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Abstract
Although existing multilingual neural ma-
chine translation (MNMT) models have demon-
strated remarkable performance to handle mul-
tiple translation directions in a single model
and achieved zero-shot translation between lan-
guage pairs unseen in training, they still suffer
from relatively poor translation qualities for
some language pairs. A practical scenario is
that how to continually update MNMT models
for both supervised and zero-shot translations
when limited new data arrives. To this end, we
propose a two-stage approach that encourages
original models to acquire language-agnostic
multilingual representations from new data, and
preserves the model architecture without intro-
ducing parameters. Experimental results and
further analysis demonstrate that our method
can efficiently improve performance of exist-
ing MNMT models in translation directions
where they are initially weak, and mitigates the
degeneration in the original well-performing
translation directions, offering flexibility in the
real-world scenario.1

1 Introduction

Existing multilingual neural machine translation
(MNMT) models, such as mBART (Liu et al.,
2020) and M2M-100 (Fan et al., 2021), have show-
cased significant advancements to handle multi-
ple translation directions in a single model, espe-
cially enabling zero-shot translation directions be-
tween languages not encountered during training
with implicit cross-lingual transfer (Johnson et al.,
2017; Tan et al., 2019; Zhang et al., 2020; Cheng
et al., 2022). However, they still perform poorly
on language pairs without sufficient parallel cor-
pus (Goyal et al., 2022).

Fortunately, new parallel sentence pairs will
continually emerge between high-resource lan-
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Figure 1: We aim at adapting existing MNMT models
to both supervised and zero-shot translation directions
with newly available parallel data while maintaining
the stronger performance in English-Centric directions,
where dashed lines represent no parallel corpus.

guages, e.g., German↔Chinese, which can be
used to facilitate translation directions with poor
performance through supervised learning (Costa-
jussà et al., 2022). In addition to updated data,
obtaining parallel data between some languages,
e.g., Tamil↔Chinese, encounters difficulties in
the world (Siddhant et al., 2022). We aspire to
achieve many-to-one translation with cross-lingual
transferability of MNMT models in a zero-shot
manner (Chen et al., 2022), when the “one” tar-
get language related data is updated. As shown in
Figure 1, we assume three translation directions
for continual adaptation: new supervised transla-
tions, new zero-shot translations, and original well-
performing translations (typically English-Centric).
In this scenario, we aim to continually improve per-
formance for both new supervised and zero-shot
translations while retaining previously acquired
knowledge in the other translation directions us-
ing only new data.

In accordance with this scenario, an intuitive so-
lution is to introduce additional parameters for con-
tinual adaptation, regarded as parameter-isolation
based methods (He et al., 2021; Madotto et al.,
2021). The drawback of these methods is that
they increase the size of the base models, and as
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new data continues to accumulate, the total number
of parameters may expand indefinitely (Escolano
et al., 2021). To preserve the model architecture, an-
other solution is to leverage the continual learning
paradigm (Garcia et al., 2021; Huang et al., 2022b;
Gu et al., 2022; Huang et al., 2022c). Although
these methods propose multi-objective learning
to alleviate the issue of catastrophic forgetting,
they necessitate full parameter fine-tuning (Tang
et al., 2020), resulting in relatively low training ef-
ficiency (Ke and Liu, 2022). Besides, a significant
pitfall of the above-mentioned methods is that they
lack the ability to promote zero-shot translation.

In this work, we propose a two-stage method
consisting of a learning stage and a consolidation
stage for continual adaptation (LCCA), which effi-
ciently adapts MNMT models to diverse translation
directions. We first introduce a flexible pluggable
module in the penultimate encoder and decoder
layer, respectively, as the multilingual adaptation
space. And the introduced multilingual space is
optimized with contrastive learning to make rep-
resentation language-agnostic for zero-shot trans-
lations, realizing the learning stage. Then we at-
tempt to compress the additional parameters to the
same size of base MNMT models, regarded as a
consolidation stage. The second stage adopts the
information matrix and collaborative distillation to
facilitates original components to learn introduced
modules in a specific range. Furthermore, aside
from the related components, all the parameters
of the original model remain fixed, allowing for a
parameter-efficient manner to large-scale MNMT
models. The two stages are also an isolated process
designed to adapt to diverse application require-
ments in real-world scenarios.

To sum up, our contributions are as follows:

• We propose LCCA, a two-stage approach that
encourages to learn new knowledge for contin-
ual adaptation, while mitigating performance
degeneration without introducing additional
parameters.

