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Abstract

Prompt tuning has emerged as a successful
parameter-efficient alternative to the full fine-
tuning of language models. However, prior
works on prompt tuning often utilize long soft
prompts of up to 100 tokens to improve per-
formance, overlooking the inefficiency associ-
ated with extended inputs. In this paper, we
propose a novel prompt tuning method SMoP
(Sparse Mixture-of-Prompts) that utilizes short
soft prompts for efficient training and inference
while maintaining performance gains typically
induced from longer soft prompts. To achieve
this, SMoP employs a gating mechanism to
train multiple short soft prompts specialized in
handling different subsets of the data, provid-
ing an alternative to relying on a single long
soft prompt to cover the entire data. Experi-
mental results demonstrate that SMoP outper-
forms baseline methods while reducing train-
ing and inference costs. We release our code at
https://github.com/jyjohnchoi/SMoP.

1 Introduction

Prompt tuning (Lester et al., 2021; Liu et al.,
2021) has recently gained attention as a parameter-
efficient alternative to the full fine-tuning of
language models. By freezing the original lan-
guage model parameters and solely tuning the soft
prompts (i.e., learnable token embeddings) added
to the model input, prompt tuning achieves compa-
rable performance to full fine-tuning while largely
reducing the number of trainable parameters. More-
over, prompt tuning stands out for its conceptual
simplicity and flexibility among other parameter-
efficient fine-tuning methods (Houlsby et al., 2019;
Guo et al., 2021; Hu et al., 2022), as it does not
require modifications to the model structure.

Since the proposal of prompt tuning, there has
been active research to enhance its efficiency and
effectiveness. On one hand, several approaches pro-
pose to improve the performance of prompt tuning
by integrating soft prompts into activations in each
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Figure 1: Accuracy (left) and training memory usage
(right) with varying total prompt length on RTE dataset.
For prompt tuning (Lester et al., 2021), increasing soft
prompt length improves accuracy, but also results in
a significant increase in memory usage. SMoP outper-
forms prompt tuning while preserving memory usage
by sparsely activating short (length 5) prompts.

layer of the model (Li and Liang, 2021; Qin and
Eisner, 2021; Liu et al., 2022), incorporating input-
specific soft prompts (Jiang et al., 2022; Wu et al.,
2022), or pruning and rewinding soft prompts (Ma
et al., 2022). On the other hand, methods such as
FPT (Huang et al., 2022) demonstrate improved
training efficiency of prompt tuning in terms of
convergence speed via progressive training.

Although these methods have empirically shown
improvements in prompt tuning, they have over-
looked the inefficiency associated with the exten-
sion of input sequences caused by the inclusion of
soft prompts. While increasing soft prompt length
(typically up to 100 tokens) is known to bene-
fit model performance (Lester et al., 2021; Jiang
et al., 2022), it consequently yields longer input
sequences, leading to increased computational re-
quirements during training and inference (see Fig-
ure 1). Therefore, we aim to investigate the uti-
lization of relatively short soft prompts while pre-
serving performance gains typically achieved from
longer soft prompts.

To this end, we propose SMoP (Sparse Mixture-
of-Prompts), a novel prompt tuning method that
utilizes short soft prompts during training and in-
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Figure 2: (a) Illustration of prompt tuning (Lester et al., 2021). A soft prompt is concatenated with the embedding
representations of an input instance, and the soft prompt is solely fine-tuned. Given a soft prompt of 100 tokens, the
length of the soft prompt is typically longer or similar to the input instance. (b) Illustration of our proposed method
SMoP. A gating mechanism is employed to route each input instance to a short soft prompt.

ference. Given that using a single short soft prompt
leads to inferior performance compared to longer
soft prompts, our key insight is to train multiple
short soft prompts that are specialized in handling
different subsets of the data. To achieve this, we
draw inspiration from the Sparsely-Gated Mixture-
of-Experts (Shazeer et al., 2017; Fedus et al., 2022)
that sparsely activates sub-networks (i.e., experts)
to increase model capacity without a proportional
increase in computation. We integrate this concept
in the context of prompt tuning by employing a
gating mechanism in SMoP, which guides each in-
put instance to one of the short soft prompts based
on its embedding representation. Such sparse ac-
tivation enables effective utilization of short soft
prompts without a significant increase in computa-
tion or degradation in performance.

