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Abstract

Charts are widely used for data analysis, pro-
viding visual representations and insights into
complex data. To facilitate chart-based data
analysis using natural language, several down-
stream tasks have been introduced recently
such as chart question answering and chart
summarization. However, existing methods for
these tasks often rely on pretraining on lan-
guage or vision-language tasks, neglecting the
explicit modeling of chart structures (e.g., how
chart elements are related to each other). To ad-
dress this, we first build a large corpus of charts
covering diverse topics and visual styles. We
then present UniChart, a pretrained model for
chart comprehension and reasoning. UniChart
encodes the relevant text, data, and visual ele-
ments of charts and then uses a chart-grounded
text decoder for text generation. We propose
several chart-specific pretraining tasks that in-
clude: (i) low-level tasks to extract the visual
elements (e.g., bars, lines) and data from charts,
and (ii) high-level tasks to acquire chart un-
derstanding and reasoning skills. Our exper-
iments demonstrate that pretraining UniChart
on a large corpus with chart-specific objectives,
followed by fine-tuning, yields state-of-the-art
performance on four downstream tasks. More-
over, our model exhibits superior generalizabil-
ity to unseen chart corpus, surpassing previous
approaches that lack chart-specific objectives
and utilize limited chart resources.

1 Introduction

Information visualizations such as bar charts and
line charts are commonly used for analyzing data,
inferring key insights and making informed deci-
sions (Hoque et al., 2022). However, understand-
ing important patterns and trends from charts and
answering complex questions about them can be
cognitively taxing. Thus, to facilitate users in ana-
lyzing charts, several downstream NLP tasks over
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charts have been proposed recently, including chart
question answering (Masry et al., 2022; Kantharaj
et al., 2022; Lee et al., 2022), natural language gen-
eration for visualizations (Obeid and Hoque, 2020;
Shankar et al., 2022) and automatic data story gen-
eration (Shi et al., 2020).

A dominant strategy to tackle these downstream
tasks is to utilize pretrained models (Su et al., 2020;
Li et al., 2020b; Kim et al., 2021; Cho et al., 2021)
trained on langauge and vision tasks (Du et al.,
2022). However, although effective, such mod-
els may not be optimal for chart-specific tasks be-
cause they are trained on large text corpus and/or
image-text pairs without any specific focus on chart
comprehension. In reality, charts differ from natu-
ral images in that they visually communicate the
data using graphical marks (e.g., bars, lines) and
text (e.g., titles, labels, legends). Readers can dis-
cover important patterns, trends, and outliers from
such visual representation (Munzner, 2014). Exist-
ing pretrained models do not consider such unique
structures and communicative goals of charts. For
instance, Pix2Struct (Lee et al., 2022) is a pre-
trained image-to-text model designed for situated
language understanding. Its pretraining objective
focuses on screenshot parsing based on HTML
codes of webpages, with a primary emphasis on
layout understanding rather than reasoning over
the visual elements. MatCha (Liu et al., 2022b)
extends Pix2Struct by incorporating math reason-
ing and chart data extraction tasks, but it still lacks
training objectives for text generation from charts
and it was trained on a limited number of charts.

In this work, we present UniChart, a pretrained
model designed specifically for chart comprehen-
sion and reasoning. UniChart is pretrained on a
large corpus of charts and it aims to serve as a Uni-
versal model for various chart-related downstream
tasks (Fig. 1). Inspired by the model architecture
from Kim et al. (2022), UniChart consists of two
modules: (1) a chart encoder, which takes the chart
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<data table generation> </answer>

<chart summarization> </answer>

<numerical visual reasoning> Sum two leftmost values
of gray line </answer>

<open-ended question answering> What is the birth rate in
the U.S. from 2005 to 2019? </answer>

90.0

The line chart shows the birth rate in the United States from 2005 to 2019, by
poverty status. The numbers represent the number of births per 1,000
women. In 2019, the birth rate for women below the poverty level was 74, for
women with an income of 100 to 199 percent of the poverty level it was 61,
and for women with an income of 200 percent or more of the poverty level it
was 44. The trend over the years shows a decline in birth rates for all income
levels, with the highest birth rate in 2005 for women below the poverty level
at 95, and the lowest birth rate in 2019 for women with an income of 200
percent or more of the poverty level at 44.

Characteristic | Income below poverty level | Income 100 to 199 percent of
poverty level | Income 200 percent of poverty level or more & 2019 | 74 | 61 |
44 & 2018 | 77 | 60 | 45 & 2017 | 76 | 62 | 45 & 2016 | 78 | 61 | 44 & 2015 |
76 | 61 | 44 & 2014 | 77 | 60 | 43 & 2013 | 76 | 60 | 43 & 2012 | 82 | 63 | 45 &
2011 | 81 | 62 | 45 & 2010 | 85 | 64 | 45 & 2009 | 92 | 69 | 46 & 2008 | 96 | 72
| 48 & 2007 | 92 | 69 | 44 & 2006 | 91 | 68 | 45 & 2005 | 95 | 70 | 45

The trend over the years shows a decline in birth rates for all income levels,
with the highest birth rate in 2005 for women below the poverty level at 95,
and the lowest birth rate in 2019 for women with an income of 200 percent or
more of the poverty level at 44.

Text
 Decoder

Input Image and Prompts OutputUniChart

Figure 1: Our UniChart model with different pretraining objectives. The model consists of two main modules: Chart Image
Encoder, and Text Decoder. Four different pretraining objectives are specified in different colors; data table generation, chart
summarization, numerical and visual reasoning, and open-ended question answering.

image as input, and (2) a text decoder, trained to
decode the expected output based on the encoded
image and the text input fed in the decoder as task
prompt. We performed pretraining on a diverse
set of 611K charts that we collected from multiple
real-world sources. Our pretraining objectives in-
clude both low-level tasks focused on extracting
visual elements and data from chart images, as well
as high-level tasks, intended to align more closely
with downstream applications. One key challenge
for pretraining was that most charts in the corpus do
not come with informative summaries, which are
critical for various downstream tasks. To address
this challenge, we used knowledge distillation tech-
niques to leverage large language models (LLMs)
for opportunistically collecting chart summaries,
which were then used during pretraining.

