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Abstract

The success of language models has inspired
the NLP community to attend to tasks that
require implicit and complex reasoning, rely-
ing on human-like commonsense mechanisms.
While such vertical thinking tasks have been
relatively popular, lateral thinking puzzles have
received little attention. To bridge this gap,
we devise BRAINTEASER: a multiple-choice
Question Answering task designed to test the
model’s ability to exhibit lateral thinking and
defy default commonsense associations. We
design a three-step procedure for creating the
first lateral thinking benchmark, consisting of
data collection, distractor generation, and gen-
eration of reconstruction examples, leading to
1,100 puzzles with high-quality annotations. To
assess the consistency of lateral reasoning by
models, we enrich BRAINTEASER based on
a semantic and contextual reconstruction of
its questions. Our experiments with state-of-
the-art instruction- and commonsense language
models reveal a significant gap between hu-
man and model performance, which is further
widened when consistency across reconstruc-
tion formats is considered. We make all of our
code and data available to stimulate work on de-
veloping and evaluating lateral thinking models.

1 Introduction

Human reasoning processes comprise two types of
thinking: vertical and lateral (Waks, 1997). Vertical
thinking, also known as linear, convergent, or logi-
cal thinking, is a sequential analytical process that
is based on rationality, logic, and rules, typically
associated with the left-brain hemisphere. Vertical
thinking, as illustrated in Figure 1 (top), is needed
to create a reasoning path from flooding a room
to filling it with water for physical reasoning, and
from inanimate objects with five fingers to gloves in
riddles. Meanwhile, lateral thinking (or “thinking

* Work done when KM was at Carnegie Mellon University

How do you flood a room?

(A) Fill it with objects. (B) Fill it with water.

PIQA

cover with water

Lateral Thinking
Sentence Puzzle
A man shaves everyday, yet keeps his beard long.

his beard gets clean everyday

he is a barber and he shaves others
Word Puzzle
What type of cheese is made backwards?

Mozzarella
Feta Edam

RiddleSense
I have five fingers, but I am not alive. What am I?

(A) Glove. (B) Computer.
item like a hand

Vertical Thinking

five separate parts

Figure 1: Contrasting existing Vertical Thinking tasks
(PIQA (Bisk et al., 2020) and RiddleSense (Lin et al.,
2021)) to our novel lateral thinking task called BRAIN-
TEASER. While prior tasks require commonsense to
be injected, BRAINTEASER’s lateral thinking puzzles
require default commonsense thinking to be deprecated.

outside the box”) is a divergent and creative pro-
cess that involves looking at a problem from a new
perspective and defying preconceptions, associated
with the right-brain hemisphere (De Bono, 1970;
Waks, 1997). Lateral thinking is required to solve
the puzzle in Figure 1 (bottom), by overwriting
the commonsense associations of man shaves to he
shaves himself, and regarding the man as somebody
who shaves others all day (e.g., a barber).

The development of natural language processing
(NLP) models and their evaluation has achieved
much progress in vertical thinking. In particular,
large language models (LLMs) (Devlin et al., 2019;
Liu et al., 2019; Brown et al., 2020b) have achieved
strong performance across a variety of complex rea-
soning tasks (Talmor et al., 2019; Bisk et al., 2020;
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Sap et al., 2019b), even with the complete absence
(zero-shot) (Sanh et al., 2022) or limited provision
(few-shot) of training time exemplars (Chung et al.,
2022).1 To perform well on tasks such as reason-
ing over physical interactions (Bisk et al., 2020)
and social implications (Sap et al., 2019b), LLMs
exhibit better vertical thinking capabilities, includ-
ing commonsense association (Wei et al., 2022)
and inference ability (Bosselut et al., 2019). While
the extent to which these models possess common
sense is heavily discussed (Marcus, 2022; Bubeck
et al., 2023; Wei et al., 2023), we note that prior
work has not considered the lateral thinking ability
of LLMs. Creative thinking problems in bench-
marks and knowledge bases are often filtered out
as noise during preprocessing (Vajjala and Meur-
ers, 2012; Speer et al., 2017; Sap et al., 2019a), and
only kept if their resolution can be supported by
commonsense associations, as in the case of riddles
(Figure 1) (Lin et al., 2021; Gao et al., 2018). As
many situations are novel, we expect that lateral
thinking puzzles like those in Figure 1-bottom will
be hindered by default commonsense associations
and cannot be easily solved by further adaptation
and scaling of the existing LLM methods.

To bridge this gap, we propose to study the abil-
ity of state-of-the-art LLMs to reason on lateral
thinking puzzles. We formulate lateral thinking puz-
zles as multiple-choice Question Answering (QA)
tasks, making them intuitive to answer by humans
and easy to evaluate automatically. Following our
task definition, we create a novel BRAINTEASER

benchmark with two tasks of different granularity:
Sentence Puzzles and Word Puzzles (cf. Figure 1).
To construct the dataset, we design a data collec-
tion procedure, which crawls relevant puzzles from
several publicly available websites, performs semi-
automatic filtering of irrelevant question categories
(e.g., pun, dad jokes), and ensures high data quality.
To ensure fair and informative questions, we con-
struct distractors semi-automatically by manual an-
notation of the explicit and implicit (commonsense)
premises that arise from each puzzle. To address
concerns of possible LLM memorization (Carlini
et al., 2022) and their lack of consistency (Gold-
berg, 2023), we enrich BRAINTEASER with two
reconstruction strategies: semantic reconstruction
and context reconstruction, which create variants
of each puzzle without changing its original way of

1In this paper, we use the terms language model and large
language model interchangeably.

defying default commonsense associations. This
systematic procedure results in a novel BRAIN-
TEASER benchmark with 1.1K high-quality data
points and nearly 100% human evaluation results.
Using BRAINTEASER as the benchmark, we con-
duct comprehensive experiments involving differ-
ent model structures, model sizes, and prompting
strategies. The results reveal a huge gap between
human performance and current LLMs, indicating
the great need to improve lateral thinking in LLMs.

