQP

bart+finetune 31.85 37.98 24.87 86.29 68.72
DNPG 25.03 45.17 18.01 - -
GPT-3.5-turbo 9.30 15.77 6.79 92.46 72.78
Ours(τ=5) 25.58 62.78 16.74 73.51 95.35

Table 9: Evaluation results on supervised methods and large language model.

TP =
N∑

n=1

∑

a∈A
g
n

fTP(a); fTP(a) =

{
1, a ∈ (Ai

n ∪Ar
n)

0, otherwise
,

FP =
N∑

n=1

∑

a∈A
g
n

fFP(a); fFP(a) =

{
0, a ∈ (Ai

n ∪Ar
n)

1, otherwise
,

precision =
TP

TP + FP
.

In calculating the recall, we consider an entity
as false negative if the entity in the input sentence
does not appear in the generated paraphrase, i.e.

FN =
N∑

n=1

∑

a∈Ai
n

fFN(a); fFN(a) =

{
1, a /∈ Ag

n

0, otherwise
,

recall =
TP

TP + FN
.

Thereafter, we calculated entity-score with pre-
cision and recall like F1-Score, i.e.

entity-score =
2× precision × recall

precision + recall
.

D Results on Supervised Methods and
GPT-3.5-turbo

When experimenting with GPT-3.5-turbo, we use
a simple instruction "Paraphrase the following
sentence and keep the entities correct:". Table 9
shows the results on supervised methods and GPT-
3.5-turbo.

It can be seen that there are still gaps between
our method and the supervised methods, espe-
cially on the surface structure, as our method
scores much higher in Self-BLEU. Surprisingly,
our approach achieves the highest Entity-Scores
on both datasets, even in the face of a powerful
large language model. It is worth noting that al-
though GPT-3.5-turbo performs poorly in BLEU,
we analyze some of the generated examples and

find that the paraphrasing quality of GPT-3.5-
turbo is much better than other methods in sub-
jective ratings. We assume that this is because the
labels of the paraphrase datasets are still quite in-
adequate in terms of diversity and surface structure
variation. Also, GPT-3.5-turbo tends to generate
paraphrases that are longer than the original sen-
tences, which directly leads to poor performance
on BLEU scores.
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Figure 4: BLEU, Self-BLEU and entity-score on QQP
change with increasing sampling temperature.

τ BLEU SB iB Bert-iB ES

1−9 25.87 63.99 16.88 72.62 95.82
5 25.58 62.78 16.74 73.51 95.35
10 23.80 57.82 15.64 76.80 94.58
12 21.58 52.06 14.22 79.97 93.80
14 19.14 45.17 12.71 82.97 92.60
16 16.55 38.77 11.02 85.09 91.74
18 14.22 33.37 9.46 86.44 91.44
20 12.49 29.70 8.27 87.12 90.10
50 8.25 20.25 5.40 88.20 87.93

Table 10: The experimental results with rising sam-
pling temperatures. For a friendly look, we use SB, iB,
Bert-iB, and ES to denote Self-BLEU, iBLEU, Bert-
iBLEU, and Entity-Score, respectively. τ=1−9 means
that we disable the sampling.

In comparison with supervised methods, our ap-
proach does not require parallel paraphrase data.
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Compared to large language models, our approach
consumes much fewer computational resources
during training and inference.

E Evaluation Results on Different
Sampling Temperatures

Figure 4 shows the changes in BLEU, Self-BLEU,
and Entity-Score on the QQP dataset with rising
sampling temperatures in our method. Table 10
presents the detailed experimental results. As the
temperature rises, the Entity-Score still maintains
decent although both BLEU and Self-BLEU drop
substantially, which demonstrates that we can con-
trol the similarity to a large extent while maintain-
ing the accuracy of the generated entities.

We observed the generated paraphrases at a high
(τ = 50) sampling temperature. There is a part
of the paraphrases that deviates significantly from
the original sentences in semantics although these
paraphrases achieve a high average Bert-iBLEU
score. This is the reason why we select sampling
temperatures that yield paraphrases with similar
BLEU to the baselines to compare in Table 1 and
Table 2.

F Human Evaluation Details

We randomly select 50 examples containing enti-
ties from QQP. Three annotators are asked to rate
the paraphrases generated by our method (τ = 5
and τ = 10) and three strong baselines accord-
ing to the semantics, surface structure, and en-
tity on a scale of 1 to 3, the higher the better.
The annotators rate the generated paraphrases as
bad/normal/good, corresponding to 1/2/3 points
respectively. Before the rating, we informed all
the annotators of the potential risks caused by the
negative statements generated by artificial intelli-
gence. As shown in Figure 5, Figure 6, and Fig-
ure 7, we present detailed scoring guidelines and
examples rated with different scores. The anno-
tators were recruited in the authors’ labs and they
all have relevant English publications in the field
of neural networks. Payment for this human eval-
uation is made in full by the lab’s supervisor based
on the workload.

We use Fleiss’ Kappa (Fleiss, 1971) to mea-
sure the inter-rater agreement and the results are
0.45 (moderate agreement), 0.46 (moderate agree-
ment), and 0.87 (very good agreement) in seman-
tics, structure, and entity. The agreement score

demonstrates the consistency among the three an-
notators.