To verify the efficiency and effectiveness SMoP
introduces to prompt tuning, we conduct evalua-
tions on six natural language understanding tasks
from the SuperGLUE benchmark. Experimental re-
sults demonstrate that SMoP outperforms prompt
tuning with reduced training and inference costs.
In particular, SMoP improves the average perfor-
mance of prompt tuning on six SuperGLUE tasks
by 2.5%p with T5-base, and 3.4%p with T5-large
on average while reducing training time, memory,
and inference computations.

Our contributions are as follows:

1. We propose a novel prompt tuning method
SMoP (Sparse Mixture-of-Prompts) that uti-
lizes short soft prompts for efficient training
and inference while maintaining performance
gains often induced by increased soft prompt
length.

2. SMoP sparsely activates short soft prompts
via a gating mechanism that routes each in-
stance to one of the multiple soft prompts
based on its embedding representation.

3. Experimental results demonstrate that SMoP
outperforms the baselines on T5-base and
T5-large while utilizing shorter soft prompts,
thereby using less training and inference costs.

2 Method

2.1 Preliminaries

Full Fine-tuning Assume that we have a
sequence-to-sequence model pϕ(y | x) param-
eterized by ϕ. Given an instance with a length
n sequence of embedding representations X =
{x1, x2, ..., xn} ∈ Rn×e and corresponding label
token embedding sequence Y , the objective func-
tion for full fine-tuning the model pϕ is as follows:

argmax
ϕ

log pϕ(Y | X). (1)

Prompt Tuning If we define a length l soft
prompt with embedding dimension e as Pθ which is
parameterized by θ ∈ Rl×e, the objective function
of prompt tuning is as follows:

argmax
θ

log pϕ(Y | [Pθ;X]), (2)

where ; indicates the concatenation of the two ma-
trices. Note that the language model parameters
ϕ are no longer updated. Figure 2 (a) depicts the
process of prompt tuning.
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Model Method
Total

Prompt
Length

Utilized
Prompt
Length

Trainable
Params (%)

Training Costs (↓) Inference Costs (↓) Average
Score (%)Time Memory FLOPs

(s/100 steps) (GB) (GFLOPs/sample)

T5-
base

Full Fine-tuning - - 100 81.4 14.9 70.3 78.21.3
Prompt Tuning 100 100 0.0344 70.7 (-13.1%) 14.4 (-3.4%) 98.1 (+39.5%) 73.31.9

P-tuning 20 20 0.1028 64.9 (-20.3%) 12.3 (-17.4%) 76.6 (+9.0%) 75.22.1
SMoP (Ours) 20 5 0.0083 61.0 (-25.1%) 11.9 (-20.1%) 71.5 (+1.7%) 75.81.9

T5-
large

Full Fine-tuning - - 100 176.1 29.2 247.8 83.41.3
Prompt Tuning 100 100 0.0139 151.2 (-14.1%) 29.3 (+0.3%) 378.1 (+52.6%) 78.61.4

P-tuning 20 20 0.0407 131.9 (-25.1%) 23.6 (-19.2%) 291.6 (+17.7%) 81.31.8
SMoP (Ours) 20 5 0.0033 129.1 (-26.7%) 22.6 (-22.6%) 275.4 (+11.1%) 82.01.3

Table 1: Experimental results on six SuperGLUE tasks. Average training costs, inference costs, and performance for
baselines and SMoP are presented. The percentage value next to each cost value indicates relative changes in cost
values compared to full fine-tuning, and the subscript of the average score indicates the corresponding standard
deviation. The highest performance and lowest cost values among prompt tuning methods are bold highlighted.

2.2 SMoP: Sparse Mixture-of-Prompts

The goal of SMoP is to train multiple short soft
prompts, where each prompt is specialized in a
subset of the data. To achieve this, SMoP employs
a gating mechanism to direct the input instance to
one of the soft prompts based on its embedding
representations, as shown in Figure 2 (b).

In the gating mechanism, we introduce a small
linear router model Lµ parameterized by µ ∈ Re×k

which makes decisions regarding which of the soft
prompts the input should be routed to. Formally,
given k soft prompt embeddings Pθ1 , Pθ2 , ..., Pθk

which are parameterized by {θj}kj=1 where θj ∈
Rl×e, the router model takes the average of input
embeddings X̄ ∈ Re as its input and calculates
the routing probability p1, p2, ..., pk for each soft
prompt. Thus, the routing probability of the j-th
prompt is calculated as:

pj(X) = [softmax(Lµ(X̄))]j . (3)

The input is then routed to the soft prompt with
the highest probability, and the final soft prompt to
be utilized is obtained as the product of the routed
prompt and the probability value. Therefore, the
objective function of SMoP is defined as follows:

argmax
µ,θc

log p(Y | [ pc(X) · Pθc ;X]), (4)

where c is the index of the prompt with the highest
probability value. Note that in SMoP, while the
total prompt length is k · l, the utilized prompt
length remains as l.