We summarize our contributions as follows: 1)
We introduce lateral thinking puzzles, a multiple-
choice QA task designed to test the model’s ability
to exhibit lateral thinking and defy default com-
monsense associations. 2) We design a three-step
procedure for creating the first lateral thinking
benchmark, BRAINTEASER, consisting of data
collection, distractor generation, and generation
of reconstruction examples, leading to 1,100 high-
quality puzzles. 3) We conduct comprehensive
experiments with state-of-the-art LLMs. We make
all of our code and data available to stimulate work
on developing and evaluating lateral thinking mod-
els.2

2 Related work

We review prior work on computational creativity,
commonsense reasoning, and model robustness.

Computational Creativity Computational cre-
ativity work includes a broader set of tasks, some
of which have been relatively popular, including
pun (Zou and Lu, 2019) and humor (Meaney et al.,
2021) detection. A particular class of creative chal-
lenges, called brain teasers (Draper, 2009; High-
house et al., 2019), is designed to evaluate a wide
range of human intelligence skills, including strat-
egy development, planning, visual-spatial thinking,
creativity, and memory (Altun et al., 2016). Most
similar to our task, Lin et al. (2021) collects riddles
from public websites to challenge current models.
While in principle computational creativity puz-
zles and brain teasers combine vertical and lateral
thinking, prior work has focused on the former cate-
gory. Our BRAINTEASER task complements these
works with word- and sentence-level lateral think-
ing puzzles. BRAINTEASER can serve as a formal
platform to evaluate the creative skills of LLMs,
which have been partially explored in recent work

2The code is available at https://github.com/1171-
jpg/BrainTeaser
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(Franceschelli and Musolesi, 2023; Bubeck et al.,
2023; Wang et al., 2023a).

Commonsense Reasoning The task of common-
sense reasoning has been popular in recent years
(Rajani et al., 2019; Ma et al., 2019; Lourie et al.,
2021; Maharana and Bansal, 2022), accompanied
by the introduction of numerous challenging bench-
marks (Talmor et al., 2019; Sap et al., 2019b;
Sakaguchi et al., 2019) and availability of large-
scale commonsense resources (Speer et al., 2017;
Hwang et al., 2021). While each of the existing
datasets focuses on different dimensions of com-
monsense knowledge (Ilievski et al., 2021a), most
of them are constructed in the multiple-choice for-
mat, due to the ease of evaluation. Some prior
works have focused on generative commonsense
reasoning (Lin et al., 2020; Boratko et al., 2020).
However, due to the vast plausible answer space,
the evaluation has been challenging and a large
amount of answer annotations have to be collected
in order to ensure fairness (Boratko et al., 2020).
Curiously, while possession of common sense has
been a central goal of AI, its role in our BRAIN-
TEASER task is as a distractor. Namely, successful
solutions of the lateral thinking puzzles in BRAIN-
TEASER require the models to defy commonsense
associations and linear inference chains.

Robustness Studies As a novel benchmark,
BRAINTEASER relates to other works that evaluate
the performance of LLMs. Since these models are
surpassing human performance on some existing
benchmarks (Xu et al., 2022), the NLP community
has shifted the focus towards robustness evalua-
tion, i.e., whether the model can retain a similar
performance to semantically perturbed or adver-
sarially constructed questions (Abdou et al., 2020;
Nie et al., 2020). Some recent works have adopted
model adversarial approaches to generate datasets
that are challenging for models to solve (Zellers
et al., 2019; Sakaguchi et al., 2019), while oth-
ers combine multiple tasks to evaluate the model’s
behavioral consistency across semantic, logical,
and factual categories (Jang et al., 2022). Be-
sides dataset construction, analysis studies have
also shown that models easily learn shortcuts to
solve the datasets (Branco et al., 2021; Elazar et al.,
2021) and their performance heavily depends on
the overlap of tokens between training and test data
(Ma et al., 2021b). Different from prior works
where associative resources are used to finetune

the model to improve robustness, we expect that
the lateral thinking puzzles in BRAINTEASER re-
quire unique associations and creative reasoning
paths. In this way, BRAINTEASER is designed to
minimize the impact of confounding factors like
memorization in LLMs (Bang et al., 2023; Guo
et al., 2023; Goldberg, 2023).

3 Construction of BRAINTEASER

In this section, we first provide a definition of lat-
eral thinking puzzles in various granularities. We
then present a three-stage pipeline for constructing
the multiple-choice puzzles in the BRAINTEASER

dataset, consisting of data collection, distractor
sampling, and reconstruction sample generation.
Finally, we present key data statistics and quality
validation results.

3.1 Task Definition
While lateral thinking puzzles are often presented
to humans in an open-ended fashion, these are dif-
ficult to evaluate automatically and are difficult to
solve by humans.3 An additional complication is
that there may be multiple independent, yet correct,
puzzle explanations. To alleviate these challenges,
we pose lateral thinking puzzles as a multiple-
choice QA task, a format frequently employed for
reasoning tasks. We expect this approach to be both
facile for human comprehension and amenable to
automated evaluation. In general, each puzzle con-
tains a question Q stating the context, and a lateral
explanation e from explanation space E that serves
as the correct answer. Q can be decomposed into
an atomic premise set P , which includes both ex-
plicitly stated clauses and implicit clauses derived
through default commonsense inferences or associ-
ations. For example, in the following puzzle: "How
could a cowboy ride into town on Friday, stay two
days, and ride out on Wednesday?", the set P in-
cludes the following premises:

• p1: Cowboy rides into town on Friday.