We conducted extensive experiments and analy-
sis on various chart-specific downstream tasks to
evaluate the effectiveness of our approach. Specifi-
cally, we evaluated UniChart on two chart question
answering datasets, ChartQA (Masry et al., 2022)
and OpenCQA (Kantharaj et al., 2022), and found
that it outperformed the state-of-the-art models in
both cases. For chart summarization, UniChart
achieves superior performance in both human and
automatic evaluation measures such as BLEU (Post,
2018) and ratings from ChatGPT (OpenAI, 2022).
Moreover, UniChart achieved state-of-the-art re-
sults in the Chart-to-Table downstream task. Fi-
nally, our model showed improved time and mem-
ory efficiency compared to the previous state-of-
the-art model, MatCha, being more than 11 times
faster with 28% fewer parameters.

Our primary contributions are: (i) A pretrained
model for chart comprehension with unique low-
level and high-level pretraining objectives specific

to charts; (ii) a large-scale chart corpus for pretrain-
ing, covering a diverse range of visual styles and
topics; (iii) extensive automatic and human evalu-
ations that demonstrate the state-of-the-art perfor-
mance of UniChart across various chart-specific
benchmark task while optimizing time and mem-
ory efficiency. We have made our code and chart
corpus publicly available at https://github.com/vis-
nlp/UniChart.

2 Related Work
2.1 Vision-language Pretraining
Pretrained models have dominated in many vision
and language tasks (Du et al., 2022). Building a pre-
trained vision-language model typically involves
three steps. First, textual input is usually encoded
using BERT-based encoder (Lu et al., 2019; Rad-
ford et al., 2021; Li et al., 2021, 2022). Second,
for the input image, some prior studies utilize Fast-
RCNN (Ren et al., 2015) to encode the sequence
of object regions as the image features (Li et al.,
2019; Lu et al., 2019; Chen et al., 2020). However,
this method may neglect some crucial regions in an
image. Recent approaches favor encoding the im-
age as a whole (Huang et al., 2020, 2021; Li et al.,
2021, 2022) by using ResNet (He et al., 2016) or
ViT (Dosovitskiy et al., 2021). Third, to fuse the
textual and visual features, prior work mostly either
designs a fusion encoder (Tan and Bansal, 2019;
Su et al., 2020; Cho et al., 2021; Kim et al., 2021)
or a dual encoder (Radford et al., 2021; Jia et al.,
2021; Li et al., 2022). Finally, multiple common
cross-modal pretraining tasks have been designed
such as image-text matching (Chen et al., 2020;
Li et al., 2020a), cross-modal contrastive learning
(Radford et al., 2021; Jia et al., 2021) and genera-
tion tasks such as visual question answering (Cho
et al., 2021; Wang et al., 2021).
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Our work is also related to multimodal docu-
ment understanding tasks that involve analyzing
the textual content, layout, and visual elements
of documents (Xu et al., 2020b,a; Wang et al.,
2022; Huang et al., 2022; Kim et al., 2022; Tang
et al., 2022). These tasks can be addressed using
encoder-only and encoder-decoder architectures.
Encoder-only models rely on OCR engines to ex-
tract text from document images and use BERT-
like encoders augmented with specialized embed-
dings to encode layout and visual features (Xu
et al., 2020b,a; Wang et al., 2022; Huang et al.,
2022). In contrast, encoder-decoder architectures
combine transformer-based encoders with autore-
gressive text decoders for text generation tasks re-
lated to documents (Tang et al., 2022; Kim et al.,
2022; Lee et al., 2022). While Tang et al. (2022)
incorporates an OCR tool to supplement the vision
encoder, Kim et al. (2022) and Lee et al. (2022)
operate in an end-to-end manner without external
OCR engines. In line with the latter approach, our
model adopts an end-to-end encoder-decoder archi-
tecture (Kim et al., 2022).

In general, the above work focuses on training on
large image-text pairs or text corpus, lacking focus
on chart understanding. One exception is MatCha
(Liu et al., 2022b), a pretrained chart model based
on Pix2Struct (Lee et al., 2022), which achieved
SoTA on chart question answering and summariza-
tion tasks. However, MatCha’s pretraining tasks
mainly focus on data table generation without fo-
cusing on text generation tasks. The model is also
pretrained with reasoning tasks using the textual
datasets which might limit its visual reasoning abil-
ity. Our model is trained on a larger corpus with
chart-specific pretraining objectives, including vi-
sual reasoning and text generation, making it more
versatile for various chart-related tasks.

2.2 Chart-related Downstream Tasks

There has been growing interest in solving var-
ious chart-related tasks. Chart question answer-
ing (ChartQA) tackles questions about charts, with
benchmarks like (Methani et al., 2020) and (Masry
et al., 2022) targeting factoid questions involv-
ing visual and arithmetic reasoning. Open-ended
question answering (OpenCQA) task requires an
explanatory answer by reasoning with the chart
content (Kantharaj et al., 2022). Finally, Chart-to-
Text generates natural language summaries from
input charts (Shankar et al., 2022), while Chart-to-
Table generates underlying data tables (Choi et al.,

2019). We evaluate our model on these four chart-
related tasks, as they involve the interaction be-
tween language and vision and have publicly avail-
able datasets. There are a few other tasks such as in-
fographics understanding (Mathew et al., 2022) and
question answering with science diagram (Kemb-
havi et al., 2016), however, in this work, we only
focus on chart-related tasks.

3 Chart Pretraining Corpus

To build a large and diverse corpus with various
styles, topics, and storage formats, we crawled
charts from various online sources. Additionally,
we utilized publicly available chart datasets suit-
able for pretraining. The collected charts can be
categorized into two types: charts with underlying
data tables and charts without data tables.