• The ability of the original MNMT model to
translate into a target language is enhanced
via acquiring language-agnostic representa-
tion, which improves performance for zero-
shot translations in continual learning.

• Experimental results demonstrate the effi-
ciency and flexibility of our approach in adapt-
ing various powerful and open-source MNMT

models of different sizes to new parallel data.

2 Related Work

Zero-Shot Translation with MNMT Models
MNMT models have demonstrated their ability
to facilitate knowledge transfer across languages
and enable zero-shot translations between language
pairs that are not covered in training data (Lakew
et al., 2018; Tan et al., 2019; Zhang et al., 2020;
Chen et al., 2022). To further enhance the per-
formance of zero-shot translation, some studies
investigate language-agnostic representations (Ari-
vazhagan et al., 2019a; Pham et al., 2019; Liu et al.,
2021) and language-specific features (Wang et al.,
2019; Yang et al., 2021) for zero-shot translations.
For instance, Pan et al. (2021) align cross-lingual
representations using additional dictionaries and
contrastive learning. This work continues to ex-
plore the potential of multilingual representations,
but focusing on addressing the continual adapta-
tion for new zero-shot translations within an well-
performed representation space while avoid catas-
trophic forgetting.

Continual Learning for MNMT Some previous
methods of continual learning attempt to address
the issue of catastrophic forgetting when only the
new data is accessible (De Lange et al., 2019; Wu
et al., 2021), including replay-based methods (Sun
et al., 2019; Tang et al., 2020; Garcia et al., 2021),
regularization-based methods (Kirkpatrick et al.,
2017; Castellucci et al., 2021; Huang et al., 2022a;
Zhao et al., 2022), and parameter-efficient transfer
(PET) methods (Bapna and Firat, 2019; Zhu et al.,
2021; Huang et al., 2023). On the one hand, the
first two methods adopt the multi-objective learn-
ing (Thompson et al., 2019; Peng et al., 2020) to
balance performance between old and new tasks in
continual learning through full parameters tuning,
which is inefficient and time-consuming.

On the other hand, PET methods introduce addi-
tional task-specific parameters and freeze all origi-
nal parameters to completely retain performance on
previous tasks (Chalkidis et al., 2021; Li and Liang,
2021; Huang et al., 2023). However, they introduce
extra parameters to adapt to new tasks and lack the
ability to improve zero-shot performance, limiting
their application in practice (Dabre et al., 2020).
Differing from these approaches, our method miti-
gates the issue of zero-shot translations only using
new data, and achieves efficient continual adap-
tation without introducing additional parameters.
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Figure 2: Illustration of our approach LCCA. [ Source A, Target P ] denotes a positive sample that is the bilingual
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This enhanced flexibility makes it well-suited for
real-world scenarios.

3 Method

Our scenario is to efficiently improve performance
for some particular translation directions without
compromising previous well-performing transla-
tions. To achieve this, we propose a two-stage
method to alleviate the issues of continual adapta-
tion in particular translation directions at different
stages, as shown in Figure 2. Specifically, we first
introduce an additional space to capture language-
agnostic features for new target languages, as the
learning stage. Then we compress the additional
space back into the original models with a collabo-
ration, as the consolidation stage. And we calculate
an information matrix to measure the parameters
optimization in a smooth region across multiple
languages.

3.1 Task Definition
Multilingual translation models can provide high-
quality translation services on many language pairs
and are trained on selecting available parallel data
with multiple language pairs. Given the anticipated
growth in available data, it becomes possible to
continually update the multilingual models for both
their original and newly emerging translation direc-
tions, as illustrated in Figure 1.

Formally, the training process of an MNMT
model commences with an initial set of available
parallel data denoted as D = D1, ..., Di, ..., DM ,
encompassing a total of M languages. Each Di

represents the training corpus for the i-th language
pair. In this framework, the primary MNMT model,
given an input sentence x, undergoes optimization
by maximizing the log-likelihood L for the ground-
truth sequence y. This is mathematically expressed
as:

LD(θ) =
∑

Di∈D

∑

(x,y)∈Di

log p(y|x; θ) (1)
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Here, θ represents the parameters of the MNMT
model. For language identification, a specific lan-
guage token is prepended to the beginning of both
source and target sentences, following the conven-
tion introduced in prior work (Liu et al., 2020).

We aim to achieve supervised translation direc-
tions between high-resource languages (Ls and
Lt) and zero-shot translation from M languages
L1, L2, ..., LM to the target language Lt with the
help of only the newly available data D′ = {x,y}.
Due to the unavailability of the original collection
of parallel data, the optimization objective in con-
tinual learning is given by:

LD′(θ) =
∑

(x,y)∈D′
log p(y|x; θ) (2)

As a result, we aspire to continually update MNMT
models for both supervised and zero-shot transla-
tions using limited new data.