2.3 Router Perturbation

Prior works on Mixture-of-Experts (Chen et al.,
2022b; Fedus et al., 2022) demonstrate that load

balance among experts during training plays an im-
portant role in performance. To ensure load balance
among soft prompts by encouraging exploration of
inputs over diverse prompts, we apply router per-
turbation during the training of SMoP. Specifically,
we add a scaled Gaussian noise δ ∼ N (0, 1) to the
output value of the router model during training.
Therefore, equation (3) is modified as follows:

pj(X) = [softmax(Lµ(X̄) ◦ (⃗1 + δ)]j . (5)

3 Experiments

3.1 Experimental Settings
Tasks To cover diverse NLP tasks in our experi-
ments, we evaluate SMoP and baseline methods on
six tasks1 from the SuperGLUE benchmark (Wang
et al., 2019). As the official test sets for Super-
GLUE benchmark are not publicly released, we
follow Chen et al. (2022a) to use the validation set
as the test set and split the original train set into
train and validation sets by 90%/10% proportion.

Models and Baselines Our experiments are built
on the public HuggingFace (Wolf et al., 2019) im-
plementation and pre-trained checkpoints of T5
(Raffel et al., 2020) in two scales: base and large.

To demonstrate the advantages that SMoP in-
troduces to prompt tuning, we compare SMoP to
prompt tuning (Lester et al., 2021), P-tuning (Liu
et al., 2021), and full fine-tuning.

Evaluation Setup For prompt tuning methods,
we experiment on {5, 20, 50, 100} soft prompt
tokens, and for SMoP, we sweep through {2, 4,
10, 20} prompts of length {1, 3, 5, 10}. We report
experimental results on the setting with the best
average performance over two or three runs, as

1BoolQ, CB, COPA, MultiRC, RTE, WiC
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Model
l

k 2 4 10 20

T5-base

1 72.92.1 74.01.5 73.51.3 73.91.2
3 74.22.3 74.02.4 74.82.4 74.21.7
5 75.02.0 75.81.9 75.31.8 74.71.7
10 75.11.7 74.81.7 75.21.4 74.12.0

Table 2: Average performance (%) on six tasks from the
SuperGLUE benchmark with diverse utilized prompt
lengths (l) and the number of prompts (k).

well as the corresponding standard deviations. We
report training time2 and memory usage as training
costs and inference FLOPs as inference costs.

3.2 Results
3.2.1 Main Results
Table 1 presents the performance of SMoP and
the baseline methods. Notably, SMoP achieves the
highest performance among the baseline prompt
tuning methods on SuperGLUE tasks with the least
training and inference costs. On T5-base, SMoP
demonstrates an average improvement of 2.5%p,
while on T5-large, the improvement reaches 3.4%p.
The detailed results of SuperGLUE tasks are shown
in Appendix D.

The fact that SMoP outperforms the baselines
with less training and inference costs highlights the
significance of utilizing short soft prompts during
training and inference. For example, SMoP saves
14.6% training time, 22.9% training memory, and
27.2% inference FLOPs in T5-large, compared to
prompt tuning with a soft prompt of length 100.
It is worth noting that full fine-tuning requires the
fewest of FLOPs for inference as no additional to-
kens are added to the input, while SMoP introduces
the least additional FLOPs.

3.2.2 Length and Number of Soft Prompts
To investigate the optimal length and number of
soft prompts to employ, we present the experimen-
tal results on SMoP with diverse utilized prompt
lengths and numbers of prompts in Table 2.

It is observed that increasing the total prompt
length over 50 provides marginal performance
gains. This finding is aligned with previous re-
search (Lester et al., 2021; Li and Liang, 2021;
Ma et al., 2022) that report increasing soft prompt
length above a certain threshold brings limited im-
provements to performance.

Furthermore, we notice that using 20 soft
prompts generally lead to a degradation in perfor-

2Measured with a single NVIDIA RTX A6000 GPU.

