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Abstract

We propose a method that ensembles N -best
hypotheses to improve natural language gen-
eration. Previous studies have achieved no-
table improvements in generation quality by
explicitly reranking N -best candidates. These
studies assume that there exists a hypothesis of
higher quality. We expand the assumption to
be more practical as there exist partly higher
quality hypotheses in the N -best yet they may
be imperfect as the entire sentences. By merg-
ing these high-quality fragments, we can ob-
tain a higher-quality output than the single-best
sentence. Specifically, we first obtain N -best
hypotheses and conduct token-level quality es-
timation. We then apply tokens that should
or should not be present in the final output as
lexical constraints in decoding. Empirical ex-
periments on paraphrase generation, summari-
sation, and constrained text generation confirm
that our method outperforms the strong N -best
reranking methods.

1 Introduction

While the beam search is one of the most com-
mon decoding methods in natural language genera-
tion, it suffers from the beam search curse (Koehn
and Knowles, 2017; Yang et al., 2018; Ott et al.,
2018; Stahlberg and Byrne, 2019) where a large
beam size degrades the quality of generation. As a
remedy to this problem, previous studies explored
better alternatives from N -best hypotheses (Fernan-
des et al., 2022) as represented as reranking and
minimum Bayes decoding (Müller and Sennrich,
2021; Eikema and Aziz, 2022), which only mod-
ify the decoding procedures. There are two types
of reranking approaches. Discriminative methods
train rerankers to predict specific evaluation met-
ric scores of each hypothesis (Shen et al., 2004;
Bhattacharyya et al., 2021; Lee et al., 2021). In
contrast, generative methods use generic rerankers
that have been used for other purposes, such as
language models (Yee et al., 2019; Ng et al., 2019).

Different from methods that involve computation-
ally expensive model training such as the minimum
risk training (Müller and Sennrich, 2021; Eikema
and Aziz, 2022), these ranking-based methods are
efficient and easily applicable to trained models.

Nonetheless, these reranking methods assume
that there is a single hypothesis of higher quality in
the N -best, which may not be practical depending
on the generation model and also inputs. There-
fore, we enhance the assumption; there should be
candidates that are partly high-quality but may be
imperfect as the entire sentences. Our method iden-
tifies and merges these higher-quality fragments
to derive a high-quality output using lexically con-
strained decoding (Lu et al., 2022). Specifically,
our method trains a token-level quality estimator
that predicts whether a token in a hypothesis should
be or should not be included in the final output. It
then uses the quality estimation (QE) results of
the N -best hypotheses to compose positive and
negative lexical constraints and generates the final
output using the generation model.

As a contribution of this study, we propose the
N -best ensembling method for improving the qual-
ity of language generation, which is easy to apply
to a variety of language generation tasks. Empiri-
cal experiments on paraphrasing (Takayama et al.,
2021), summarisation (See et al., 2017; Hermann
et al., 2015; Narayan et al., 2018), and constrained
text generation (Lin et al., 2020) confirm that our
assumption holds and the proposed method outper-
forms strong reranking-based methods.

2 Preliminary: Lexically Constrained
Decoding

Lexically constrained decoding has been employed
in various language generation tasks to apply task-
specific knowledge on generation, e.g., for machine
translation using a bilingual dictionary of techni-
cal terms as constraints (Chatterjee et al., 2017;
Hokamp and Liu, 2017), for text simplification us-
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Figure 1: Overview of the proposed method

ing difficult words as constraints (Nishihara et al.,
2019; Dehghan et al., 2022; Zetsu et al., 2022),
for style transfer using style-specific vocabulary as
constraints (Kajiwara, 2019), and for table-to-text
generation using keywords in tables as constraints
(Lu et al., 2022). Different from these studies that
assume the availability of task-specific knowledge,
our method creates lexical constraints based purely
on the N -best hypotheses of language generation.