• p2: Cowboy stays in town for two days.

• p3: Cowboy rides out on Wednesday.

• p4: Wednesday is the third day of the week.

• p5: Sunday is two days after Friday.
3Our small-scale user study shows that both humans and

LLMs are unable to perform this open-ended task well, scor-
ing 2.64 and 2.62 on a 5-point scale, respectively (see Ap-
pendix A.5 for details).
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The premises p1, p2, and p3 are explicitly provided
by the context, and the premises p4 and p5 are
implicitly obtained by default commonsense asso-
ciation. The goal of a puzzle is to find an expla-
nation that does not contradict the premise set P ,
E ∩ ¬P = ∅, as the premises are the target to
explain and support. With vertical thinking, the
question appears impossible to answer because P
contains statements that conflict with each other.
The premises p3 and p4 are inconsistent with other
premises, leading to an obstacle in explaining the
puzzle. The default commonsense inference thus
becomes a logic stumper (Bar-Hillel et al., 2018),
preventing one from creatively exploring additional
explanations in E.

Lateral thinking leads to a correct solution to this
puzzle: “His horse is named Wednesday.”. This
creative solution defies the commonsense associa-
tion of Wednesday as a third day of the week (p4).
Thus, the key point of a lateral thinking puzzle is
that some implicit premises generated through de-
fault commonsense association incorrectly create
an arbitrary “box” that wrongly excludes the possi-
ble solution from the explanation space (Bar-Hillel
et al., 2018).

Upon careful exploration, we devise two granu-
larity variants of lateral thinking puzzles following
our definition (Figure 1): sentence-based, where
the puzzle is centered on sentence premises (e.g.,
Wednesday is the third day of the week), and word-
based, where the answer violates the default mean-
ing of the word and focuses on the letter composi-
tion of the target question (e.g., cheese made back-
wards → edam).

3.2 Data Collection

We collect over ten thousand lateral thinking puz-
zles with answers from public websites such as
riddles.com and rd.com using web crawlers. We
merge the data from different sources and re-
move (near-)duplicates based on sentence similar-
ity (Reimers and Gurevych, 2019). We conduct a
semi-automatic process that corrects typos by us-
ing an automatic library, Auto Correct,4 followed
by human verification to ensure that the puzzles
preserve their original meaning. We filter the re-
maining data manually to preserve QA pairs that fit
the definition of the sentence- or word-based lateral
thinking puzzles. This process yields 373 unique
lateral puzzles, formatted as QA pairs.

4github.com/phatpiglet/autocorrect

Table 1: Example of generated distractors.

Premise Answer/Distractor
pw: Wednesday is the Answer: His horse is
third day of the week. named Wednesday.
p2: Cowboy stays in Distractor: While in town,
in town for two days. he stays in bed for two days.
p5: Sunday is two days Distractor: Friday and
past Friday. Saturday are holidays.

3.3 Distractor Sampling

We convert each puzzle and its explanation into
a multiple-choice QA format to ensure a straight-
forward evaluation process. A key challenge in
creating fair and informative multiple-choice ques-
tions is sampling distractors that are simultaneously
incorrect and challenging (Ma et al., 2021a). We
propose a systematic approach for distractor sam-
pling that directly benefits from our premise-based
definition of lateral thinking puzzles.

For sentence puzzles, we list possible premises
P = {p1, p2, p3, . . .} from the question context
manually as the commonsense associations in the
data are obvious and straightforward, especially
when the answers are provided, like the example in
Section 3.1. We know the correct answer p′c is an
unconventional overwriting of the wrong premise
(logic stumper) pw generated by default common-
sense association. We generate the distractors by
overwriting other premises in P − pw. This pro-
cedure guarantees that the distractors are incorrect
because the misleading premise pw still remains in
the premise set and prevents one from reaching the
correct explanation. We first use COMET (Hwang
et al., 2021) to generate the possible premise over-
writing candidates for the question as a head com-
bined with inference relations (e.g., happens after,
hindered by, cause). Then we pick the COMET-
generated tails that are consistent with the question
context as distractors and revise them by manual
annotation. Table 1 shows example distractors for
our running example puzzle from Section 3.1.

For word puzzles, as we focus on the literal mean-
ing rather than semantic meaning, distractors can
share similar semantic meaning as the correct an-
swers and still exhibit similar commonsense as-
sociations. We pick distractors from the correct
answer’s synonyms in WordNet (e.g., mozzarella
for edam in Figure 1) and Wikipedia entries that
belong to the same category (e.g., both edam and
cheddar belong to the semi-hard cheese category).

Since it is generally possible that none of the cre-
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Table 2: A sentence-based lateral thinking puzzle and its reconstruction variations. We present an analogous
word-level puzzle in the Appendix A.3.

Adv Strategy Question Answers

-

His horse is named Wednesday.
How could a cowboy ride into town on Friday, stay While in town, he stays in bed for two days.
two days, and ride out on Wednesday? Friday and Saturday are holidays.

None of the above.
His horse is named Wednesday.

Semantic Re- How could a cowboy come into town on Friday, While in town, he stays in bed for two days.
construction stay two days, and then ride away on Wednesday? Friday and Saturday are holidays.

None of the above.
The pilot’s airplane is named Tuesday.

Context Re- How can a pilot take off in Los Angeles on Tuesday, He flies straight for 24h and flies quickly for hours left.
construction fly for 48 hours, and land in Tokyo on Tuesday? There was a one-week long holiday.