3.2 Learning Stage
One of the crucial steps in this task involves ac-
quiring new knowledge from newly available data.
Previous studies show that the FFN layers can be
seen as key-value memories and store knowledge
in this manner (Sukhbaatar et al., 2019). Thus, the
FFN might be a core component which stores cross-
lingual transferability for multilingual translations.
As shown in Figure 2, to adapt original models to
new data, we open up two additional blocks in the
hidden layers, as the learning modules. The two
blocks are replicated from FFN, thus are the same
as corresponding FFN layers before tuning. Con-
sidering that the original models normally have a
large number of parameters, introducing additional
parameters in every layer would increase training
costs and reduce training efficiency. Therefore, we
only introduce learning modules in the penultimate
layer of the original model, as the knowledge stored
in the FFN of this layer is closer to the high-level se-
mantic information. To further leverage knowledge
from the original model, we combine the original
FFN and the learning modules, which can share
linguistic knowledge. The fusion output of hidden
states Hf is given by:

Hf = FFNoriginal(H) + FFNlearn(H) (3)

The learning module is optimized by minimizing a
cross-entropy loss of the parallel sequence pairs:

LCE(θ) = −1

J

J∑

j=1

log p(yj |y<j ,x; θ) (4)

where J is the length of the target sentence.
Our scenario also focuses on facilitating the abil-

ity of the original MNMT model to translate into
a target language, achieving zero-shot translation.
We argue that during the learning stage for contin-
ual adaptation, the additional learning module in
the encoder lacks to align parallel sentences of su-
pervision that can bridge the representation gap
across different languages. To this end, we in-
troduce a contrastive learning loss as an auxiliary
supervision to learn language-agnostic representa-
tions for the encoder. Given a sentence pair (x,y)
from new training data D′, we denote it as a pos-
itive example and select a set of target sentences
{yi}N−1

i=1 from the same batch as negative exam-
ples. The contrastive loss is given by:

LCTR = −
∑

(x,y)∈D′
log

esim(Hf(x),Hf(y))/τ

∑
yi
esim(Hf(x),Hf(yi))/τ

(5)
where sim is the cosine similarity function and τ
is the temperature parameter which is set to 0.1.

3.3 Consolidation Stage
Due to introduced parameters in the learning stage,
the architecture of original models is modified. Not
only the model increases the total number of param-
eters, but also it requires to determine the specific
task to which the input sentence belongs. There-
fore, we aim to compress the model from the pre-
vious stage to the same size of original models,
preserving the model architecture without introduc-
ing parameters. By employing a knowledge con-
solidation approach, we integrated the knowledge
from the learning module into the original mod-
els. In the consolidation stage, we assume the two
separated modules (i.e., original FFN and previ-
ous learning module) as a cooperative relationship,
where each module is beneficial for translating into
different target languages. In the form of distilla-
tion, knowledge can be transferred to the distilled
model through the distribution (Hinton et al., 2015).
And we propose a collaborative distillation to facil-
itate original components to learn from the learning
modules. The collaborative knowledge distillation
is given by:

LCKD(θf , θl) =
∑

yj ,y<j ,x∈D′,

KL
(
P (yj |y<j ,x; θf )

||P (yj |y<j ,x; θl)
)

(6)
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where θf and θl represent the parameters of original
FFN and learning modules, respectively.

In addition to retrospecting the original knowl-
edge, we also intervene in the stage of consolida-
tion to make it relatively smooth. Given the model
parameters θ and the model distribution p(x|θ), it
is natural to maximize the likelihood function to
optimize θ. To evaluate the optimization for θ, we
define a score function s(θ) = ∇θ log p(x|θ) and
its measure of uncertainty that is regarded as the
covariance of the models, representing the degree
of correlation between two arbitrary variables that
change together:

F = Ep(x|θ)[∇θ log p(x|θ)∇θ log p(x|θ)⊤] (7)

In this task, we can approximate the expectation in
F using empirical distribution q̂(x), which is given
by the parallel training data:

F̂ = Eq̂x,y [∇θ log p(x,y; θ)∇θ log p(x,y; θ)
⊤]

=
1

N

N∑

n=1

∇ log p(y|x; θ)∇ log p(y|x; θ)⊤

(8)

The role of F is a measure of curvature of the
optimization and has a connection to our LCKD.
This gives rise to natural gradient loss LCKD−F

with the information matrix F̂ which can define the
local curvature in distribution space:

LCKD−F(θf , θl) =

LCKD(θf , θl)−
λ

N

N∑

i=1

(θf − θ∗f )
2 (9)

where λ is a hyper-parameter to balance the origi-
nal parameters and learning modules. θ∗f represents
the original parameters of FFN with computing the
information matrix. Thus we can optimize the orig-
inal FFN in a smooth region, preserving the previ-
ously acquired knowledge. Note that we utilize a
small-scale set corresponding to the previous task
to calculate the F matrix.