We use the state-of-the-art lexically constrained
decoding method, namely, NeuroLogic-A* (Lu
et al., 2022). NeuroLogic-A* searches for output
candidates with high generation probabilities and
constraint satisfaction rates by tracking states of sat-
isfaction by the following steps. (1) For each can-
didate token at a time step, NeuroLogic-A* looks
ahead to future tokens to be generated. (2) Based
on the look-ahead results, it computes satisfaction
rates of lexical constraints and prunes the candi-
date tokens. (3) It groups the remaining candidates
based on the states of the constraint satisfaction
and selects output tokens from the best candidates
in each group to preserve a broad search space.

3 Proposed Method

Figure 1 shows the overview of the proposed
method. The main component is the token-level
QE model that predicts whether each token in N -
best hypotheses should be used or avoided in gen-
erating the final output. Tokens predicted as the
former is included in positive constraints and those
predicated as the latter are included in negative
constraints to be considered by NeuroLogic-A*.

Specifically, we fine-tune a pretrained masked
language model to conduct binary token classi-
fication as illustrated in Figure 2. For each N -
best hypothesis of training sentences obtained by
the language generation model, token-level labels
are automatically assembled using their references.
Hypothesis tokens appearing in the correspond-
ing reference are labelled as positive and other-
wise labelled as negative. At inference, the QE
model takes the concatenation of a source and a

Figure 2: Token-level QE model (special input tokens
are added into the vocabulary.)

Data set Train Validation Test

DIRECT 64, 126 – 7, 372

CNN/Daily Mail 287, 113 13, 368 11, 490
XSum 204, 045 11, 332 11, 334

COMMONGEN 67, 389 4, 018 7, 644

Table 1: Number of sentences in evaluation datasets

hypothesis in the N -best as input and conducts
binary classification for each token. We expect
that the masked language model acquires the sense
of synonyms and multi-word expressions through
pre-training and transfers that knowledge to our
token-level QE.

Because the token-level QE is context-
dependent, the same token appearing in different
hypotheses may be predicted both positive
and negative labels, respectively. Our model
determines the final label by majority voting. If
the numbers of positive and negative predictions
are tie, the corresponding token is excluded from
lexical constraints.

4 Experimental Settings

The proposed method is widely applicable to lan-
guage generation tasks. We thus evaluate it on
paraphrasing (§ 5.1), summarisation (§ 5.2), and
constrained text generation (§ 5.3).

Proposed Method For each evaluation dataset
(Table 1), we constracted a token-level QE model
by fine-tuning a RoBERTa-base (Liu et al., 2019).
Specifically, we sought the beam size of N by a
grid search in [1, 5, 10, 20, 30, · · · , 100] to achieve
the best performance on the validation set measured
by the corresponding evaluation metrics. When de-
coding with NeuroLogic-A* for the final output,
we use the same beam size as baselines for fair com-
parison. For more details of the implementation,
please refer to Appendix A.
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Indirect-to-Direct Direct-to-Indirect

w/ history w/o history w/ history w/o history
BLEU N BLEU N BLEU N BLEU N

beam-search 35.57 - 34.38 - 26.92 - 26.63 -
NCD (Yee et al., 2019) 36.01† 30 35.43† 20 26.14† 40 27.03† 20
DrNMT (Lee et al., 2021) 35.85† 30 34.65† 60 27.06 100 26.50 20

NeuroLogic-A* (P & N) 36.43† 50 35.42† 40 30.21† 20 30.57† 30
NeuroLogic-A* (P) 36.95† 50 35.94† 40 30.89† 20 31.33† 70
NeuroLogic-A* (N) 35.84† 50 34.82† 60 29.97† 20 30.12† 10

Rerankingoracle 59.71† 100 59.16† 100 48.95† 100 49.25† 100

NeuroLogic-A* (P & N)oracle 65.55† 100 65.31† 100 60.23† 100 60.71† 100
NeuroLogic-A* (P)oracle 57.85† 100 57.38† 100 49.42† 100 50.15† 100
NeuroLogic-A* (N)oracle 51.60† 100 50.98† 100 45.24† 100 45.54† 100

Table 2: Test set BLEU scores on DIRECT; N determines the number of hypotheses to consider and † indicates
significant differences against beam-search confirmed by bootstrap resampling test (Koehn, 2004).