None of the above.

ative solutions will be sensible for some of the ques-
tions, we also include the option None of the above
in all questions’ candidates set. This answer candi-
date simulates the situation where humans cannot
overwrite their commonsense inference and give
up on explaining the lateral thinking puzzle. To cre-
ate puzzles where lateral thinking fails (i.e., with
answer None of the above), we replace the correct
answer with a distractor in 6% of the questions. Af-
ter this procedure, each question in BRAINTEASER

has four answer candidates.

3.4 Generating Reconstruction Examples

Since the latest LLMs are pretrained on massive
web snapshots, it is possible that the data sources
for BRAINTEASER are also included in their train-
ing data. Consequently, it is possible for LLMs to
memorize the correct answer without performing
any reasoning. To ensure that our task evaluates
lateral thinking ability rather than memorization,
we construct reconstruction versions of the original
data in two parallel ways (Table 2): (1) Seman-
tic Reconstruction rephrases the original question
without changing its answer, distractor, and any
premises in P . To do so, we use an open-source
rephrasing tool,5 after which human annotators re-
fine and validate that all premises remain the same.
(2) Context Reconstruction keeps the misleading
commonsense premise intact and changes both the
question and the answer to a new situational con-
text. For this purpose, we prompt GPT-4 for initial
reconstructions, which are then manually refined
by human annotators. The new distractors are gen-
erated following the same process as in Section 3.3.
The premise set and the corresponding distractors
also get translated to the new context. Intuitively, a

5https://quillbot.com/

Table 3: Key statistics of the BRAINTEASER dataset.
Choices combine the correct answer with all the distrac-
tors. Standard deviation is computed without the None
of the above choice, as its token length is fixed and not
related to the question context.

Sentence Word
# Puzzles 627 492
Average Question Tokens 34.88 10.65
% Long Question (>30 tokens) 48.32% 2.23%
Average Answer Tokens 9.11 3.0
Std of Choice Tokens 2.36 0.52

model that learns to reason should be able to solve
these two reconstruction variants of the questions
easily, whereas the model that memorizes the an-
swer would stumble.

3.5 Data Analysis and Validation

Key Statistics BRAINTEASER includes 1,119
data samples including its reconstruction variants.
Table 3 reports key statistics of each subtask of
BRAINTEASER. The questions in the Sentence
Puzzle category are much longer because they are
in a narrative story format rather than simple short
questions, like those in the Word Puzzle category.
The difference between the standard deviation in
the number of choice tokens between Sentence Puz-
zle and Word Puzzle can be ascribed to the different
strategies for generating distractors, i.e., overwrit-
ing various premises with new statements versus
generating similar words from the synonym set.

We use ChatGPT prompting to extract the con-
text topic from each question and to analyze the
major topics in each subtask. The topic distribution
shows that both subtasks involve a large range of
(more than 80) areas. Sentence Puzzle is denom-
inated by math, physics, and nature while Word
Puzzle is denominated particularly by the language
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topic. For both tasks, there is a long tail of less
common topics. The details of topic extraction and
its obtained statistics are given in the Appendix A.1.
The data statistics and the topic analysis suggest
that, despite its limited size, BRAINTEASER can
function as a comprehensive benchmark for assess-
ing model performance across diverse topics and
varying lengths of context.

Human Validation To ensure the quality of our
dataset, we invited three expert annotators to ver-
ify the validity of the QA pairs and their recon-
struction variants. We sampled 102 examples from
BRAINTEASER randomly and asked the annotators
the following two questions: 1) Does the original
puzzle and correct answer make sense? 2) Are the
reconstruction variants still consistent with the orig-
inal questions in terms of the required reasoning
process? On average, the human annotators rated
99% of the original question-answering pairs as
valid. 100% of the semantic reconstructions and
97% context reconstructions were marked as con-
sistent with the original question-answer pair. The
overall Fleiss (1971) kappa inter-annotator agree-
ment is 0.948, which is an almost perfect score.

4 Experimental Setup

We describe the models selected for our experi-
ments and the metrics used to evaluate the reason-
ing accuracy and consistency of these models.

4.1 Model selection
Instruction-Based Models We evaluate the
instruction-finetuned LLMs in zero/few-shot set-
ting: 1) ChatGPT, a publicly available state-of-
the-art LLM from the GPT (Brown et al., 2020a)
series. 2) T0 (Sanh et al., 2022), a LLM trained
with multitasking instruction tuning that has strong
zero-shot generalization ability. 3) FlanT5 (Chung
et al., 2022), an enhanced version of T5 (Raffel
et al., 2020) which is instruction-finetuned (Wei
et al., 2021) in both zero-shot and few-shot setting.
For a fair comparison with humans, while running
zero-shot prompting on ChatGPT, we add a descrip-
tion indicating that the question is a brain teaser
puzzle that needs creative thinking to solve. For
the rest of the models, we use the same instruction
templates as found in their training sets (for full
details, please refer to Appendix A.2).
Commonsense Models To understand the effect
of commonsense knowledge on our task, we eval-
uate the following models that are enhanced with

common sense: 1) RoBERTa-L (CSKG) (Ma et al.,
2021a), a model finetuned on the synthetic QA
pairs generated from a diverse set of commonsense
knowledge graphs (CSKG) (Ilievski et al., 2021b).
2) CAR (Wang et al., 2023b), a model finetuned in
a similar pipeline as Ma et al. (2021a) but with en-
hanced negative sampling strategy and reportedly
superior performance. For reference, we also in-
clude the vanilla RoBERTa model (Liu et al., 2019)
to understand the impact of commonsense knowl-
edge. We evaluate all of the models in a zero-shot
fashion, following the scoring method defined in
(Ma et al., 2021a). We select RoBERTa because of
its widespread usage of the commonsense task and
impressive zero-shot performance. RoBERTa-L
(CSKG) achieve SOTA zero-shot result on multiple
commonsense tasks, while CAR even outperforms
ChatGPT on commonsense tasks.
Human Evaluation To assess the upper bound per-
formance on BRAINTEASER, we randomly sample
102 questions from it and invite three experts an-
notator to solve the test. On average, it takes one
hour for an annotator to complete the task.