4 Experiments

4.1 Experiment Settings
Parallel Data In this work, we focus on con-
tinual adaptation for MNMT models, aiming to
enable the model to improve performance of super-
vised and zero-shot translation using only new data.
To ensure the reliability and reproducibility of the

experiments, we provide the German-Chinese (de-
zh) bilingual data considered for continual adapta-
tion, as the newly available training corpus2. Con-
sidering the issue of data quality, we performed
data cleaning and sampling, resulting in a corpus
of 10 million sentence pairs. As a result, we de-
note many-to-English (xx→en) as original transla-
tion directions, German-to-Chinese (de→zh) and
Chinese-to-German (zh→de) as new supervised
translation directions, many-to-German (xx→de)
and many-to-Chinese (xx→zh) as new zero-shot
translation directions. The validation data is from
FLoRes (Goyal et al., 2022) and we only choose
the validation set in the new supervised translation
direction for model selection.

Model Configuration In our scenarios, we have
chosen to employ the mBART50-nn (Tang et al.,
2020) as the base MNMT model. The mBART50-
nn is an English-centric multilingual model capa-
ble of handling 50 different languages. To ensure
consistency, we tokenize the parallel data using
the same SentencePiece (Kudo and Richardson,
2018) model as mBART50-nn, which boasts a
shared vocabulary consisting of 250,000 tokens.
The mBART50-nn is structured as a Transformer-
based model, featuring 12 encoder layers, 12 de-
coder layers, and 16 multi-attention heads.For a
more comprehensive understanding of model con-
figuration, additional details are available in Ap-
pendix A.

Baselines We compare our proposed LCCA with
various representative methods in continual learn-
ing and transfer learning for continual adaptation.
The baselines can be listed as follows:

• Scratch (Vaswani et al., 2017): training a bilin-
gual Transformer-big model from scratch in
the supervised translation directions.

• mBART50-nn (Tang et al., 2020): implement-
ing all translation directions based on this orig-
inal MNMT model directly.

• Fine-Tuning (Luong and Manning, 2015): tun-
ing based on the original models with new
data. All original parameters are trainable.

• Mixed-FT (Sun et al., 2019): mixing the exter-
nal training data related to original translation
directions with the new training data to train
the model jointly.

2https://data.statmt.org/cc-matrix/
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Method Old Directions New Directions AVG. Old Directions New Directions AVG.
xx→en de→zh xx→zh xx→en zh→de xx→de

Scratch 0.03 29.99 2.13 1.08 1.07 15.17 1.12 1.10
mBART50-nn 24.72 3.40 5.23 14.98 24.72 6.92 8.46 16.59
Fine-Tuning 0.03 33.77 2.52 1.28 0.12 20.29 0.49 0.31
Mixed-FT 19.33 29.31 6.36 12.85 20.21 15.31 4.37 12.29
SixT† 0.21 30.33 18.48 9.35 0.98 17.22 10.92 5.95
SixT 0.14 30.05 19.40 9.77 0.72 16.85 12.04 6.38
EWC 23.01 29.93 19.47 21.24 23.19 15.54 13.97 18.58
LFR-CM 23.11 29.91 21.13 22.12 23.13 16.74 14.97 19.05
LFR-OM 23.03 29.97 20.93 21.98 23.32 16.13 14.74 19.03

LCCA w/o LS 23.47 29.98 20.30 21.89 22.97 15.23 13.74 18.36
LCCA 24.03 31.17 22.09 23.06 24.81 18.99 18.13 21.47

Table 1: The overall BLEU scores of the particular adaptation directions. “w/o LS” represents that we directly use
the consolidation stage without learning stage. “xx” denotes the languages supported by mBART50-nn. “AVG”
denotes the average BLEU scores on all 100 translation directions. “†” indicates the stage one in the SixT. The
highest score is highlighted in bold and the second highest score is underlined.
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Figure 3: Performance of parameter-isolation methods for continual adaptation task in multiple translation directions.
The x-axis represents the proportion of tuned parameters during fine-tuning relative to the total parameters.