3.1 Charts with Data Tables

Charts with an underlying data table are collected
in three ways: (i) utilize existing datasets, (ii) ex-
tract SVG charts, and (iii) data augmentation.
• Utilize Existing Datasets Our goal was to

train the model based on real-world data, thus, we
did not consider the ones that are generated from
synthetic data (Kafle et al., 2018; Kahou et al.,
2018). In particular, we used the following five
chart datasets for which the underlying data tables
were available: (i) Statista (statista.com) (Shankar
et al., 2022), (ii) Our World In Data or OWID (our-
worldindata.org) (Masry et al., 2022), (iii) Organ-
isation for Economic Co-operation and Develop-
ment or OECD (oecd.org) (Masry et al., 2022),
(iv) PlotQA (Methani et al., 2020), and (v) a subset
of the ChartInfo (ChartInfo, 2022) dataset that pro-
vides bounding box annotations for data encoding
marks (e.g., bars in a bar chart).
• Extract SVG Charts: We extracted charts

in SVG format from the Chartblocks and Plotly
datasets of the Beagle corpus (Battle et al., 2018).
These charts do not come with data tables, but the
data can be extracted accurately from the SVG ele-
ments. The steps for preparing these charts are: (1)
identify axis labels and legends using specific class
names of HTML attribute, (2) extract bounding
boxes of chart elements (e.g., bars, line) using SVG
attribute properties (e.g., size and location of
<rect>), (3) construct the underlying data table
by iterating through each of the <g> elements to
find data values of each data attribute. When data
labels are absent, we utilize the scale information
based on the axis labels and tick marks of the chart
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and the bounding box information of data encoding
marks to recover the data values.
• Data Augmentation We further augmented

the corpus by creating charts from publicly avail-
able data tables. We used the The Web Data Com-
mons (WDC) (WDC, 2022), which used Common
Crawl1 to collect a large amount of structured data.
The charts are created in the following steps:

(i) Data pre-processing: Since many tables in
WDC contain more than three columns, we decom-
posed so that tables are suitable for creating desired
chart types (e.g., bars, lines, and pie charts). In par-
ticular, we automatically analyze the data type of
each column (e.g, numeric vs. categorical) and
then randomly choose one column with numeric
data values and one/two column(s) with categorical
data. We also limit the maximum number of rows
of the table to 8 so that the corresponding chart can
fit within reasonable screen space.

(ii) Chart generation: To generate visually diverse
charts, we used the D3 (Bostock et al., 2011) library
that provides great flexibility in terms of creating
diverse visualization styles. We also employed
Vega-Lite (Satyanarayan et al., 2016) which creates
charts based on declarative JSON syntax. We used
simple heuristics for determining chart types from
the data table (Mackinlay et al., 2007). We created
four types of charts: (1) vertical simple bar charts
with one numeric data column, (2) vertical grouped
bar charts, (3) pie charts, and (4) line charts (both
single series and multi-series).

(iii) Visual diversification: To create visually di-
verse charts resembling real-world variations, we
manipulated the following visual style properties:
(1) Colors and shapes: Color schemes from Color-
Brewer2 and Tableau3 were chosen for categorical
data attributes. We also varied shape properties
such as bar thickness, line types (e.g., continuous
vs dotted), and legend shape types (e.g., rect, cir-
cle). (2) Position and distance: We also varied
bar positions and distances with respect to axis la-
bels. (3) Guides: Charts may contain additional
guides such as grids, so we generate charts with
and without grids to diversify styles.

Fig. 2 depicts a visually diverse set of charts
created using this augmentation process. In total,
we created a total of 189,839 charts (Table 4).

1https://commoncrawl.org/
2https://colorbrewer2.org/
3tableau.com

3.2 Charts without Data Tables

Many online charts are available only as images,
without corresponding data tables. However, they
can still be valuable for large-scale pretraining as
we can extract chart elements and rich textual con-
tents (e.g., titles, surrounding texts, captions) us-
ing object detection and optical character recog-
nition (OCR) techniques. We collected image
chart datasets such as LineCap (Mahinpei et al.,
2022) and Neural Caption Generation (Spreafico
and Carenini, 2020) since they provide high-quality
summaries. We also used the Pew dataset from
(Shankar et al., 2022) and further augmented it
by an crawling additional 1K charts. Finally, we
used the ExcelChart400K dataset (Luo et al., 2021)
which only provides bounding boxes without under-
lying data tables. We also considered other existing
image chart datasets such as Vis30K (Chen et al.,
2021) and VisImage (Deng et al., 2020), but they
are not suitable as they usually have poor resolution
and lack meaningful textual content (e.g., titles).

3.3 Augmentation by Knowledge Distillation
for Chart-to-text Generation Tasks

Chart-related downstream tasks such as chart sum-
marization (Shankar et al., 2022) and open-ended
question answering (Kantharaj et al., 2022) require
generating informative and relevant texts. How-
ever, for most of the charts in the pretraining cor-
pus, there are either no associated summaries or
the summaries that are collected opportunistically
such as the Statista dataset (Shankar et al., 2022)
lack quality (e.g., too short and not very infor-
mative). Training on such substandard “ground-
truth” summaries can negatively affect the overall
model performance as shown in text summariza-
tion (Kryscinski et al., 2019; Clark et al., 2021).
Indeed, Goyal et al. (2022) and Liu et al. (2023b)
have recently shown that human raters prefer sum-
maries generated by LLMs, especially the ones that
are instruction-tuned such as InstructGPT (Ouyang
et al., 2022), compared to the reference summaries
in various text summarization datasets. Conse-
quently, the instruction-tuned LLMs have been
successfully used as a annotator in several recent
studies (DING et al., 2023; Qin et al., 2023).

Inspired by these findings, we leveraged Instruct-
GPT to generate coherent and relevant text. Specifi-
cally, we prompted text-davinci-003 by pro-
viding the underlying data table as input and one
exemplar (i.e., 1-shot in-context learning). Since

14665



generating summaries for thousands of charts by
calling OpenAI API is quite costly, we devised
a knowledge distillation approach. We first used
text-davinci-003 to create a small dataset of
3700 summaries for different chart types. Next, we
finetuned Flan-T5 XL (Chung et al., 2022) on this
dataset. Finally, we utilized the finetuned Flan-T5
model to generate summaries for charts that do not
have an associated summary. More details about
this approach can be found in Appendix A.2.