4.2 Evaluation Metrics
As accuracy is a fair evaluation metric for the
MCQA format and it has been adopted by many
popular commonsense reasoning tasks (Mihaylov
et al., 2018; Talmor et al., 2019; Bisk et al., 2020),
we evaluate model performance using two accuracy
metrics: Instance-based Accuracy considers each
(original or reconstruction) question separately. We
report instance-based accuracy on the original puz-
zles, and their semantic and context reconstructions.
Group-based Accuracy considers each original
puzzle and its variants as a group. The model will
score 1 only when it successfully solves all three
puzzles in the group, otherwise, its score is 0.

5 Results

Our experiments target five questions: 1) Can
LLMs reason on lateral thinking puzzles similar to
humans? 2) How do LLMs perform on reconstruc-
tion variants? 3) Are model predictions consistent
across partitions? 4) Does tuning on commonsense
knowledge help to answer BRAINTEASER puzzles
better? 5) Can LLMs do better in the few-shot
setting with more demonstrations?

Overall Performance The main results are
shown in Table 4. For both word and sentence
BRAINTEASER puzzles, the performance of the
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Table 4: Main zero-shot results over two BRAINTEASER subtasks across all models in all metrics: Ori = Original,
Sem = Semantic, Con = Context. The best performance among all models is in bold, and the best performance in
commonsense augmented models is underlined. The human evaluation (*) is computed over 102 randomly sampled
data. The random base is average over three different seeds.

Instance-based Group-based OverallCategory Model Original Semantic Context Ori & Sem Ori & Sem & Con
Sentence Puzzle

Random - 25.52 24.88 22.81 5.58 1.44 24.40

Instruction

FlanT5(780M) 18.66 16.27 22.01 10.53 4.31 18.98
FlanT5(3B) 26.79 25.36 35.41 20.10 12.92 29.19
FlanT5(11B) 33.49 31.58 36.84 22.01 11.00 33.97
T0(11B) 22.01 22.01 29.67 16.27 11.00 24.56
T0P(11B) 23.92 22.49 34.93 17.70 11.96 27.11
T0PP(11B) 26.32 27.27 37.80 19.14 11.96 30.46
ChatGPT 60.77 59.33 67.94 50.72 39.71 62.68

Commonsense
RoBERTa-L 43.54 40.19 46.41 33.01 20.10 43.38
RoBERTa-L(CSKG) 35.41 36.84 44.98 28.71 18.18 39.07
CAR 10.53 10.53 11.48 5.74 2.39 10.85

Human∗ - 90.74 90.74 94.44 90.74 88.89 91.98
Word Puzzle

Random - 26.02 27.85 22.51 7.32 1.83 25.34

Instruction

FlanT5(780M) 22.56 17.68 28.66 9.15 3.66 22.97
FlanT5(3B) 37.80 29.88 42.68 23.17 12.80 36.79
FlanT5(11B) 42.68 32.93 43.90 28.66 20.12 39.84
T0(11B) 17.07 14.02 23.17 9.76 6.10 18.09
T0P(11B) 28.66 26.22 34.15 19.51 12.80 29.67
T0PP(11B) 33.54 31.10 39.63 20.12 10.98 34.76
ChatGPT 56.10 52.44 51.83 43.90 29.27 53.46

Commonsense
RoBERTa-L 19.51 19.51 23.17 14.63 6.10 20.73

- RoBERTa-L(CSKG) 18.90 16.46 30.49 12.80 6.10 21.95
CAR 38.41 31.10 20.12 26.22 6.10 29.88

Human∗ - 91.67 91.67 91.67 91.67 89.58 91.67

strongest model, ChatGPT (53 and 63%) is halfway
between random (25%) and human performance
(92%). In general, neither type of model is able to
perform consistently well across the two subtasks:
instruction-based models perform better on word
puzzles, whereas commonsense models perform
slightly better on sentence puzzles. The perfor-
mance of the models is often close to random, with
around a third of the models performing equal or
worse than random guessing. As it can be expected,
we see that scaling up instruction-finetuned models
leads to improved performance on both subtasks.
Yet, the large gap between human and model per-
formance clearly shows that even the most power-
ful LLMs are unable to exhibit lateral thinking in
multiple-choice puzzles and confirms the challeng-
ing nature of our BRAINTEASER dataset.

Original vs Reconstruction Partitions In most
cases, all models and humans perform the best on
the context reconstruction partition. We hypoth-
esize that this is because original lateral thinking
puzzles are designed to mislead humans to a wrong
choice based on commonsense associations, often
involving rare words and unconventional sentence

structures. Meanwhile, we note that our contextual
reconstruction mechanism yields puzzles that are
more familiar or easier to solve than the original
puzzle, possibly because some of the commonsense
associations are relatively weaker. An exception
to this trend is ChatGPT’s performance on word
puzzles, where ChatGPT performs the best on the
original examples. We believe that this is due to a
combination of two factors. First, the word puzzle
reconstructions only have a limited impact on the
vocabulary domain and sentence structure, because
of the much shorter questions. Second, ChatGPT
may have memorized some of the word puzzles,
e.g., given the question "How do you spell COW
in thirteen letters?", its answer begins with "The
question seems to be a brain teaser . . ." We pro-
vide representative examples of the prevalent lateral
thinking errors of memorization and commonsense
associations in Table 5.