• SixT (Chen et al., 2022): freezing model pa-
rameters of encoder and decoder layers in dif-
ferent stages, which is beneficial for zero-shot
translations.

• EWC (Kirkpatrick et al., 2017): adding a
penalty with Fisher matrix to preserve pre-
vious knowledge.

• LFR (Gu et al., 2022): constraining trainable
parameters within low forgetting risk regions
in continual learning, including LFR-CM and
LFR-OM, respectively.

• LoRA (Hu et al., 2022): injecting low-rank
matrices into every attention layer, deploying
independent tasks of fine-tuned models.

• Prefix-Tuning (Li and Liang, 2021): prepend-
ing prefixes to the keys and values at every
self-attention layer.

• Adapter (Bapna and Firat, 2019): introducing
additional parameters in the FFN layer of orig-
inal models and freezing all base parameters.

Training and Evaluation We evaluate the perfor-
mance of all translation directions using the FLo-
Res testsets (Costa-jussà et al., 2022), covering
50 languages from 10 language groups. The per-
formance of translation is measured by the detok-
enized case-sensitive BLEU score, calculated us-
ing the SacreBLEU evaluation script (Post, 2018)3.
The training time of each method is reported in
kiloseconds. All models are implemented using
the open-source toolkit fairseq4 (Ott et al., 2019).
For more detailed information, please refer to Ap-
pendix B.

3Signature: nrefs:1 | case:mixed | eff:no | tok:13a |
smooth:exp | version:2.2.0. Many-to-Chinese: nrefs:1 |
case:mixed | eff:no | tok:zh | smooth:exp | version:2.2.0.

4https://github.com/pytorch/fairseq
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Model Method #Size Translation Directions AVG. Translation Directions AVG.
xx→en de→zh xx→zh xx→en zh→de xx→de

mBART Base 0.6B 24.72 3.40 5.23 14.98 24.72 6.92 8.46 16.59
LCCA 0.6B 24.03 31.17 22.09 23.06 24.81 18.99 18.13 21.47
Base 1.2B 24.67 28.96 22.64 23.66 24.67 17.92 18.98 21.83M2M LCCA 1.2B 24.00 31.88 25.42 24.71 24.82 18.84 19.76 22.29

NLLB Base 1.3B 37.00 26.86 24.87 30.94 37.00 17.97 22.82 29.91
LCCA 1.3B 36.13 30.99 26.37 31.30 35.98 18.97 24.27 30.13
Base 3.3B 38.43 26.80 26.13 32.28 38.43 19.42 24.57 31.50NLLB LCCA 3.3B 38.17 31.35 28.93 33.55 38.02 20.03 25.43 31.73

Table 2: The overall BLEU scores based on various MNMT models. “Base” indicates the original performance on
MNMT models. The better score of each MNMT model is highlighted in bold.

4.2 Main Results

As presented in Table 1, we conducted an extensive
assessment of translation quality across multiple
directions as new data became available. The re-
sults indicate that our proposed approach, referred
to as LCCA, outperforms several baseline meth-
ods, particularly in terms of average BLEU scores
for the original many-to-English and new many-to-
target translation directions. Specifically, LCCA
attains an average BLEU score of 22.09 for xx→zh
and 24.03 for xx→en. The trend persists when the
target language is switched to German, in which
LCCA even demonstrates improvements in the old
language translation directions. Although the Fine-
Tuning method achieves the best results in super-
vised translation (de ↔ zh) for continual adapta-
tion, it suffers from catastrophic forgetting, which
makes it unsuitable for my scenario. Furthermore,
most of the baseline methods are more vulnerable
to adapting original models to the new zero-shot
translation, while our approach achieves a notice-
able improvement. And the results also show that
LCCA exhibits no significant difference from the
traditional regularization-based approach without
the learning phase. Therefore, it involves a pro-
cess of bringing the added parameters closer to the
original parameter space with LCCA.

As shown in Figure 3, we also investigate trans-
lation qualities of parameter-isolation methods in
multiple directions. The results show that LCCA
in the learning stage achieves better performance
with fewer additional parameters in both supervised
and zero-shot translations for continual adaptation.
Moreover, the improvement is more noticeable in
the zero-shot translation directions in terms of aver-
age BLEU scores, e.g., 22.81 scores on xx→zh and
19.09 scores on xx→de. Although no performance
degradation has occurred using parameter-isolation

methods, they lack encouragement to learn new
knowledge from updated data, while LCCA in the
consolidation stage outperforms the baselines of
parameter-isolation, comparing the overall results.