3.4 Datasets Analysis

Our chart pretraining corpus has over 611K charts
covering a diverse range of bar charts, line charts,
and pie charts (Table 4). Data tables of Simple
charts have two columns (simple bar charts or
single-series line charts), whereas Complex charts
involve at least three columns (e.g., stacked or
group bar charts, line charts with multiple lines).
The first two chart groups in Table 4 come with
an underlying data table which cover over 80%
of the corpus. The bottom group contains five
datasets which only provide charts in image for-
mat without a data table4 and cover about 20% of
the corpus. Bar charts make up the majority portion
(58.51%), followed by line charts (32.94%) and pie
charts (9.39%). About 60% of the charts have mul-
tiple columns in their data tables, while 40% of
the charts have only two columns.5 The corpus
also covers a diverse range of topics including tech-
nology, economy, politics, health, and society. To
ensure a fair evaluation, we excluded charts found
in the validation and test sets of the downstream
tasks from our pretraining corpus. Details about
the linguistics of the corpus textual elements can
be found in Appendix A.3.

4 Method

We propose UniChart, a unified pretrained model
for chart comprehension and reasoning. This sec-
tion first introduces the UniChart architecture fol-
lowed by its pretraining objectives.

4.1 Model Architecture

UniChart consists of two main modules: a chart im-
age encoder and a text decoder as shown in Fig. 1.

4The ExcelChart400K dataset only provides bounding
box annotations of chart elements and we used this dataset for
data value estimation task during pretraining.

5Since we do not have access to the chart types of Pew
dataset, we manually tagged random 200 samples from each
of these datasets to estimate the chart type distribution.

• Chart Image Encoder In order to effectively
encode a chart image, an encoder needs to identify
and interpret three different types of chart compo-
nents: (1) textual elements (axis labels and leg-
ends), (2) visual elements (e.g., bars, lines), and
(3) the layout that arranges textual and visual el-
ements within a chart. Since this has a similarity
with document image (e.g., receipts) understanding,
our chart image encoder builds upon the encoder of
one of the recent state-of-the-art document image
understanding models, Donut (Kim et al., 2022).

Donut offers an OCR-free architecture. The
model is pretrained using an OCR-pseudo task,
where it sequentially generates the encoded text in
a document image, following the order from the
top-left corner to the bottom-right corner of the
image. As a result, we did not have to run an exter-
nal OCR module like CRAFT (Baek et al., 2019)
and Parseq (Bautista and Atienza, 2022), which
improved time and memory efficiency throughout
our training pipeline. Donut employs Swin Trans-
former (Liu et al., 2021) architecture as the im-
age encoder. To encode the chart image features,
the images are split into non-overlapping patches,
which are then processed using shifted window-
based multi-headed self-attention and MLP layers
to produce the image embeddings.
• Text Decoder Similar to Donut (Kim et al.,
2022), we use the BART (Lewis et al., 2019) de-
coder for generating the output. The textual (task-
specific) prompts are fed to the decoder and the
decoder has to generate the output by conditioning
on the prompted context (see Fig. 1).

4.2 Pretraining Objectives

Our pretraining objectives include low-level tasks
that are more focused on retrieving the underlying
data from the chart images and high-level tasks that
align closely with the downstream tasks.
• Data Table Generation A chart creates a vi-
sual representation of a data table by mapping each
data attribute (e.g., ‘country’, ‘population’) to cor-
responding visual attributes (e.g., x-positions,
height) of graphical marks (e.g, bars). An ef-
fective chart comprehension and reasoning model
should be able to deconstruct the structured under-
lying data table by recovering such mappings. To
this end, we propose the data table generation task
in which we ask the model to generate the flattened
data table given a chart image.

A vast amount of charts available online are
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Dataset
Data Table
Generation

Numerical &
Visual Reasoning

Open-ended
Question Answering

Chart
Summarization

Pew 0 0 5,295 5,295
Statista, OECD, OWID 144,147 679,420 126,009 126,009
PlotQA 155,082 2,414,359 157,070 157,070
LineCap 0 0 2,821 2,821
Neural Caption 0 0 100 306
Beagle 3,972 51 0 0
ChartInfo 1,796 21,949 0 0
Data Aug. 189,792 2,218,468 189,802 189,802
ExcelChart 106,897 0 0 0

Total 601,686 5,334,247 481,097 481,303

Table 1: Number of examples for each task in pretraining.

stored as bitmap images without access to the un-
derlying data. It is important to learn how to re-
cover data values when the chart data is not avail-
able. Therefore, we also introduce the data value
estimation task, in which the model is asked to gen-
erate the scale of the graphical marks (e.g., bars,
line points) as a percentage of the chart plot area.
We obtain these scales by dividing the bars or line
points heights (bounding boxes) by the height of
the chart plot area and rounding the result to two
decimal places. At the final stage, we use charts for
which both data tables and object bounding boxes
are available as well as charts for which at least
the bounding box annotations are available, e.g.,
ExcelCharts from (Luo et al., 2021).
• Numerical & Visual Reasoning Many down-
stream applications over charts may involve numer-
ical and visual reasoning with the chart elements
such as chart QA and summarization. For example,
the model may need to apply a series of mathe-
matical and logical operations such as addition,
subtraction and comparisons to answer a question.
To inject such reasoning skills into the model, we
design template-based numerical reasoning tasks
where the model is trained to execute/perform the
most common mathematical operations over the
chart data values. We manually analyzed the exist-
ing task datasets (e.g., ChartQA) to find the most
common operations (e.g., sum, average, difference,
etc.) and constructed 90 templates that we utilize to
generate synthetic question and answer pairs. All
the templates are provided in Appendix A.8.
• Open-ended Question Answering It is very
common for users to ask open-ended questions
over charts (Kantharaj et al., 2022). Such questions
often ask for answers that require high-level reason-
ing and explanations. To improve the capability of
the model in answering open-ended questions, we
follow previous work (Shi et al., 2022) to generate
synthetic open-ended QA pairs. Specifically, a T5
model (Raffel et al., 2020) pretrained on SQuAD
(Rajpurkar et al., 2016) is employed to generate an
open-ended question for each summary. The sen-

tence containing the answer in the summary then
serves as the answer to its generated question.
• Chart Summarization Image captioning is a
fundamental problem in AI in which the machines
need to summarize the main content of the image
in the textual form. This task has been studied ex-
tensively (Vinyals et al., 2015; Herdade et al., 2019;
Hu et al., 2021; Li et al., 2022). We follow previ-
ous work (Vinyals et al., 2015; Xia et al., 2021)
to pretrain our model on this task to further en-
hance the model’s capability in generating textual
descriptions from the chart image. As discussed
in §3.3, we used mostly the summaries generated
from GPT models provided by OpenAI either di-
rectly or through a knowledge distillation step.

