@inproceedings{piergentili-etal-2023-hi,
title = "Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the {G}e{NTE} Corpus",
author = "Piergentili, Andrea and
Savoldi, Beatrice and
Fucci, Dennis and
Negri, Matteo and
Bentivogli, Luisa",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.873",
doi = "10.18653/v1/2023.emnlp-main.873",
pages = "14124--14140",
abstract = "Gender inequality is embedded in our communication practices and perpetuated in translation technologies. This becomes particularly apparent when translating into grammatical gender languages, where machine translation (MT) often defaults to masculine and stereotypical representations by making undue binary gender assumptions. Our work addresses the rising demand for inclusive language by focusing head-on on gender-neutral translation from English to Italian. We start from the essentials: proposing a dedicated benchmark and exploring automated evaluation methods. First, we introduce GeNTE, a natural, bilingual test set for gender-neutral translation, whose creation was informed by a survey on the perception and use of neutral language. Based on GeNTE, we then overview existing reference-based evaluation approaches, highlight their limits, and propose a reference-free method more suitable to assess gender-neutral translation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="piergentili-etal-2023-hi">
<titleInfo>
<title>Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the GeNTE Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Piergentili</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Savoldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dennis</namePart>
<namePart type="family">Fucci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luisa</namePart>
<namePart type="family">Bentivogli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Gender inequality is embedded in our communication practices and perpetuated in translation technologies. This becomes particularly apparent when translating into grammatical gender languages, where machine translation (MT) often defaults to masculine and stereotypical representations by making undue binary gender assumptions. Our work addresses the rising demand for inclusive language by focusing head-on on gender-neutral translation from English to Italian. We start from the essentials: proposing a dedicated benchmark and exploring automated evaluation methods. First, we introduce GeNTE, a natural, bilingual test set for gender-neutral translation, whose creation was informed by a survey on the perception and use of neutral language. Based on GeNTE, we then overview existing reference-based evaluation approaches, highlight their limits, and propose a reference-free method more suitable to assess gender-neutral translation.</abstract>
<identifier type="citekey">piergentili-etal-2023-hi</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.873</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.873</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>14124</start>
<end>14140</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the GeNTE Corpus
%A Piergentili, Andrea
%A Savoldi, Beatrice
%A Fucci, Dennis
%A Negri, Matteo
%A Bentivogli, Luisa
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F piergentili-etal-2023-hi
%X Gender inequality is embedded in our communication practices and perpetuated in translation technologies. This becomes particularly apparent when translating into grammatical gender languages, where machine translation (MT) often defaults to masculine and stereotypical representations by making undue binary gender assumptions. Our work addresses the rising demand for inclusive language by focusing head-on on gender-neutral translation from English to Italian. We start from the essentials: proposing a dedicated benchmark and exploring automated evaluation methods. First, we introduce GeNTE, a natural, bilingual test set for gender-neutral translation, whose creation was informed by a survey on the perception and use of neutral language. Based on GeNTE, we then overview existing reference-based evaluation approaches, highlight their limits, and propose a reference-free method more suitable to assess gender-neutral translation.
%R 10.18653/v1/2023.emnlp-main.873
%U https://aclanthology.org/2023.emnlp-main.873
%U https://doi.org/10.18653/v1/2023.emnlp-main.873
%P 14124-14140
Markdown (Informal)
[Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the GeNTE Corpus](https://aclanthology.org/2023.emnlp-main.873) (Piergentili et al., EMNLP 2023)
ACL