4.3 Results on Various MNMT Models

As indicated in Table 2, we have employed a range
of pre-trained MNMT models as the initial models
and examined the effectiveness of LCCA in the
adaptation process. The outcomes underscore the
versatility of our approach, showing that it can suc-
cessfully adapt diverse, powerful models of vary-
ing sizes to incorporate newly available data. This
adaptability underscores the efficiency and flexibil-
ity of our approach in real-world applications. Even
if the original models already exhibit strong capa-
bilities in certain translation directions, our method
can further enhance the performance through learn-
ing knowledge from new data, achieving a com-
prehensive upgrade in that particular translation
direction. We also perform a new comparison be-
tween the performance of NLLB 1.3B and 3.3B,
and there is no indication that as the model be-
comes larger, the effectiveness of LCCA reduces
significantly.

4.4 Ablation Studies

Effects of Different Learning Modules
As shown in Table 3, we further investigate differ-
ent strategies and modules in the learning stage. To
learn new knowledge from new data, we introduce
the learning modules in the serial or parallel con-
nection manner, representing their relation to the
layers of the original models. The results demon-
strate that the parallel manner achieves slightly bet-
ter performance, regardless of whether contrastive
learning methods are employed, between 1 and 3
(or 2 and 4). Besides the comparison results be-
tween 1 and 2 (or 3 and 4) show that the contrastive
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No. Learning Module New Directions

Manner LCTR de→zh xx→zh zh→de xx→de

1 serial ✗ 31.08 22.63 18.70 18.81
2 serial ✓ 31.11 22.78 18.67 19.03
3 parallel ✗ 31.35 22.64 19.32 18.79
4 parallel ✓ 31.38 22.81 19.32 19.09

Table 3: Results on different strategies and modules in the learning stage. The highest score is highlighted in bold.

Method xx→en de→zh xx→zh xx→en zh→de xx→de

Adapter 24.01 29.64 20.09 23.99 16.08 13.78
LoRA 24.00 28.79 19.45 24.26 16.70 13.12
Prefix 23.32 26.89 19.39 23.46 15.96 12.85
Ours 24.03 31.17 22.09 24.81 18.99 18.13

Table 4: Results on different PET methods in the learning stage. The highest score is highlighted in bold.
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Figure 4: Results using different hyper-parameters. The
x-axis and y-axis denote the BLEU of the new zero-shot
translations (xx→zh) and original translations (xx→en),
respectively. The point closer to the upper right corner
indicates better result.

learning is more important to learn the knowledge
from new data for zero-shot translations, and the
impact of supervised translation is minimal.

As shown in Table 4, we also supply an experi-
ment to validate the effectiveness of LCCA at the
learning phase, compared with different PET-based
methods. The results show that the effectiveness of
consolidation phase is related to the first learning
phase. The higher performance during the learning
stage, the better performance on the consolidation
stage. Because the role of the consolidation stage
is to collaboratively integrate the newly added pa-
rameters from the learning stage into the original
model.

Effects of Hyper-parameter λ

As shown in Figure 4, we compare the consolida-
tion stage with different hyper-parameters λ which
control the trade-off between the performance of
original and new translations. The larger the hyper-
parameter λ, the less the decrease for the previous
tasks and the less λ is to facilitate to learn new
tasks. We compare our method with EWC (Kirk-
patrick et al., 2017) and LFR (Gu et al., 2022).
For these methods, we search the range from 1 to
0.001. Although these methods are sensitive to
hyper-parameters, which restricts the robustness,
our method achieves better performance and is rela-
tively less affected by hyper-parameters, according
to the downtrend of the curve in Figure 4.

4.5 Visualization of Representations

To investigate the zero-shot translations for con-
tinual adaptation, we present a visualization of
multilingual representations. It studies the shared
representations for MNMT models, which can ob-
serve their semantic equivalents among multiple
languages (Cheng et al., 2022). The results of vi-
sualization show that the learning stage of LCCA
plays an important role in optimizing multilingual
representation spaces and the consolidation stage
does not undermine the efforts of the previous stage.
The details of the representation analysis are pro-
vided in Appendix C.1.

4.6 Training Cost

We further investigate the training cost compared
with the stronger baselines. The results show that
LCCA can improve the efficiency to continually
adapt original models to new languages. LCCA can
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Fine-Tuning

LCCA

Figure 5: T-SNE visualizations of encoder representa-
tions on xx→zh translations directions.

acquire and consolidate new knowledge efficiently
for continual adaptation, which is more practical
in the real-world application. Since we only add
additional parameters during the two stages in one
layer, the training cost does not significantly in-
crease as the depth of the model increases. More
details are provided in Appendix C.2.