Model Method BoolQ CB RTE Average

T5-
base

SMoP (Ours) 79.40.3 94.61.8 77.53.2 83.82.1
w/o perturbation 79.70.2 93.52.7 76.01.5 83.11.8
Top-2 78.40.2 88.11.0 69.70.4 78.70.6
Gumbel-Softmax 79.20.4 92.32.0 75.24.3 82.22.7
Stochastic 78.20.3 86.92.1 69.21.7 78.11.6
Single 78.50.0 89.31.8 69.90.8 79.21.1

Table 3: Experimental results (%) on diverse routing
methods for SMoP.

mance. We conjecture that this may be due to the
limited labeled data for training in several Super-
GLUE tasks, leading to insufficient training of each
soft prompt (Wang et al., 2022).

Given these findings, we primarily report the re-
sults of SMoP utilizing 4 soft prompts, each with a
length of 5 tokens. Note that while SMoP generally
demonstrates improvements in prompt tuning, the
optimal length and number of soft prompts may
vary by specific tasks or datasets.

3.2.3 Routing Methods
To verify the impact of the routing method in the
gating mechanism of SMoP, we perform experi-
ments on diverse routing methods, including linear
router without router perturbation (w/o perturba-
tion), taking the weighted sum of two prompts with
the highest probability (Top-2), Gumbel-Softmax
routing where the output probability of the router is
calculated as 1 (Gumbel-Softmax), stochastic rout-
ing (Stochastic) which is an application of AdaMix
to prompt tuning (Zuo et al., 2022; Wang et al.,
2022), and no routing (Single) which is identical to
prompt tuning with a length 5 soft prompt.

Table 3 shows experimental results on three Su-
perGLUE tasks with diverse routing methods. The
top-1 linear router with router perturbation, which
is our original setting, generally outperforms all
other routing strategies. One exception is BoolQ
where removing the router perturbation exhibits a
slightly better performance. We speculate that in
high-resource settings like BoolQ, router perturba-
tion may not be mandatory for sufficient training
of each soft prompt.

4 Related Work

4.1 Prompt Tuning

Pre-trained language models (PLMs) have demon-
strated remarkable performance on a wide range
of tasks in Natural Language Processing (NLP)
(Devlin et al., 2019; Liu et al., 2019). However,
with the introduction of larger language models
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such as T5 (Raffel et al., 2020) and GPT-3 (Brown
et al., 2020), fine-tuning the entire parameters of
the PLM for each specific task has become notably
inefficient in terms of training and deployment.

To address such inefficiency, researchers have
proposed parameter-efficient fine-tuning methods
(Houlsby et al., 2019; Lester et al., 2021; Pfeiffer
et al., 2021; Hu et al., 2022), which involves fine-
tuning a relatively small portion of task-specific
parameters of the PLM while keeping the other
parameters frozen. Among these methods, prompt
tuning (Lester et al., 2021) is a simple and effective
approach that entails prepending learnable token
embeddings (i.e., soft prompts) to the model in-
put and solely fine-tuning these embeddings. The
simplicity and adaptability of prompt tuning have
led to several advancements aimed at improving its
efficiency and performance by modifying the struc-
ture of soft prompts (Liu et al., 2021; Li and Liang,
2021), using instance-specific prompts (Jiang et al.,
2022; Wu et al., 2022), or adjusting the training
process (Huang et al., 2022; Ma et al., 2022). More-
over, prompt tuning is known for its capability for
task knowledge transfer from source task prompts
to target task prompts (Vu et al., 2022; Asai et al.,
2022; Wang et al., 2023). These methods have im-
proved the overall performance of prompt tuning,
but they have overlooked the inefficiency of uti-
lizing lengthy soft prompts. SMoP is designed to
alleviate this efficiency concern and is orthogonal
to most of the existing prompt tuning methods.

4.2 Mixture-of-Experts

Mixture-of-Experts is a model structure in which
the output of the model is computed by multi-
ple sub-networks (i.e., experts) conditionally acti-
vated by a gating mechanism (Shazeer et al., 2017).
This enables increasing the number of model pa-
rameters without incurring a proportional increase
in computation. Typically, the gating mechanism
determines which experts process specific tokens
(Shazeer et al., 2017; Fedus et al., 2022), while
it can be extended to route sequences or batches
(Wang et al., 2022; Zuo et al., 2022; Pan et al.,
2023). In particular, Fedus et al. (2022) presents
Switch Transformer that employs the Sparsely-
Gated Mixture-of-Experts layer (Shazeer et al.,
2017), and Zuo et al. (2022) proposes THOR which
utilizes stochastic (i.e., random) routing.