Baselines As the most basic baseline, we com-
pared our method to beam search, of which size
was borrowed from previous studies that tuned
the value for underlying language generation mod-
els for each task. Wherever applicable, we also
compared the strong discriminative and generative
reranking methods. For the former, we used the
Discriminative Reranker for Neural Machine Trans-
lation (DrNMT) (Lee et al., 2021)1 that predicts
the distribution of sentence-level evaluation met-
ric scores given the source and N -best hypotheses.
For the latter, we used the Noisy-Channel Decoding
(NCD) (Yee et al., 2019)2 that scores N -best can-
didates by linearly combining the probabilities of
generation, target-side language model, and target-
to-source generation. We trained these methods
using the authors’ implementations with datasets
and metrics of each experiment task, where the
beam sizes (the sizes of N ) were searched in the
same way as our method using the validation sets.

Ablation As ablation studies, we evaluated the
performance of the proposed method using only
positive lexical constraints (denoted as NeuroLogic-
A* (P)), only negative lexical constraints (denoted
as NeuroLogic-A* (N)), and both (denoted as
NeuroLogic-A* (P & N)).

1https://github.com/facebookresearch/fairseq/
tree/main/examples/discriminative_reranking_nmt

2https://github.com/facebookresearch/fairseq/
tree/main/examples/noisychannel

5 Experimental Results

This section discusses the experimental results.
The details of implementation on each task are
described in Appendix B.

5.1 Paraphrasing
Setting We used DIRECT (Direct and Indirect
REsponses in Conversational Text) (Takayama
et al., 2021), which provides paraphrases between
indirect and direct utterances in conversation his-
tories. We conduct both the Indirect-to-Direct and
Direct-to-Indirect paraphrasing with and without
the dialogue histories. Following Takayama et al.
(2021), we fine-tuned BART (Lewis et al., 2020)
as the underlying language generation models with
the beam size of 4.

Results Table 2 shows the test set BLEU (Pap-
ineni et al., 2002) scores. The upper rows show the
experimental results of baselines and the proposed
methods using the predicted lexical constraints. In
all subtasks, the proposed methods outperformed
the baselines. In particular, the proposed method
using only positive lexical constraints (NeuroLogic-
A* (P)) achieves the best performance.

The lower rows in Table 2 show the ‘oracle’ per-
formance of the proposed and reranking methods.
The ‘Rankingoracle’ indicates the performance when
selecting the hypothesis with the highest sentence-
level BLEU score against the reference. In our
method, we used the ‘oracle’ lexical constraints
obtained by accessing the references. As expected,
all of the BLEU scores are much higher than the
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CNN/Daily Mail XSum

RL N RL N

beam-search 40.99 - 37.21 -
DrNMT (Lee et al., 2021) 40.40† 10 37.18 10

NeuroLogic-A* (P & N) 41.99† 80 37.39† 90
NeuroLogic-A* (P) 41.72† 10 37.16 10
NeuroLogic-A* (N) 41.76† 100 37.24 90

Table 3: Test set ROUGE-L scores of the summarisa-
tion tasks; N determines the number of hypotheses to
consider and † indicates significant differences against
beam-search confirmed by approximate randomisation
test (Riezler and Maxwell, 2005).

CIDEr N

beam-search 14.26 -
NCD (Yee et al., 2019) 16.24 100
DrNMT (Lee et al., 2021) 14.85 60
SELF-CORRECT (Welleck et al., 2023) 15.30 -
+NeuroLogic (Welleck et al., 2023) 15.28 -

NeuroLogic-A* (P & N) 15.38 90
NeuroLogic-A* (P) 15.62 10
NeuroLogic-A* (N) 14.52 90

Table 4: Test set CIDEr scores on COMMONGEN; N
determines the number of hypotheses to consider.

upper rows. Remarkably, NeuroLogic-A* (P &
N)oracle largely outperforms Rankingoracle. This re-
sult confirms that ensembling N -best hypotheses
is more effective than simply selecting the best hy-
pothesis. It supports our assumption that there exist
high-quality fragments in N -best even though they
are imperfect as the entire sentences. Moreover,
the impressively higher scores under the oracle set-
ting indicate that improving the token-level QE is
a promising direction as further discussed in § 6.