4.3 Downstream Tasks

In addition to zero-shot evaluation, we also adapt
UniChart by finetuning it on a downstream task.
We consider four downstream tasks: (1) Fac-
toid Chart Question Answering: we use ChartQA
(Masry et al., 2022), which is a benchmark con-
sisting of factoid question-answer pairs for charts
with a particular focus on visual and logical rea-
soning questions; (2) Complex Chart Question An-
swering: we consider OpenCQA (Kantharaj et al.,
2022), another QA benchmark in which answers
are explanatory descriptions; (3) Chart Summariza-
tion: we use Chart-to-Text (Shankar et al., 2022),
a large-scale benchmark for chart summarization;
(4) Chart-to-Table: we use ChartQA for both fine-
tuning and evaluation. Moreover, we evaluate the
pretrained model in a zero-shot setup on the We-
bCharts dataset (Choi et al., 2019), a collection of
300 charts obtained from the web.

4.4 Experiments Setup

To minimize the computational resource require-
ments, we initialize our model from the base Donut
weights (Kim et al., 2022). Our pretraining process
consists of two stages. In the first stage, we set
the input image resolution to 512x512 and pretrain
for 300K steps. In the second stage, we increase
the input image resolution to 960x960 and pretrain
for an additional 100K steps. Table 6 shows the
hyperparameters we used in pretraining and fine-
tuning our model on each downstream task. All
our experiments were carried out using one 4-A100
(40GB), one 4-A100 (80GB), and one 4-V100 (32
GB) GPU machines.
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ChartQA OpenCQA Chart-to-Text Chart-to-Table
(RA) (BLEU ) (BLEU ) (RNSS | RMSF1)

Model #Params aug. human avg. OpenCQA Pew Statista ChartQA WebCharts

VisionTaPas (Masry et al., 2022) - 61.44 29.60 45.52 - - - - -
T5 (Masry et al., 2022) 222M 56.96 25.12 41.04 9.28 10.49 35.29 - -
VL-T5 (Masry et al., 2022) - 56.88 26.24 41.56 14.73 - - - -
Pix2Struct (Lee et al., 2022) 282M 81.6 30.5 56.0 - 10.3 38.0 - -
MatCha (Liu et al., 2022b) 282M 90.2 38.2 64.2 - 12.2 39.4 85.21 | 83.49 44.37 | 17.94

UniChart 201M 88.56 43.92 66.24 14.88 12.48 38.21 94.01 | 91.10 60.73 | 43.21

Table 2: Evaluation results on four public benchmarks: ChartQA, Chart-to-Text, OpenCQA, and Chart-to-Table. All the results
are calculated after finetuning UniChart pretrained checkpoint except for WebCharts (zero-shot).

5 Evaluation

5.1 Baselines & Evaluation Metrics

We compare our model against five baselines: (1)
T5 (Raffel et al., 2020), a unified seq2seq Trans-
former model that achieved state-of-the-art (SoTA)
results on various text-to-text tasks, including ques-
tion answering and summarization; (2) VL-T5 (Cho
et al., 2021), a T5-based model that unifies Vision-
Language (VL) tasks as text generation conditioned
on multimodal inputs and achieved SoTA results on
OpenCQA (Kantharaj et al., 2022); (3) VisionTapas
(Masry et al., 2022), an extension of TaPas (Herzig
et al., 2020), a SoTA table encoder, adapted for
QA over charts; (4) Pix2Struct (Lee et al., 2022), a
pretrained image-to-text model for visual language
understanding and achieved SoTA results on doc-
ument understanding tasks; and (5) MatCha (Liu
et al., 2022b), an adapted version of Pix2Struct for
charts that is further pretrained on math reasoning
and chart data extraction tasks, achieving SoTA
results on Chart-to-Text (Shankar et al., 2022) and
ChartQA (Masry et al., 2022).

To evaluate our approach, we follow previous
works (Lee et al., 2022; Shankar et al., 2022;
Masry et al., 2022; Kantharaj et al., 2022; Liu
et al., 2022b) and utilize Relaxed Accuracy (RA)
for ChartQA and BLEU (Post, 2018) for text-
generation tasks (Chart-to-Text and OpenCQA).
However, the BLEU score has limitations as it
primarily focuses on n-gram matching between
the generated and reference texts, overlooking im-
portant factors such as semantic similarity, infor-
mativeness, and factual correctness (Goyal et al.,
2022). Therefore, we conduct a human evaluation
and ChatGPT-driven study to assess and compare
these crucial aspects in the outputs of different mod-
els (§5.3). Finally, we use Relative Number Set
Similarity (RNSS) (Masry et al., 2022) and Rela-
tive Mapping Similarity (RMS) (Liu et al., 2022a)

Summary Human ChatGPT p-value

UniChart ZeroShot 3.97 3.18 1.70e-10
UniChart Finetuned 2.86 2.37 2.32e-8
MatCha (Liu et al., 2022b) 2.50 2.18 0.0020
Gold (Shankar et al., 2022) 3.19 2.73 2.13e-6

Table 3: Average Informativeness scores from Human and
ChatGPT-based evaluation.

metrics to evaluate the Chart-to-Table task.