5 Conclusion

In this work, we propose a two-stage method of
learning and consolidation to improve performance
of pre-trained MNMT models when new data ar-
rives in both supervised and zero-shot translations.
It extends multilingual language-agnostic space
with the contrastive learning for new data adap-
tation in the learning stage, and then adopts a col-
laborative distillation with an information matrix
to consolidate both previously and newly learned
knowledge for module integration. As a result, our
proposed method, LCCA, achieves continual adap-
tation to multiple translation directions while keep-
ing the model architecture intact. Experimental
results demonstrate that the learning stage encour-
ages original models to learn new knowledge from
updated parallel data and the consolidation stage
mitigates the performance degradation on previ-
ous well-performing translation directions when

the model compresses. Further analyses reveal that
our method effectively captures linguistic features
and bridges the gap of shared representation space
for comprehensive continual adaptation.

Limitations

In this work, we aspire to continually improve per-
formance of MNMT models in translation direc-
tions where they are initially weak, and alleviate
the issue of degeneration in the well-performing
translation directions. In addition to the advantages
mentioned, our method does have certain limita-
tions as follows:

(1) Limited available data: We only utilize the
parallel data on one language pair for continual
adaptation in this work. There are many diverse
datasets available, including monolingual data and
parallel data on extremely low-resource target lan-
guage.

(2) Sequential adaptation: This work only con-
siders adapting the original models to new data
continually once. However, multiple parallel data
are available in a sequential manner. Due to the
uncertainty about potential data exposure from the
newly available data to the test sets, we plan to
carefully design and explore this scenario in future
work.

Ethics Statement

Regarding the datasets, we utilize CC-Matrix as
the newly available data and multilingual FLoRes
datasets for evaluation (Costa-jussà et al., 2022).
All datasets which we use are available in public
and widely used by researchers. Similarly, regard-
ing the pre-trained MNMT models, we leverage
mBART (Liu et al., 2020), M2M-100 (Fan et al.,
2021) and NLLB (Costa-jussà et al., 2022). These
models come from the open-source community.
The generated process has the potential to show
inappropriate and misleading translation results,
which can be mitigated by modifying the test sets
before inference.
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A Model Details

We utilize Adam (Kingma and Ba, 2014) β1 = 0.9
and β2 = 0.98 to optimize the trainable parameters
of the MNMT models and adopts the temperature-
based sampling (Arivazhagan et al., 2019b) with
a temperature of T = 20 to balance the training
data for the “Mixed-FT” methods. The dropout
and attention-dropout are et as 0.3 and 0.1 in all
experiments, respectively. For regularization-based
method (LFR), we follow the basic setting in Gu
et al. (2022). The models are trained on 8 NVIDIA
A100 GPUs and we report the mean BLEU scores
of the our methods that are trained in three different
seeds to ensure results reliable which have random-
ness. The batch size is 4,096×4 in the procedures
of parameter-isolation based methods and 2,048×2
in the procedures of fully tuning methods.

In our experiments, we have implemented sev-
eral pre-trained MNMT models with varying sizes
and configurations. Specifically:

• The mBART50-nn (Liu et al., 2020) model
(610 million parameters) comprises 12
stacked encoder layers, 12 stacked decoder
layers, and 16 multi-attention heads. The di-
mensions of hidden states and FFN are 1,024
and 4,096, respectively.

• The M2M-100 (Fan et al., 2021) model (1.2
billion parameters) features 24 stacked en-
coder layers, 24 stacked decoder layers, and
16 multi-attention heads. The dimensions of
hidden states and FFN are 1,024 and 8,192,
respectively.

• The NLLB (Costa-jussà et al., 2022) model
(3.3 billion parameters) consists of 24 stacked
encoder layers, 24 stacked decoder layers, and
16 multi-attention heads, with dimensions of
hidden states and FFN set at 2,048 and 8,192,
respectively.