Recently, Wang et al. (2022) has proposed
AdaMix, a parameter-efficient fine-tuning method

that integrates the concept of Mixture-of-Experts
to Adapter (Houlsby et al., 2019). It follows THOR
(Zuo et al., 2022) to employ stochastic routing and
merging of multiple adapter modules. Both SMoP
and AdaMix have taken inspiration from the con-
cept of the Mixture-of-Experts structure to improve
parameter-efficient fine-tuning. However, their pri-
mary motivations are distinct in that the motivation
of SMoP is to use multiple short soft prompts for
efficient prompt tuning, while the motivation of
AdaMix is to provide multiple views of the given
task for better performance. Therefore, SMoP em-
ploys a linear router for instance-wise prompt se-
lection resulting in multiple soft prompts each spe-
cialized in a subset of the task, whereas AdaMix
employs stochastic routing and merging, resulting
in a single adapter module per task.

5 Conclusion

We have presented SMoP (Sparse Mixture-of-
Prompts), a novel prompt tuning method that uti-
lizes short soft prompts for efficient training and
inference while maintaining performance gains as-
sociated with increased prompt length. To achieve
this, we have employed a gating mechanism in
SMoP that routes each instance to one of the mul-
tiple short soft prompts. Experimental results have
demonstrated that SMoP has outperformed prompt
tuning while reducing training and inference costs
through the utilization of short soft prompts.

Limitations

Given the same total prompt length, the gating
mechanism of SMoP introduces additional param-
eters compared to prompt tuning, inducing addi-
tional storage requirements. Comparing prompt
tuning with a soft prompt of length 20 (20,480
trainable parameters) and SMoP with 4 prompts of
length 5 (24,576 trainable parameters) on T5-base,
SMoP adds 20% trainable parameters and such
difference increases as more prompts are utilized.

We further note that SMoP is orthogonal to most
of the existing prompt tuning methods including
prompt transfer learning methods (Vu et al., 2022;
Asai et al., 2022; Wang et al., 2023) as mentioned in
Section 4. While our investigation has highlighted
the significance of incorporating short soft prompts
through sparse activation in conventional single-
task prompt tuning, we believe that SMoP holds
promise as a valuable direction for augmenting the
efficiency of prompt tuning methods in the future.
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Appendix

A Comparison to Adapter-based Methods

To further explore the advantages of SMoP in the
realm of parameter-efficient fine-tuning methods,
we compare SMoP and prompt tuning methods
to adapter-based parameter-efficient fine-tuning
methods, namely Adapter (Houlsby et al., 2019),
AdapterFusion (Pfeiffer et al., 2021), and LoRA
(Hu et al., 2022). We provide a brief description of
each method and present the experimental results
on six SuperGLUE tasks with the T5-base model.

Adapter-based methods add additional modules
to the internal structure of the model. Adapter
(Houlsby et al., 2019) adds bottleneck modules af-
ter the multi-head attention and feed-forward layer
of each Transformer layer, while AdapterFusion
(Pfeiffer et al., 2021) adds bottleneck modules only
after the feed-forward layer. LoRA (Hu et al., 2022)
adds a low-rank decomposition of each of the at-
tention matrices, which are directly added during
inference. We implement these methods upon the
adapter-transformers3 library.

Table 5 presents the experimental results of full
fine-tuning, adapter-based methods, and prompt
tuning methods on six SuperGLUE tasks with the
T5-base model. While adapter-based methods gen-
erally outperform prompt tuning methods under
their best configuration, SMoP is able to reach
comparable performance while only utilizing up
to 190× a smaller number of trainable parameters.
In particular, when the ratio of trainable parame-
ters narrows to a factor of 33×, SMoP outperforms
Adapter on 5 tasks out of 6. Similar results are
observed for AdapterFusion, where SMoP shows
inferior performance when the bottleneck dimen-
sion d is set to 48, but reverses the results when d
is reduced to 8.

Considering LoRA, SMoP shows slightly bet-
ter performance compared to both configurations.
One notable result is that using a lower rank in
LoRA does not yield a significant decrease in per-
formance. However, as shown in Table 4, the level
of parameter efficiency of SMoP is not attainable
with LoRA, as LoRA (r=1) still requires 6× more
trainable parameters compared to SMoP. These
observations highlight the parameter efficiency of
SMoP compared to adapter-based approaches.