5.2 Main Results

As shown in Table 2, UniChart outperforms previ-
ous state-of-the-art models, MatCha and VL-T5,
on the ChartQA and Chart-to-Text (Pew) datasets,
although it shows slightly lower performance on
Chart-to-Text (Statista). The performance gap is
more prominent on the challenging human-written
questions in the ChartQA benchmark (Masry et al.,
2022), where our model’s pretraining objectives
tailored to visual and numerical reasoning give it
a significant advantage. UniChart also achieved a
higher BLUE score compared to the SoTA VL-T5
model on OpenCQA benchmark, which demon-
strates our model’s capability in generating ex-
planatory answers for questions about charts. Fi-
nally, UniChart surpasses MatCha’s performance
on two datasets, demonstrating its generalizability
across diverse visual styles, even in a zero-shot
setup on unseen charts (WebCharts). Overall, these
results establish UniChart as the SoTA model for
chart comprehension and reasoning tasks.

To further assess the impact of our different pre-
training objectives on our model’s performance,
we conducted ablation studies. We observe that re-
moving various pertaining objectives led to a slight
decrease in performance (Table 8). The decrease
in performance is particularly noticeable when the
Numerical Reasoning pretaining task is removed,
highlighting the importance of this task in imbuing
numerical abilities into our model. More details of
this experiment can be found in Appendix A.4.

14668



5.3 Human and ChatGPT Evaluation

As discussed in §5.1, reference-based metrics like
BLEU have relatively low correlations with hu-
man judgments (Belz and Reiter, 2006; Tan et al.,
2015; Liu et al., 2023a), and generated texts with
very high such scores can be of a very poor quality
(Smith et al., 2016). Therefore, we decided to con-
duct a human evaluation to measure the quality of
summaries generated by different models. We fo-
cus on following criteria in the chart summarization
task:(1) Informativeness; (2) Factual Correctness;
and(3) Semantic Levels that characterize the con-
tent of the summary. More details about the criteria
can be found in Appendix A.5.

We randomly picked 150 sample charts from
Chart2text Statista test split and asked 3 human
annotators to rate four summaries for each chart
based on informativeness out of 1 to 5. The order
of exposure of summaries to the annotator was ran-
domized to avoid any potential bias. Summaries
for each chart were rated by one annotator except
for the first 100 charts for which we had two an-
notators to measure the agreement. We computed
Krippendorff’s alpha (Krippendorff, 2011) to mea-
sure inter-annotator agreement and found a mod-
erate level of agreement with an alpha coefficient
of 0.54. We further utilize ChatGPT for evaluating
the same 150 samples, as LLMs have demonstrated
their effectiveness as evaluators for text generation
tasks (Luo et al., 2023; Liu et al., 2023a; Gao et al.,
2023; Fu et al., 2023). We define the informative-
ness criteria and rating scheme to ChatGPT and
then employ ChatGPT to generate evaluation steps.
We then send these evaluation steps along with the
data table of the chart and the summary to ChatGPT
to obtain ratings (see Appendix A.5 for details).

Table 3 shows the result of human evaluation on
chart summarization based on informativeness cri-
teria. We notice that annotators preferred ZeroShot
version of our model which generates summaries
that are more similar to those generated by GPT,
rather than gold summaries. The finetuned ver-
sion of UniChart was also rated higher compared
to SoTA MatCha (Liu et al., 2022b). The finetuned
UniChart model also produces fewer factual er-
rors compared to Matcha and the ZeroShot version
(Appendix A.5 and Table 7). We observe that the
ratings provided by ChatGPT are roughly consis-
tent with the human annotators’ scores in terms of
informativeness criteria. Moreover, we conducted
a statistical test (p-value) for ratings from humans

and ChatGPT, with the null hypothesis that the rat-
ings are two independent samples. The p-values
in each row in Table 3 demonstrate that it is very
infrequent that two rating samples are independent
based on the observed ratings. Also in terms of
different semantic contents, the ZeroShot model
tends to contain more sentences with high-level
visual patterns and trends. A previous study finds
that such high-level insights lead to more reader
takeaways compared to the text describing low-
level visual encodings like axes and colors (Stokes
et al., 2022). Overall, the results above suggest that
UniChart model’s summaries are more informative
with high-level insights and factually accurate than
the SoTA (MatCha).

5.4 Time and Memory Efficiency

UniChart exhibits significant time efficiency com-
pared to MatCha, as shown in Fig. 4. The gap
in speed is more evident on tasks that require the
generation of long output sequences (e.g., Chart-to-
Text). This difference in speed can be attributed to
MatCha’s use of a long input sequence (4K) with a
quadratic increase in complexity while UniChart’s
vision encoder relies on sliding windows with a
local attention mechanism that scales linearly with
the input image size. Moreover, UniChart boasts
a smaller parameter count (201M) compared to
MatCha (282M), further contributing to its effi-
ciency. As a result, UniChart is highly suitable for
real-world applications that prioritize fast inference
speeds. More details are provided in Appendix A.7.

5.5 Error Analysis and Challenges

We conducted a manual analysis of our model’s
outputs to identify key challenges faced by existing
models.
• Densely populated charts: Our model struggles
with extracting insights from chart images that con-
tain numerous data elements densely packed in a
limited area. This is evident in Figure Fig. 9 (Q3)
where our model generates a hallucinated summary
due to the complexity of the chart. Increasing
model parameters and input image resolution could
potentially improve performance in these cases.
• Numerical reasoning: Despite efforts to incor-
porate mathematical skills, our model still encoun-
ters difficulties with complex arithmetic calcula-
tions (Q2 in Fig. 9). Addressing this challenge
involves decoupling arithmetic calculations and rea-
soning steps by employing external program execu-
tors that perform the calculations using the equa-
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tions generated by our model (Gao et al., 2022).
• Factual correctness in generated summaries:
Factual correctness still poses a challenge for au-
toregressive language models (Lin et al., 2022; Ope-
nAI, 2022; Zhao et al., 2023). Although our fine-
tuned UniChart model produced fewer factual er-
rors compared to MatCha (see Table 7), it still gen-
erates some incorrect statements (see Q4 in Fig. 9).
This issue can be attributed to factual errors in the
pretraining captions generated by ChatGPT.

6 Conclusion

We present UniChart, a general purpose pretrained
model designed for a broad range of chart-related
tasks. Our model incorporates chart-specific pre-
training tasks and is trained on a large and diverse
collection of charts and corresponding summaries
collected opportunistically using LLMs. We con-
ducted both human and ChatGPT evaluations to
show the superiority of our method. While our
model sets the state-of-the-art record on four differ-
ent downstream tasks and showed improved time
and memory efficiency, the evaluation also reveals
opportunities for improvement. We believe that
our model and pretraining data will be valuable
resources for future research and encourage further
exploration in this relatively new area.