Consistency of Model Predictions We further
compare the performance on instance- and group-
based metrics to understand whether the models
can solve lateral thinking puzzles by following a
consistent reasoning path. A model understand-

14323



Table 5: Error analysis on memorization and commonsense association.

Question Answer LLM choice
Memorization

The man calls his dog on the other side of the river, and the dog The river was frozen. The river was frozen.
crosses the river without getting wet and using ant tools.
The man had to cross the rivers. He can’t swim or use any tools The river was frozen. He jumped a half-mile
like the bridge. How does the man succeed in the end? far to across the river.

Commonsense Association
What animal has no wings, but yet will fly? A caterpillar. An eagle.
There is no light on the road and the car’s headlight is broken. It was daytime. The driver is good
How can the driver see the black dog? at listening .
How can Jenny read in a totally no light house at night? The book is in Braille. It was daytime.

ing rather than memorizing the reasoning path of
the original brain teaser should be able to answer
its adversarial reconstructions with ease. Notably,
human performance only has a minimal drop on
group-based metrics whereas all models suffer sig-
nificant drops. Further analysis (see Appendix A.6)
reveals that ChatGPT and RoBERTa-L fail to an-
swer many (45 and 61%, respectively) of the origi-
nal or semantically changed puzzles when contextu-
ally translated puzzles are solved correctly. These
observations suggest that the ability of the models
to perform consistent lateral thinking is far from
human ability.

Impact of Commonsense Knowledge We ob-
serve that commonsense knowledge has a salient
negative impact on the model’s performance on
sentence puzzles. The best-performing model in
the commonsense category is the vanilla RoBERTa
model, whose adaptation with commonsense
knowledge leads to a significant drop in results, es-
pecially with the CAR method. This trend confirms
our initial hypothesis that learning commonsense
associations is generally detrimental to complex lat-
eral thinking tasks. Commonsense knowledge has
a limited positive impact on the word-puzzle task,
possibly because much of the commonsense associ-
ations learned by these models hold between words,
including synonyms. Finally, given the apparent
similarity of riddles and lateral thinking puzzles,
we finetuned a RoBERTa model on the Riddle-
Sense dataset and evaluated it on our task. Again,
we observe that the model struggles on solving the
puzzles despite gaining better results compared to
the vanilla RoBERTa model (see Appendix A.7).

Impact of Few-Shot Demonstrations As LLMs
are good few-shot learners (Brown et al., 2020b),
we are interested to see if in-context learning can
help them better solve our task. We experiment
with our two most powerful models: ChatGPT

Figure 2: Few-shot prompting performance of ChatGPT
and FlanT5(11B).

and FlanT5 (11B). We randomly pick 8 puzzles
(4 from each subtask) and create new context re-
constructions as demonstrations. We experiment
with few-shot prompting with 2, 4, 6, and 8 of these
demonstrations, balanced between the two subtasks.
The few-shot results are shown in Figure 2, and we
present the full results in Appendix A.4. The num-
ber of few-shot demonstrations has no clear impact
on sentence puzzles, which confirms that lateral
thinking puzzles are unique and the models can
hardly learn generalizable patterns from in-context
examples. Providing more few-shot demonstra-
tions has a marginal positive impact for word puz-
zles. Given this task’s focus on the letter compo-
sition of each word, the in-context examples may
be used to teach the model to pay attention to the
surface form of the answer candidates. It’s worth
noting that, although few-shot examples might ex-
hibit superficial resemblances, their contribution to
model generalization for sentence puzzles remains
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minimal, given the abstract nature of reasoning
pattern in this subtask.

Qualitative Error Analysis We analyze two
prevalent lateral thinking errors in the ChatGPT and
FlanT5 (11b) LLMs: memorization and common-
sense associations, both of which become more
apparent with scaling up (Carlini et al., 2022). We
show examples in Table 5.

Memorization We find that memorization hap-
pens in both subtasks. Given the sentence puzzle
"The man calls his dog on the other side of the river,
crosses the river without getting wet and using ant
tools." the LLMs picked the correct answer "The
river was frozen." for both the original and its se-
mantic reconstruction. However, when the question
in a new context becomes "The man had to cross
the rivers. He can’t swim or use any tools. like the
bridge. How does the man succeed in the end?",
all LLMs failed to answer. Memorization is more
frequent in word puzzles. A semantic reconstruc-
tion will cause confusion in the model, as is also
apparent from the gap between original accuracy
and the ori&sem accuracy in Table 4.

Commonsense association Similarly, we also
find that commonsense association often confuses
LLMs. For example, for "What animal has no
wings, but yet will fly?", the models associate the
words "wings" and "fly” with birds and pick the
wrong answer "An eagle." despite the contradiction
between "eagle" and "no wings". Meanwhile, the
correct lateral thinking answer "A caterpillar." is
not picked by the models. Interestingly, common-
sense associations that mislead models in some
examples can be the needed hint in others. For
example, in one puzzle, "There is no light on the
road and the car’s headlight is broken. How can
the driver see the black dog?", the answer "It was
daytime." is hindered by the commonsense associa-
tion between mentioning no light and night. How-
ever, in another example, "How can Jenny read
in a totally no light house at night?", the same
commonsense association leads the model to the
correct answer: "The book is in Braille.". In the
second example, the answer is misled by another
commonsense association related to reading.