5.2 Summarisation

Setting We used the CNN/Daily Mail (See et al.,
2017; Hermann et al., 2015) (version 3.0.0) and
XSum (The Extreme summarisation) (Narayan
et al., 2018) datasets. As underlying language gen-
eration models, we used the publicly available fine-
tuned BART-large models on CNN/Daily Mail and
XSum released by Lewis et al. (2020) with sug-
gested beam sizes of 4 and 6, respectively.

Results Table 3 shows the ROUGE-L (Lin, 2004)
scores measured on the test sets. Note that NCD
is not applicable to summarisation due to the un-
availability of target-to-source generation model.
For both CNN/Daily Mail and XSum, the proposed
method using both positive and negative lexical

constraints (NeuroLogic-A* (P & N)) outperforms
the baselines and achieves the highest ROUGE-L
score, which has a high correlation with the human
evaluation (Lin, 2004). These results confirm that
the proposed method is also effective in summarisa-
tion. The full results are available in Appendix B.3.

5.3 Constrained Text Generation

Setting We used COMMONGEN (Lin et al., 2020)
dataset that tasks to generate coherent sentences
given a set of words. We fine-tuned GPT-2 (Rad-
ford et al., 2019) as the underlying language gener-
ation model with the beam size of 5 (Welleck et al.,
2023). Different from paraphrasing and summari-
sation, there are a variety of possible generations
as reflected in the multiple references of diverse
contents. To adapt our QE model training to this
task, we selected the single reference for each hy-
pothesis that has the highest lexical overlap against
the corresponding hypothesis.

Results Table 4 shows the CIDEr (Vedantam
et al., 2015) scores measured on the test set, where
SELF-CORRECT (Welleck et al., 2023) is the state-
of-the-art method.3 While our method ensembles
N -best to improve the generation quality, SELF-
CORRECT iteratively edits the initial one-best out-
put. As the results show, our method using only
positive lexical constraints (NeuroLogic-A* (P))
outperformed SELF-CORRECT, which confirms
the effectiveness of ensembling high-quality frag-
ments in the N -best. Nonetheless, the best method
is NCD for this task. We conjecture this is because
considering tokens from different hypotheses may
deteriorate the generation due to the diversity in ac-
ceptable outputs. This feature is also troublesome
for training discriminative reranking models as im-
plied by the inferior performance of DrNMT. In
such tasks, generative reranking models like NCD
may be suitable. The full results are available in
Appendix B.5.

6 Discussion and Future Work

As we discussed in § 5, the quality of token-level
QE is critical for the performance of our method.
Table 6 shows the ratio of reference tokens mistak-
enly included in the negative constraints (P̄neg) and
the recall of positive constraints (Rpos) in the eval-

3As SELF-CORRECT is contemporaneous with our study,
we borrowed these scores from the original paper. The unavail-
ability of model outputs at the time of publication hindered
further comparisons.
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Source Well, thats like everything that is required. Thanks a lot.
Reference Awesome. Thanks for the details. Bye.
Positive constraints Awesome, great, good, the, details, detail, a, an, for, Have, you, day, it, .

Source Chinese I think, but I need location and how to get in touch with them.
Reference I don’t mind. Maybe chinese? I need contact number and postcode.
Positive constraints phone, contact, number, the, and, I, address, need, Chinese, Chinese, „ .

Table 5: Examples of constraints predicted by our method (Indirect-to-Direct transformation without history)

Task P̄neg(↓) Rpos(↑)
Indirect-to-Direct w/ history 0.20 0.41
Indirect-to-Direct w/o history 0.24 0.37
Direct-to-Indirect w/ history 0.23 0.40
Direct-to-Indirect w/o history 0.22 0.36

CNN/Daily Mail 0.28 0.31
XSum 0.24 0.36

COMMONGEN 0.20 0.36

Table 6: Performance of our token-level QE

uation tasks. The results indicate that 20% to 28%
of reference tokens were in the negative constraints
while the recalls of positive constraints were lim-
ited to 31% to 41%. Improvement of these metrics
directly enhances our method, which constitutes
our future work. We will explore a QE method to
model interactions within and across hypotheses.