In general, adapter-based lightweight methods
require additional parameters proportional to the

3https://github.com/adapter-hub/adapter-transformers

number of layers in the backbone model, as they
add an adapter module to the internal structure
of the original model. In contrast, prompt tuning
methods including SMoP introduce additional pa-
rameters exclusively to the inputs of the model,
enabling a parameter-efficient module where the
number of trainable parameters doesn’t increase
proportionally to model size (Asai et al., 2022).

Model Method Trainable
Params %

T5-base

SMoP (l=5, k=4) 0.0083 (1.0×)
LoRA (r=1) 0.0496 (6.0×)
LoRA (r=2) 0.0991 (12.0×)
LoRA (r=4) 0.1981 (24.0×)
LoRA (r=8) 0.3954 (47.8×)

Table 4: Comparison of trainable parameter ratio be-
tween SMoP and LoRA. The value in the parenthesis
for trainable params % denotes the relative difference,
with SMoP as the reference point.

B Text-to-Text Templates

We provide the text-to-text templates and verbaliz-
ers used in our experiments in Table 6.

C Hyperparameters

We train our model for {50, 100} epochs on CB,
COPA, RTE, WiC and for {10, 20} epochs on
BoolQ and MultiRC with batch size 32, learning
rate of {1e-4, 5e-5, 1e-5} for full fine-tuning and
adapter-based methods, and learning rate {0.5, 0.3,
0.1} for prompt tuning methods including SMoP.
We perform early stopping based on validation per-
formance, and terminate training if there is no im-
provement for 10 epochs. We train the model with
Adafactor optimizer (Shazeer and Stern, 2018),
where the weight decay is 1e-5, and linear learning
rate decay of warmup ratio 0.06 is applied.

D Detailed Experimental Results

We provide task-wise results of experiments pre-
sented in the paper. Since we experiment with our
own train/validation/test split, the results may vary
with previous works such as Lester et al. (2021).

D.1 Performance
Table 7 and 8 present the experimental results on
six SuperGLUE tasks on T5-base and T5-large.

D.2 Training Costs
Table 9 presents the memory used during training
(GB), and Table 10 presents the training time (s/100
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Model Method
Trainable
Params

%

BoolQ CB COPA MultiRC RTE WiC Average
Score (%)

%Acc %Acc %Acc %F1a %Acc %Acc

T5-
base

Full Fine-tuning 100 81.90.1 96.41.8 64.31.5 80.20.2 79.20.2 67.02.3 78.21.3
Adapter (d=48) 1.5800 81.10.1 94.61.8 62.70.6 80.20.2 76.61.6 66.21.6 76.91.2
Adapter (d=8) 0.2806 79.60.6 89.91.0 59.01.0 80.10.2 75.21.5 65.30.8 74.80.9

AdapterFusion (d=48) 0.7963 79.20.4 94.61.8 63.72.5 80.20.2 79.20.9 66.80.3 77.31.3
AdapterFusion (d=8) 0.1405 79.60.6 92.33.7 58.30.6 79.90.5 78.02.9 64.90.5 75.52.0

LoRA (r=8) 0.3954 79.00.0 90.51.0 60.00.6 80.00.0 77.92.9 66.90.8 75.71.3
LoRA (r=2) 0.0991 79.10.0 91.10.0 59.31.2 80.20.0 77.42.7 66.50.3 75.61.2

Prompt Tuning (l=100) 0.0344 79.10.1 86.93.7 56.72.1 78.30.2 73.21.7 65.61.2 73.31.9
P-Tuning (l=20) 0.1028 78.70.2 91.72.7 58.33.8 79.30.2 77.31.8 65.90.7 75.22.1
SMoP (l=5, k=4) 0.0083 79.40.3 94.61.8 58.32.9 79.60.1 77.53.2 65.20.5 75.81.9

Table 5: Experimental results of diverse parameter-efficient fine-tuning methods on six SuperGLUE tasks with
T5-base model. The methods include full fine-tuning, adapter-based methods, prompt tuning methods, and our
proposed SMoP. d for Adapter and AdapterFusion indicates the bottleneck dimension and r for LoRA indicates the
rank of the matrices. The best performance among adapter-based methods and prompt tuning methods for each task
are bold highlighted.

Dataset Text-to-text Template Verbalizer
BoolQ boolq passage: **passage** question: **question** False, True

CB cb hypothesis: **hypothesis**. premise: **premise** entailment, contradiction, neutral
COPA copa choice1: **choice1** choice2: **choice2** premise: **premise** question: **question** choice1, choice2

MultiRC multirc question: **question** answer: **answer**. paragraph: **paragraph** False, True
RTE rte sentence1: **premise** sentence2: **hypothesis** entailment, not_entailment
WiC wic sentence1: **sentence1** sentence2: **sentence2** word: **word** False, True

Table 6: Text-to-text templates and verbalizers used in our experiments.