6 Conclusions and Outlook

We defined the task of lateral thinking for LLMs,
formulated as a multiple-choice QA with a
sentence- and word-level puzzles. We developed
BRAINTEASER, a 1.1K lateral thinking benchmark

that combines original puzzles and their reconstruc-
tion variants. Our experiments showed that Chat-
GPT’s performance on this task is halfway between
random and humans, whereas other models often
perform close to random. While scaling up model
size improved performance, enriching with com-
mon sense or providing few-shot demonstrations
yielded limited benefits. Meanwhile, all models
tend to solve the variants of the same puzzle in-
consistently. Our error analysis showed that the
models’ lateral thinking is often hindered by memo-
rization and misleading commonsense associations.
In the future, we intend to develop lateral thinking
models, create additional lateral thinking evalua-
tion tasks (e.g., relating to alteration (De Bono,
1970)), and investigate flexible ways to combine
lateral and vertical thinking.

Limitations

While our work focuses on both Sentence puzzles
and Word puzzles, we intend to develop a compre-
hensive lateral thinking benchmark according to
de Bono’s four skills: awareness, random stimula-
tion, alternatives, and alteration (De Bono, 1970).
Moreover, while our paper tries to provide a clear
distinction between lateral and vertical thinking,
it remains an open question to which extent other
brain teaser categories, e.g. puns and visual puz-
zles, require lateral or vertical thinking. As these
tasks are not the focus of our present paper, we
leave it to future work to comprehensively evalu-
ate models’ ability to think out of the box on such
tasks and to characterize the complementary and
opposing aspects of vertical and lateral thinking.

Also, we opt for constructing the dataset in a
multiple-choice QA format to reduce the burden
of the evaluation process. However, this inevitably
reduces the difficulty of the task and permits the
situation where the models solve the questions cor-
rectly for the wrong reasons. Future work should
also look into better evaluation metrics that are
suitable for creative and open-ended generations
such that our task can also be adapted to an open-
ended setting. Finally, while our current puzzles
are provided in a static manner, future work should
also investigate an interactive (multi-step) setup,
where the model (or human) may ask clarification
questions or receive contextual hints.
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Ethical Considerations

As our lateral thinking puzzles are “folk knowl-
edge” and are published on a range set of websites,
it is hard to check their original licenses compre-
hensively. Yet, the website owners declare per-
mission to print and download material for non-
commercial use without modification on the mate-
rial’s copyright. Therefore, we provide the corre-
sponding copyright statements and website URLs
for each original lateral thinking puzzle and its re-
construction version. In addition, we will create a
form to ask future dataset users to sign a document
claiming that the only aim of the data usage is re-
search before providing them with the data. We
note that, despite our best efforts, the task data may
still contain bias in terms of gender or politics. We
will indicate that future research should use the task
data with caution.
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A Appendix

A.1 Puzzle topics

We use few-shot prompting in ChatGPT to extract
the context topic for each question. Table 6 shows
the top 10 topics for each subtask, for which the
prompting template is as follows:
" Can you provide context environment in the fol-
lowing brain teasers? Here are several examples:
{examples}"

Table 6: Top-10 topics extracted for both subtasks.

Sentence Puzzle Word Puzzle
Topic Frequency Topic Frequency
Mathematics 45 Language 79
Physics 41 Food 27
Nature 37 Mathematics 26
Transportation 32 Animals 24
Animals 25 Science 22
Sports 24 Time 18
Family 23 Geography 16
Time 19 Nature 13
Education 16 Entertainment 12
Law 16 Finance 11
Others 339 Others 244

A.2 Prompting templates

ChatGPT We use the following instruction to
prompt ChatGPT:
"Please pick the best choice for the brain teaser.
Each brain teaser has only one possible solution,
including the choice none of the above, answer
should only provide the choice:"
FlanT5 We use the instruction template for the AI2
Reasoning Challenge (ARC) (Clark et al., 2018):
"Question: {Question}

What is the correct answer to the question
from the following choices?
(A) {choice}
(B) {choice}
(C) {choice}
(D) {choice}"

T0PP We use the instruction template for the Com-
mensenseQA task (Talmor et al., 2019):
"{Question}
Choose the most suitable option to answer the
above question.
Options:
A. {choice}
B. {choice}
C. {choice}

14329

https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/N19-1217
https://doi.org/10.18653/v1/N19-1217


D. {choice}"

A.3 Word puzzle example

Table 7 presents a word puzzle with its reconstruc-
tion examples.

A.4 Few-shot prompting result

Table 8 shows the few-shot result of ChatGPT and
FlanT5 (11B) on the two BRAINTEASER subtasks.

A.5 Annotation Details

Human evaluation We give the following instruc-
tion to human evaluation participants:
"Hi, welcome to the brain teaser test. Each brain
teaser has only one possible solution (none of the
above is possible!). Please select the choice in the
answer column. Try to Think out of Box :)"
Human validation We give the following instruc-
tion:
"Congratulations on passing the brain teaser test.
You should notice that some brain teasers are
similar to each other :)! Actually, the brain teasers
can be divided in groups like the following: In each
brain teaser group, we have an original question,
semantic reconstruction questions, and context
reconstruction questions. Semantic reconstruction
question rephrases the original question without
changing the correct answer and the distractors.
Context reconstruction question keeps the original
reasoning path but changes both the question and
the answer to describe a new situational context.

Please help with the following three tasks:
1)Whether the original question and its answer
make sense. 2)Whether the semantic reconstruc-
tion question rephrases the original question.
3)Whether the context reconstruction question
keeps the original reasoning path."
Open-ended Human Performance We give the
following instruction:
"Please write down the answer of each brain teaser.
Anything that makes sense is welcome!! Also, no
answer is acceptable!"