Table 5 shows examples of constraints predicted
by our method on the paraphrase generation task
(Indirect-to-Direct transformation without history).
In the first example, synonyms of “awesome”,
“great”, and “good” are predicted, while in the sec-
ond example, multi-word expressions of “contact
number” and “phone number” are predicted as pos-
itive constraints. These results indicate that our
QE model preserves the ability to consider these to
some extent. We should need a more sophisticated
model to better handle synonyms and multi-word
expressions, which constitutes our future work.

Limitations

Our model conducts decoding twice to generate a
final sentence; furthermore, the second one is lex-
ically constrained decoding, which increases the
computational cost of language generation. We
measured the decoding times of the proposed and
compared methods on the paraphrase generation
task (Indirect-to-Direct transformation without his-
tory) under the same settings of Table 2. The pro-
grams ran on a single GPU of NVIDIA RTX A6000

with 48GB memory installed on a Linux server
with 1TB memory and AMD EPYC 7552 CPU.
Our naive implementation needs 1.9 sec/sent while
DrNMT (Lee et al., 2021) and NCD (Yee et al.,
2019) do 0.3 sec/sent on average. A straightfor-
ward remedy is to adaptively decide whether to
conduct the second decoding based on the token-
level QE results. For example, if there is a hypoth-
esis of which token-level QE results imply that it
satisfies a quality standard needed by a downstream
task, we can directly output the hypothesis. If all
the hypotheses are unsatisfactory, we can conduct
the second decoding using lexical constraints.

Currently, all constraints are treated equally in
lexically constrained decoding, but we assume their
importance can be diverse and may change depend-
ing on the status of generation. This expansion is
beyond the scope of the current paper but surely
worth exploring, which constitutes our future work.
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A Implementation Details

We implemented our token-level QE model using
RoBERTa (Liu et al., 2019) with the HuggingFace
Transformers (Wolf et al., 2020) library.4 In fine-
tuning RoBERTa, we calculated the F1 score on
the validation set at the end of every epoch and
stopped tuning when there was no improvement for
3 epochs.

We used the implementation of Lu et al. (2022)
to replicate NeuroLogic-A*.5 However, due to the
lack of negative lexical constraints in the original
implementation, we modified the codes to allow
negative lexical constraints.

B Experiment Details

B.1 Paraphrasing Experiment

The DIRECT corpus is an extension of the multi-
domain, multi-turn, task-oriented dialogue corpus
of MultiWOZ 2.1 (Multi-Domain Wizard-of-Oz
2.1) (Budzianowski et al., 2018; Eric et al., 2020).
DIRECT provides the dialogue histories in Multi-
WOZ, the original responses, indirect paraphrases
of the original responses, and direct paraphrases of
the original responses.

We fine-tuned a ‘facebook/bart-base’6 model us-
ing the HuggingFace Transformers library with the
same setting as Takayama et al. (2021). The beam
size was set to 4 following the experiments in the
original paper.

B.2 Summarisation Experiment

The CNN/Daily Mail dataset is a collection of
CNN and Daily Mail articles and highlights (sum-
maries), and consists of about 310k news articles
and highlight pairs. The average number of sen-
tences in the CNN/Daily Mail dataset is 30.7 for ar-
ticles and 3.8 for highlights. The XSum dataset is a
collection of BBC articles and their summaries and
consists of about 230k article-summary pairs. The
average number of sentences in XSum is 19.8 for

4https://huggingface.co/roberta-base
5https://github.com/GXimingLu/a_star_

neurologic
6https://huggingface.co/facebook/bart-base

articles and 1.0 for summaries. The XSum dataset
requires less number of summary sentences than
the CNN/Daily Mail dataset; therefore, it requires
more abstract summarisation. The maximum input
length of our token-level QE model is 512. If an
input length exceeds that limit, we split the article
into two and input to the model, and then merge
the prediction results.

As underlying language generation models for
summarisation, we used ‘facebook/bart-large-cnn’7

and ‘facebook/bart-large-xsum’8. These models
have been fine-tuned on CNN/Daily Mail and
XSum datasets, respectively. Their beam sizes are
suggested as 4 and 6, respectively.