G Correlation Between Automatic and
Human Evaluation

Table 11 presents the Spearman’s correlation be-
tween the automatic evaluation metrics and the
human evaluation scores. Entity-Score correlates
better with human evaluation on entity than other
automatic metrics. Self-BLEU correlates well on
semantics, surface structure, and entity. This is be-
cause more word overlap tends to imply higher se-
mantic similarity, less structural variation, and a
greater possibility of containing the same entities.
BERT-iBLEU shows the opposite result to Self-
BLEU. This may be caused by Self-BLEU being
over-considered in calculating BERT-iBLEU. Un-
expectedly, BLEU correlates poorly with human
evaluation of semantics. This is due to the fact
that paraphrase generation is a highly open-ended
task. And iBLEU does not seem to be a good eval-
uation metric either, because iBLEU uses BLEU
as the key to evaluate the semantics.

It is not fair enough to use a single metric
(iBLEU or BERT-iBLEU) to evaluate the qual-
ity of the paraphrases as in previous works. Our
method outperforms unsupervised baselines in
multiple automatic metrics and human evaluation
that demonstrates the superiority of our method.

H Generated Examples

Table 12 shows several examples generated using
our method and the unsupervised baselines. Our
approach generates paraphrases with greater vari-
ations in surface structure, which include more
word order variations (sample 3-6), lexical vari-
ations (sample 3-6), and introduced extensions
(sample 1 and 6). At different sampling tempera-
tures, our method generates paraphrases with dif-
ferent surface structural similarities to the origi-
nal text, while the semantics are well preserved.
When the input contains entities, our method gen-
erates more accurate entities than the other base-
lines (sample 1-5).
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Semantics Surface Structure Entity

BLEU 0.174 (p < 0.01) -0.124 (p = 0.03) 0.257 (p < 0.01)
Self-BLEU 0.401 (p < 0.01) -0.386 (p < 0.01) 0.256 (p < 0.01)
iBLEU 0.055 (p = 0.34) -0.012 (p = 0.83) 0.185 (p < 0.01)
BERT-iBLEU -0.326 (p < 0.01) 0.377 (p < 0.01) -0.152 (p < 0.01)
Entity-Score 0.278 (p < 0.01) -0.027 (p = 0.65) 0.579 (p < 0.01)

Table 11: Spearman’s correlation between the automatic evaluation metrics and the human evaluation scores.

Figure 5: The scoring page for human evaluation on the semantics.

13819



Figure 6: The scoring page for human evaluation on the surface structure.
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Figure 7: The scoring page for human evaluation on the entity.
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Original what are some possible solutions if i forgot my icloud password?
Set2seq+RTT what are the possible solutions if i forget my password?
TA+SS+DB what are the possible solutions if i forget my iphone icloud password?
Principledα what are some possible solutions if I forgot my i[fr] Quelle password?
Principledβ what solutions can be found if I have lost my imple password?
Ours(τ = 5) i forgot my icloud password, what are some solutions?
Ours(τ = 10) i forgot my icloud password. what are the solutions to this?

Original will the nintendo switch become successful?
Set2seq+RTT is the ncero switch successful?
TA+SS+DB will nintendo’s the switch become successful?
Principledα will the nintendo switch become successful?
Principledβ will the nintendo switch be successful?
Ours(τ = 5) will the nintendo switch ever become successful?
Ours(τ = 10) will nintendo switch ever become successful?

Original which is the best book with which i can prepare for gre exams ..?
Set2seq+RTT what are the best books to prepare for the greco examination ?
TA+SS+DB which book is best for the gre ? with which books can i prepare for exams..
Principledα which is the best book with which i can prepare for gre exams ?
Principledβ what’s the best book for me to prepare for my exams?
Ours(τ = 5) how do i prepare for gre exams ..which is the best book for it?
Ours(τ = 10) which is the best book for preparation of gre exams ..?

Original was the suicide squad movie good in your opinion?
Set2seq+RTT do you think the film of the suicide squad is good?
TA+SS+DB was suicide squad a good movie in your opinion?
Principledα was the suicide squad movie good in your opinion?
Principledβ do you think the movie about the suicidequad is a good one?
Ours(τ = 5) is the suicide squad movie any good in your opinion?
Ours(τ = 10) what is your opinion on the movie suicide squad ?

Original how many days does it take a pan card to arrive after applying?
Set2seq+RTT how many days after applying for a panc card ?
TA+SS+DB how many days does a pan card take to arrived in india after apply?
Principledα how many days does it take a pan card to arrive after applying?
Principledβ how many days does it take to arrive after the application to receive a card?
Ours(τ = 5) when applying for pan card , how many days does it take to arrive?
Ours(τ = 10) when applying for pan card , how many days does it take for the pan card to arrive?

Original how should i stop being insecure?
Set2seq+RTT how do i stop being insecure?
TA+SS+DB how should i stopped being so insecure?
Principledα how should i stop being insecure?
Principledβ how can i stop being insecure?
Ours(τ = 5) how can i stop being insecure?
Ours(τ = 10) what can i do to stop being insecure about myself?

Table 12: The examples generated using our method and two baselines. The entities in original sentences are
indicated in blue . The correct/wrong entities in generated paraphrases are indicated in green / red .
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