Model Method
Total

Prompt
Length

Utilized
Prompt
Length

BoolQ CB COPA MultiRC RTE WiC Average
Score (%)

%Acc %Acc %Acc %F1a %Acc %Acc

T5-
base

Full Fine-tuning - - 81.90.1 96.41.8 64.31.5 80.20.2 79.20.2 67.02.3 78.21.3

Prompt Tuning

5 5 78.50.0 89.31.8 54.03.6 79.10.1 69.90.8 64.40.0 72.51.7
20 20 78.60.0 86.92.1 55.03.5 79.20.2 70.61.8 64.30.2 72.41.8
50 50 79.30.1 87.51.8 56.04.0 78.30.0 70.80.5 65.10.2 72.81.8

100 100 79.10.1 86.93.7 56.72.1 78.30.2 73.21.7 65.61.2 73.31.9

P-tuning

5 5 79.00.1 89.93.7 59.01.0 79.20.1 73.81.4 65.41.3 74.41.8
20 20 78.70.2 91.72.7 58.33.8 79.30.2 77.31.8 65.90.7 75.22.1
50 50 78.80.2 90.51.0 59.01.0 79.20.0 75.11.6 65.20.5 74.60.9

100 100 79.00.1 89.91.0 59.02.0 79.20.0 73.83.5 65.40.7 74.41.7

SMoP

2 1 79.30.3 90.70.7 52.74.2 78.80.3 71.52.5 64.71.1 72.92.1
4 1 79.00.1 91.11.8 57.33.2 79.40.1 72.40.8 65.00.4 74.01.5
10 1 78.60.0 92.90.0 54.71.2 78.90.1 71.53.0 64.30.5 73.51.3
20 1 78.60.1 90.51.0 57.72.1 79.30.2 72.61.5 64.90.8 73.91.2
6 3 78.80.1 92.91.8 54.05.0 79.10.1 75.71.8 64.71.1 74.22.3
12 3 79.00.2 92.91.8 53.35.5 79.20.1 74.60.2 64.91.3 74.02.4
30 3 78.80.1 94.04.5 56.03.6 79.20.3 75.50.5 65.60.2 74.82.4
60 3 78.70.0 91.71.0 56.03.6 79.20.1 74.71.6 64.70.1 74.21.7
10 5 78.50.0 92.90.0 58.04.6 79.40.0 76.41.3 64.90.8 75.02.0
20 5 79.40.3 94.61.8 58.32.9 79.60.1 77.53.2 65.20.5 75.81.9
50 5 79.30.1 92.31.0 58.74.2 79.30.0 77.10.3 65.20.4 75.31.8

100 5 79.00.3 93.42.0 55.33.1 79.30.2 76.92.0 64.30.2 74.71.7
20 10 78.70.1 93.51.0 59.33.5 79.20.3 76.01.8 64.20.1 75.11.7
40 10 78.60.1 92.33.7 56.01.7 78.90.1 76.90.0 66.40.8 74.81.7

100 10 78.50.1 95.81.0 57.72.5 79.20.1 75.11.0 64.81.7 75.21.4
200 10 79.00.4 91.11.8 56.03.5 79.40.1 74.22.8 64.90.7 74.12.0

Table 7: Experimental results on baseline methods and SMoP on six SuperGLUE tasks with T5-base. Subscripts of
each score represent the corresponding standard deviation over multiple runs.
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Model Method
Total

Prompt
Length

Utilized
Prompt
Length

BoolQ CB COPA MultiRC RTE WiC Average
Score (%)

%Acc %Acc %Acc %F1a %Acc %Acc

T5-large

Full Fine-tuning - - 85.80.1 96.40.0 76.02.6 84.50.1 87.60.4 70.31.6 83.41.3

Prompt Tuning

5 5 83.30.0 89.32.5 57.53.5 83.80.0 86.30.5 68.20.2 78.11.8
20 20 83.10.1 90.21.3 57.56.4 83.80.0 86.60.0 68.50.4 78.32.7
50 50 83.10.1 91.10.0 58.50.7 83.00.1 85.90.0 68.00.4 78.20.3