Limitations

While UniChart exhibits state-of-the-art perfor-
mance on several benchmarks, it suffers from sev-
eral limitations. Despite the remarkable abilities
on the ChartQA dataset, the model still struggles to
answer questions that involve compositional mathe-
matical operations. Moreover, we have noticed that
the model may hallucinate and produce factually
incorrect statements on the text generation tasks
such as Chart-to-Text and OpenCQA.

Despite the generalizability of our model on un-
seen chart image styles (WebCharts), there’s still
a noticeable drop in performance compared to the
performance on the tasks on which the model is
finetuned (e.g., ChartQA). Hence, there’s still a
need for better generalizable chart models for the
diverse charts on the Web. One direction is to en-
large our pretraining datasets by crawling millions
of chart images from the Web. Since most charts on
the Web do not provide high-quality captions or the
underlying data table, self-supervised pretraining
objectives are needed to benefit from these charts.

Due to the limited computing resources, we did

not investigate the effect hyperparameter tuning
might have on the performance on the different
downstream tasks. Also, although we have noticed
the convergence of UniChart at the end of the sec-
ond stage pretraining, we can not confirm whether
further pretraining may improve the performance
of our model.

Ethics Statement

During the dataset collection process, we made
sure to comply with the terms and conditions of
the different websites we used to crawl our data.
Statista6 provide a permissive license to use their
publicly available data for scientific purposes. Pew
Research Centre 7 also provide a permissive license
to use their data with the condition that we attribute
it to the Centre. OECD8 allows the users to down-
load and publish their data as long as they give ap-
propriate credit to the OECD website. For OWID9,
all their data are provided under the Creative Com-
mons BY license which gives the permission for
downloading and publication. Web Data Com-
mons10, which we used in the data augmentation
process, allows the usage of their data under the
conditions of the Apache License Software which
gives the right to download and publish. Finally, all
the remaining datasets (PlotQA, Beagle, ChartInfo,
ExcelChart400K, LineCap, and Neural Captions)
are publicly available datasets which were released
in earlier scientific publications.

Due to the generative nature of our models, they
may be abused for misinforming the public by gen-
erating factually incorrect responses. Moreover,
we can not guarantee that our models may not pro-
duce texts that may contain hate speech or harmful
content.
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A Appendices

A.1 Data Augmentation
During the data augmentation process, we mainly
utilized two of the most popular visualization li-
braries: D3 (Bostock et al., 2011) and Vegalite
(Satyanarayan et al., 2016). Moreover, we have
introduced a range of visual variations in terms of
color scheme, elements dimensions, shapes, back-
ground, .etc (see Fig. 2). This makes our generated
chart images closely resemble the real-world charts
found on the Web.

A.2 Data Augmentation by Knowledge
Distillation

We select the small dataset (3700 charts) from
PlotQA and the augmented charts from WDC,
since these datasets are accompanied by the un-
derlying data tables which serve as suitable chart
representation for LLMs. Also, they cover a wide
range of topics which contributes to the diversity
in the generated summaries (§3.1). Fig. 3 shows
our process for generating summaries for the charts
that have underlying data tables using InstructGPT
model (Ouyang et al., 2022). The input mainly
consists of one demonstration (table-caption pair)
followed by the desired chart data table. The output
is the generated summary. Using this mechanism,
we generated a small dataset of 3,700 samples. We
then finetuned Flan-T5 XL (Chung et al., 2022) on
this dataset. To our knowledge, Flan-T5 was the
SoTA open-sourced instruction-tuned model during
the development of our dataset. After finetuning
on our task, we (qualitatively) observed similar per-
formance as text-davinci-003. At the final
step, we used the finetuned Flan-T5 model to gen-
erate summaries for all the charts that do not have
an associated summary (e.g., PlotQA, augmented
charts, OWID and OECD charts). In this process,
we added around 470K summaries for charts in our
pretraining corpus. Fig. 5 shows some examples
generated by the finetuned Flan-T5.

To benefit more from the capability of GPT mod-
els in generating high-quality summaries, we fur-
ther prompt ChatGPT (gpt-3.5-turbo) (Ope-
nAI, 2022) to generate summaries for the charts
from Statista and Pew Research and put these in
our pretraining corpus instead of the original sum-
maries in the Chart-to-Text benchmark (Shankar
et al., 2022). In most cases, we found the sum-
maries from ChatGPT to be more elaborate and of
better writing style. For the Pew Research Centre
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Chart Type Linguistic Statistics

Datasets Bar Line
Pie #Charts #Vocab Avg. Character Avg. Token

Two-Col Multi-Col Two-Col Multi-Col

Statista 71.9% 15.3% 8.3% 2% 2% 19,143 24,392 111.37 21.88
OWID 51.9% 0.0% 9% 38.9% 0.0% 60,624 3,721 85.89 16.96
OECD 49.1% 0.0% 3.1% 47.7% 0.0% 64,380 1,606 65.47 14.67
PlotQA 11.2% 55.6% 6.7% 26.2% 0.0% 157,070 2,230 155.32 33.21
Beagle 29.8% 27.3% 24.7% 17.9% 0.0% 3,972 11,361 78.76 20.55
ChartInfo 31.7% 51.0% 8.6% 8.6% 0.0% 1,796 13,329 120.75 26.11

Data Augmentation 13.3% 49.3% 11.7% 11.1% 14.3% 189,836 117,244 85.62 21.16

ExcelChart400K 11.5% 32.7% 12.0% 22.3% 27.7% 106,897 515,922 138.68 27.72
PewResearch 11.4% 55.5% 4.4% 21.9% 6.5% 5,295 38,165 477.33 98.08
LineCap 0.0% 0.0% 15.9% 84.0% 0.0% 2,821 16,570 102.11 24.62
Neural Caption 0.0% 0.0% 100% 0.0% 0.0% 100 389 117.56 27.43

Total 21.95% 36.56% 9.23% 23.71% 9.39% 611,934 888,522 114.70 25.01

Table 4: Chart type distribution and linguistic statistics of the chart pertaining corpus. The charts in the last group
(magenta) do not come with an underlying data table. The charts generated by the data augmentation process are
shown in blue.