For optimizing the trainable parameters of
the MNMT models, we employ the Adam opti-
mizer (Kingma and Ba, 2014) with β1 = 0.9 and
β2 = 0.98. We also utilize temperature-based
sampling (Arivazhagan et al., 2019b) with a tem-
perature of T = 20 to balance the training data
for the “Mixed-FT” methods. Dropout and atten-
tion dropout rates are both set to 0.3 and 0.1, re-
spectively, in all experiments. During training, the
batch size is set to 4,096×4 for parameter-isolation-
based methods and 2,048×2 for fully tuning meth-

Code Language Family Script Order

af Afrikaans Germanic Latin SVO
ar Arabic Semitic Arabic SOV
az Azerbaijani Turkic Latin SOV
bn Bengali Indo-Aryan Bengali SOV
cs Czech Balto-Slavic Latin SVO
de German Germanic Latin SVO
en English Germanic Latin SVO
es Spanish Italic Latin SVO
et Estonian Finnic Latin SVO
fa Persian Iranian Arabic SOV
fi Finnish Finnic Latin SVO
fr French Italic Latin SVO
gl Galician Italic Latin SVO
gu Gujarati Indo-Aryan Gujarati SOV
he Hebrew Semitic Hebrew SVO
hi Hindi Indo-Aryan Devanagari SOV
hr Croatian Balto-Slavic Latin SVO
id Indonesian Austronesian Latin SVO
it Italian Italic Latin SVO
ja Japanese Japanesic Japanese SOV
ka Georgian Kartvelian Georgian SOV
kk Kazakh Turkic Cyrillic SOV
km Khmer Austronesian Khmer SVO
ko Korean Korean Hangul SOV
lt Lithuanian Balto-Slavic Latin SVO
lv Latvian Balto-Slavic Latin SVO
mk Macedonian Balto-Slavic Cyrillic SVO
ml Malayalam Dravidian Malayalam SOV
mn Mongolian Mongolic Cyrillic SOV
mr Marathi Indo-Aryan Devanagari SOV
my Burmese Sino-Tibetan Myanmar SOV
ne Nepali Indo-Aryan Devanagari SOV
nl Dutch Germanic Latin SVO
pl Polish Balto-Slavic Latin SVO
ps Pashto Iranian Arabic SOV
pt Portuguese Italic Latin SVO
ro Romanian Italic Latin SVO
ru Russian Balto-Slavic Cyrillic SVO
si Sinhala Indo-Aryan Sinhala SOV
sl Slovenian Balto-Slavic Latin SVO
sv Swedish Germanic Latin SVO
ta Tamil Dravidian Tamil SOV
th Thai Tai-Kadai Thai SVO
tl Tagalog Austronesian Latin VSO
tr Turkish Turkic Latin SOV
uk Ukrainian Balto-Slavic Cyrillic SVO
ur Urdu Indo-Aryan Arabic SOV
vi Vietnamese Austronesian Latin SVO
xh Xhosa Atlantic-Congo Latin SVO
zh Chinese Sino-Tibetan Han SVO

Table 5: The characteristics of languages for evaluation.
“S, V, O” represent subject, verb and objective, respec-
tively.

ods with 8 NVIDIA A100 GPUs. And LCCA are
trained with three different seeds to ensure the reli-
ability of results considering inherent randomness.
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Figure 6: The training time of various methods for adapting mBART50-nn to xx→zh and xx→de, respectively.

B Dataset Details

In this work, we utilize parts of the FLoRes de-
vtest as our test set, which covers 50 languages and
follows the policy in a multi-source setting. The
test set contains 1012 sentences in each language
and is divided into different language groups with
linguistic diversity for evaluation. It is worth not-
ing that a language family refers to a collection of
languages that share a common ancestral language,
often referred to as the proto-language5. Varia-
tions in grammar and word order can be observed
across different language families6. And perform-
ing cross-lingual transfer and zero-shot translation
between languages with significant differences is
challenging. The FLoRes follows the CC-BY-SA
4.0 license that can be freely used for research pur-
poses (Farhad et al., 2021). The characteristics of
different languages and language codes used in this
paper are shown in Table 5.

C More Comparisons

C.1 Visualization of Representations

As depicted in Figure 5, we visualize sentence rep-
resentations in the context of xx→zh to probe the
representation gap between languages. Achieving
comparability within a single representation space

5https://en.wikipedia.org/wiki/Language_family
6https://wals.info

necessitates the use of multi-source sentences con-
veying the same meaning in different languages
with t-SNE (Van der Maaten and Hinton, 2008). As
evident in Figure 5, the sentence representations
produced by LCCA exhibit a closer proximity, il-
lustrating the adeptness of our model at adapting
to new data for zero-shot translations. Consistent
with this visualization, Table 1 further substanti-
ates that our method excels in achieving improved
performance in zero-shot translation scenarios.

C.2 Training Cost
To further underscore the efficiency of LCCA, we
examine the training time in comparison to the
more robust baseline models, as depicted in Fig-
ure 6. Although our method has two stages, the
results show that training time of LCCA is close to
that of the parameter-efficient methods and shorter
than the other methods with fully tuning, which is
more efficient and practical for continual adapta-
tion.
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