100 100 83.10.2 90.51.0 62.03.0 82.60.2 87.01.0 66.21.0 78.61.4

P-Tuning

5 5 83.20.2 92.03.7 69.02.8 83.90.1 86.60.0 67.91.1 80.42.0
20 20 83.40.4 91.72.7 71.73.2 84.20.1 87.61.0 69.20.9 81.31.8
50 50 83.50.1 92.01.3 71.04.2 83.70.0 87.01.0 67.20.8 80.71.9

100 100 83.10.1 93.83.7 67.01.4 82.20.0 87.40.5 65.70.0 79.91.6

SMoP

10 5 83.00.1 97.31.3 69.50.7 83.90.0 86.60.0 66.00.4 81.10.6
20 5 83.50.1 96.40.0 71.73.1 83.90.2 87.70.0 68.60.7 82.01.3
50 5 83.10.1 94.72.5 69.04.2 83.90.1 86.62.5 68.20.2 80.92.3

100 5 83.60.3 92.01.3 67.56.4 83.90.1 88.80.6 69.70.6 80.92.7

Table 8: Experimental results on baseline methods and SMoP on six SuperGLUE tasks with T5-large. Subscripts of
each score represent the standard deviation over multiple runs.

steps) for each SuperGLUE task. For BoolQ and
MultiRC in T5-large, we report the results for step
batch size of 16 with gradient accumulation, as
using batch size 32 exceeds the memory capacity
of a single NVIDIA RTX A6000 GPU.

D.3 Inference Costs
Table 11 presents the inference FLOPs
(GFLOPs/sample) for each SuperGLUE task.
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Model Method
Total

Prompt
Length

Utilized
Prompt
Length

BoolQ CB COPA MultiRC RTE WiC Average

T5-base

Full - - 27.0 14.3 3.1 27.0 13.9 4.1 14.9
Prompt Tuning 100 100 21.8 16.0 5.0 21.8 15.6 6.2 14.4

P-Tuning 20 20 21.8 12.0 2.7 21.8 11.7 3.5 12.3
SMoP 5 5 21.8 11.3 2.3 21.8 11.0 3.1 11.9

T5-large

Full - - 39.7 38.3 8.6 40.1 37.2 11.3 29.2
Prompt Tuning 100 100 30.5 42.9 13.7 30.6 41.8 16.6 29.3

P-Tuning 20 20 30.1 32.3 7.5 30.5 31.3 9.8 23.6
SMoP 5 5 30.0 30.5 6.4 30.5 29.5 8.6 22.6

Table 9: Peak memory (GB) during training on SuperGLUE tasks.

Model Method
Total

Prompt
Length

Utilized
Prompt
Length

BoolQ CB COPA MultiRC RTE WiC Average

T5-base

Full - - 105.8 92.6 45.8 131.6 76.5 36.0 81.4
Prompt Tuning 100 100 93.1 90.3 37.2 103.7 71.4 28.4 70.7

P-Tuning 20 20 84.8 85.9 30.5 108.2 59.0 21.1 64.9
SMoP 5 5 82.5 74.1 30.8 104.6 54.2 19.8 61.0

T5-large

Full - - 228.4 183.1 82.8 338.9 152.0 71.3 176.1
Prompt Tuning 100 100 204.3 169.1 74.9 253.0 137.6 68.3 151.2

P-Tuning 20 20 171.2 134.9 51.5 275.9 114.0 43.7 131.9
SMoP 5 5 164.7 134.0 47.4 281.0 107.4 39.9 129.1

Table 10: Training time (s/100 steps) on SuperGLUE tasks.

Model Method
Total

Prompt
Length

Utilized
Prompt
Length

BoolQ CB COPA MultiRC RTE WiC Average

T5-base

Full - - 119.4 86.7 13.8 105.7 78.3 17.6 70.3
Prompt Tuning 100 100 136.9 120.2 40.1 130.7 114.3 46.7 98.1

P-Tuning 20 20 124.3 93.4 19.0 114.1 85.5 23.4 76.6
SMoP 5 5 119.2 88.4 15.1 107.3 80.1 19.0 71.5

T5-large

Full - - 402.5 334.9 48.4 365.1 274.5 61.4 247.8
Prompt Tuning 100 100 507.3 633.5 141.0 421.7 400.7 164.2 378.1

P-Tuning 20 20 417.6 499.2 66.8 384.5 299.6 81.8 291.6
SMoP 5 5 406.3 474.1 53.0 371.7 280.8 66.5 275.4

Table 11: Inference FLOPs (GFLOPs/sample) on SuperGLUE tasks.
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