We let both humans and ChatGPT write down
the most possible answer to 30 context reconstruc-
tion questions based on their understanding. Three
experts score the answers on a scale of 5, based on
the following rubrics:

• score 0: Fail to answer.

• score 1: Try to answer the question, but the
answer doesn’t make sense.

• score 2: The answer is wrong but related to
the golden label.

• score 3: The answer is wrong, but the reason-
ing strategy is similar to the golden answer
and may lack some keywords.

• score 4: The answer is wrong but lacks minor
information. Or the answer makes sense but
is not the same as the golden answer.

• score 5: The answer is correct.

Both humans and LLMs cannot perform this
task well, scoring 2.64 and 2.62 on a 5-point scale.
Humans give up more often (18%) rather than gen-
erating meaningless text like ChatGPT, making the
comparison harder if the task is in an open-end
format.

A.6 Evidence of stronger distractors in the
original puzzle

The barber example in Figure 1, "shaves everyday"
and "keep his beard long" triggers a commonsense
association that the man shaves himself every day.
The contextually reconstructed puzzle of the barber
example is "How can a man go to football team ev-
ery day but doesn’t play football at all?". This new
question still aims to guide the model to think in the
default commonsense way that "He is a football
player." but the correct answer "He is a coach."
is also highly probable, resulting in an inherent
decrease in difficulty.

A.7 Fine-tuned on Riddle Sense

We finetuned RoBERTa-L on RiddleSense (Lin
et al., 2021) to analyze whether being aware of
linguistic creativity can enhance the model’s per-
formance on BRAINTEASER. We train RoBERTa-
L (RS) on the training data of RiddleSense in 3
epochs with a learning rate at 1e−6, batch size at
4. RoBERTa-L (RS) reaches 59.95 on the valida-
tion set, which is on par with the original paper
(60.72). We then adapt Roberta-L (RS) to do the
zero-shot evaluation on BRAINTEASER. The re-
sults are shown in Table 9.

Even though Roberta-L (RS) already gains in-
sight into creative thinking, it is still struggling on
BRAINTEASER. The better results show that en-
hancing creative thinking during the training may
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Table 7: Overview of a word puzzle example and its reconstruction versions.

Adv Strategy Question Answers

-

The letter N.
What part of London is in France? The letter O.

The letter L.
None of the above.
The letter N.

Semantic Re- Which area of London is inside France? The letter O.
construction The letter L.

None of the above.
The letter A.

Context Re- What part of Korea is in China? The letter E.
construction The letter R.

None of the above.

Table 8: Main few-shot results of ChatGPT and FlanT5(11B) on two BRAINTEASER subtasks. Ori = Original, Sem
= Semantic, Con = Context. The best performance among all models is in bold.

Instance-based Group-based OverallModel Original Semantic Context Ori & Sem Ori & Sem & Con
Sentence puzzle

ChatGPT(zero-shot) 60.77 59.33 67.94 50.72 39.71 62.68
ChatGPT(two-shot) 61.72 60.77 68.90 51.67 40.67 63.80
ChatGPT(four-shot) 59.33 55.98 62.20 47.85 32.06 59.17
ChatGPT(six-shot) 60.29 59.81 66.51 51.20 40.19 62.20

ChatGPT(eight-shot) 63.16 62.68 67.46 54.55 44.02 64.43
FlanT5(zero-shot) 33.49 31.58 36.84 22.01 11.00 33.97
FlanT5(two-shot) 37.80 33.49 38.76 26.79 13.40 36.68
FlanT5(four-shot) 38.28 34.45 41.15 26.79 13.40 37.96
FlanT5(six-shot) 38.28 34.45 41.63 27.27 13.88 38.12

FlanT5(eight-shot) 38.76 33.01 41.63 26.79 14.35 37.80
Word puzzle

ChatGPT(zero-shot) 56.10 52.44 51.83 43.90 29.27 53.46
ChatGPT(two-shot) 55.49 53.66 51.22 44.51 30.49 53.46
ChatGPT(four-shot) 54.27 53.66 51.83 43.90 28.05 53.25
ChatGPT(six-shot) 56.71 51.83 54.27 45.12 28.66 54.27

ChatGPT(eight-shot) 58.54 56.71 54.27 48.17 34.76 56.50
FlanT5(zero-shot) 42.68 32.93 43.90 28.66 20.12 39.84
FlanT5(two-shot) 44.51 34.76 45.73 30.49 18.90 41.67
FlanT5(four-shot) 43.29 35.98 47.56 30.49 20.73 42.28
FlanT5(six-shot) 44.51 36.59 47.56 29.88 17.68 42.89

FlanT5(eight-shot) 45.73 33.54 46.95 27.44 16.46 42.07

be a possible solution to defying commonsense.
Yet, we note that the performance of this model
also declines on the group-based metrics. More-
over, we point out the possible data distribution
overlap between BRAINTEASER and RiddleSense,
as RiddleSense was collected publicly from similar
online websites and contains much more samples
(5.7k) than BRAINTEASER.

A.8 Human Annotator Information
Our human annotators major in computer science
come from East Asia, Europe and the Middle East.
All annotators all fluent in English.
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Table 9: RoBERTa-L (RS) zero-shot results over two BRAINTEASER subtasks.

Instance-based Group-based OverallModel Original Semantic Context Ori & Sem Ori & Sem & Con
Sentence Puzzle

RoBERTa-L(RS) 42.11 45.93 54.55 37.32 27.75 47.53
Word Puzzle

RoBERTa-L(RS) 23.78 26.22 31.10 20.73 9.76 27.03
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