B.3 Summarisation Results
Table 7 shows test set results of all evaluation met-
rics. The bottom three rows indicate the perfor-
mance when using the oracle lexical constraints
created by accessing references.

B.4 Constrained Text Generation Experiment
The COMMONGEN dataset consists of 35, 141
concept sets associated with 77, 449 sentences.
The average length of reference sentences in the
COMMONGEN dataset is 10.86.

We fine-tuned a ‘gpt2-large’9 model with the
same setting as Lin et al. (2020). The evaluation
metrics were computed using the official script10.

B.5 Constrained Text Generation Results
Table 8 shows test set results of all evaluation met-
rics. The bottom rows present the results under
the oracle setting. Different from paraphrasing
and summarisation, the oracle reranking, which
chooses a hypothesis with the highest evaluation
score, outperformed our methods with oracle lex-
ical constraints. Our manual investigation con-
firmed that the references of a source sentence are
diverse in COMMONGEN, and thus considering to-
kens from different references can be harmful. This
result implies that the diversity in possible gen-
erations affects the performance of the proposed
method.

7https://huggingface.co/facebook/
bart-large-cnn

8https://huggingface.co/facebook/
bart-large-xsum

9https://huggingface.co/gpt2-large
10https://github.com/INK-USC/CommonGen

14660

https://aclanthology.org/2022.tsar-1.13
https://aclanthology.org/2022.tsar-1.13
https://huggingface.co/roberta-base
https://github.com/GXimingLu/a_star_neurologic
https://github.com/GXimingLu/a_star_neurologic
https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/gpt2-large
https://github.com/INK-USC/CommonGen


CNN/Daily Mail XSum

R1 R2 RL N R1 R2 RL N

beam-search 44.04 21.08 40.99 - 45.46 22.35 37.21 -
DrNMT (Lee et al., 2021) 43.53† 20.62† 40.40† 10 45.37 22.33 37.18 10

NeuroLogic-A* (P & N) 44.99† 21.64† 41.99† 80 45.69† 22.37 37.39† 90
NeuroLogic-A* (P) 44.76† 21.33† 41.72† 10 45.87† 22.19† 37.16 10
NeuroLogic-A* (N) 44.72† 21.72† 41.76† 100 45.18† 22.25 37.24 90

Rerankingoracle 53.78† 21.64† 41.99† 100 56.74† 35.19† 51.96† 100

NeuroLogic-A* (P & N)oracle 61.74† 33.84† 54.75† 100 67.23† 42.72† 54.69† 100
NeuroLogic-A* (P)oracle 56.05† 30.58† 52.05† 100 61.22† 35.68† 47.52† 100
NeuroLogic-A* (N)oracle 53.30† 29.89† 50.09† 100 55.33† 32.88† 47.14† 100

Table 7: Test set ROUGE scores of the summarisation tasks; N determines the number of hypotheses to consider
and † indicates significant differences against beam-search confirmed by approximate randomisation test (Riezler
and Maxwell, 2005).

BLEU-4 CIDEr Coverage N

beam-search 27.08 14.26 84.48 -
NCD (Yee et al., 2019) 31.52 16.24 91.73 100
DrNMT (Lee et al., 2021) 27.55 14.85 91.73 60
SELF-CORRECT (Welleck et al., 2023) 27.98 15.30 94.58 -
SELF-CORRECT+NeuroLogic (Welleck et al., 2023) 28.17 15.28 97.80 -
NeuroLogic-A* (P & N) 28.85 15.38 91.39 90
NeuroLogic-A* (P) 28.04 15.62 94.06 10
NeuroLogic-A* (N) 27.41 14.52 86.71 90

Rerankingoracle 52.70 21.62 90.15 100

NeuroLogic-A* (P & N)oracle 42.51 19.20 96.71 100
NeuroLogic-A* (P)oracle 38.52 18.98 97.81 100
NeuroLogic-A* (N)oracle 30.66 15.29 86.99 100

Table 8: Test set scores on COMMONGEN; N determines the number of hypotheses to consider.
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