Datasets #Vocab Avg. Char Avg. Token Avg. Sentence

Statista 72,725 450.28 106.68 4.46
OWID 58,212 463.48 105.99 4.47
OECD 24,752 414.97 95.08 4.78
PlotQA 112,394 666.09 149.84 5.20
Data Aug. 162,239 468.41 113.46 4.49
PewResearch 13,449 604.04 133.01 4.66
LineCap 2018 110.82 26.24 1.87
Neural Caption 1338 262.84 53.28 3.58

Table 5: Statistics about the captions of the datasets used in
LM pretraining.

charts, the underlying data tables are not provided.
However, we have observed that the underlying
data values are written on the visual elements in
most of these charts. Hence, we decided to use
an OCR tool to extract the layout-preserving texts
from the chart images, and then feed it into Chat-
GPT to generate the summaries as shown in Fig. 6.
We realized that ChatGPT is capable of understand-
ing a chart from the OCR data.

A.3 Dataset Analysis

The linguistic characteristics of the textual ele-
ments vary across different datasets, with charts
from PlotQA and PewResearch often having longer
text elements (e.g., axis labels, legends, titles),
while augmented data and Beagle datasets contain
shorter text (Table 4, right). In Table 5, we further
provide linguistic statistics for the summaries of
the datasets used in the summary generation task
at pretraining.

A.4 Ablation study

To further assess the impact of our different pre-
training objectives on our model’s performance,
we conducted ablation studies. Due to computa-
tional limitations, we focused on pretraining the
model only on the lower image size (512x512) and
compared it against the corresponding main model
(512x512). From Table 8, we observe that remov-
ing the Chart Summarization or Open-ended Ques-
tion Answering objectives led to a slight decrease
in performance on ChartQA. We attributed this to
the abundance of numerical reasoning examples
in pretraining. However, removing the Numerical
Reasoning pretaining task led to a substantial de-
crease in performance on ChartQA, highlighting
the importance of this task in imbuing numerical
abilities into our model. Pretraining the model with-
out the Data Table Generation objective resulted
in a relatively weak performance in the ChartQA
benchmark, underscoring the importance of under-
standing underlying data tables of charts in answer-
ing reasoning questions.

A.5 Human and ChatGPT Evaluation

As discussed in section §5.3, we evaluate the fol-
lowing three criteria in the human evaluation study:
(1) Informativeness which measures how much in-
formation from the chart the summary covers. Ide-
ally, an informative summary should contain high-
level insights from the chart, such as important
patterns, trends, and outliers in data; (2) Factual
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Experiment # Epochs/Steps Learning Rate Batch Size GPUs Saving Mechanism

Pretraining

First-stage/ablations 300K steps 1e-4 160 4xA100 82GB each 50K steps
Second-stage 100K steps 1e-4 80 4xA100 82GB each 50K steps

Finetuning (main 960x960 model)

ChartQA 20 epochs 5e-5 24 4xV100 32GB each 1 epoch
Chart-to-text Pew 200 epochs 5e-5 48 4xA100 40GB each 5 epochs
Chart-to-text Statista 100 epochs 5e-5 48 4xA100 40GB each 5 epochs
OpenCQA 200 epochs 5e-5 24 4xV100 32GB each 5 epochs

Table 6: Training details for pretraining and finetuning experiments.

Criteria ZeroShot Finetuned MatCha Gold

Factually incorrect sents 13.45% 9.63% 21.97% 3.59%

Elemental/encoded sents 19.42% 26.06% 29.61% 21.07%
Statistical/relational sents 57.41% 33.42% 34.07% 34.70%
Perceptual/cognitive sents 6.98% 1.41% 0.31% 5.39%
Contextual/domain-specific sents 1.36% 14.44% 7.32% 20.56%

Table 7: Human evaluation on summaries for 150 ran-
dom samples from Chat2text Statista test split.

Correctness which considers how accurate the sum-
mary is. A factually correct summary should only
contain information (e.g. numbers, events, enti-
ties) that is true and/or supported by the chart; (3)
Semantic Levels defined by (Lundgard and Satya-
narayan, 2021) which categorize the content of
summaries across four levels: visual encoding (e.g.,
axis, legends, color), statistical/relational (e.g., min,
max, avg.), perceptual/cognitive (e.g., describing
overall trends, complex patterns, or outliers), and
context/domain specific information. Our process
for evaluating the informativeness is explained in
§5.3. For factual correctness and semantic level
measures, the annotator goes through each sen-
tence of the summary to determine whether the
sentence contains any factual error and what levels
of semantic content are present for that sentence.
Table 7 shows the results of our human evaluation
study on factual correctness, and different semantic
levels.

Fig. 7 shows an overview of the paradigm we use
in our ChatGPT-driven evaluation study. Fig. 8 de-
picts the interface we used in our human evaluation
study.

A.6 Error Analysis

Fig. 9 shows the models performance on challeng-
ing samples. Q1 and Q2 examples are two visual
numerical reasoning questions about charts which

ChartQA

Model aug. human avg.

UniChart (512x512) 85.84 43.60 64.72
No Chart Summarization 84.96 42.72 63.84
No Open-ended Question Answering 85.52 42.96 64.24
No Numerical & Visual Reasoning 84.08 35.44 59.76
No Data Table Generation 83.84 42.24 63.04

Table 8: UniChart ablations on ChartQA benchmark.

look challenging for SoTA models. Q3 is an exam-
ple of an overpopulated chart with so many data
elements which confuses the model to generate in-
sightful summary. Finally, Q4 shows a factual error
in a generated summary from finetuned UniChart.

A.7 Time and Memory Efficiency
To compare the time efficiency, we measure the av-
erage inference time of the models on three bench-
marks: ChartQA, Chart-to-Text (Pew), and Chart-
to-Text (Statista) using 10 random samples from
each benchmark. The experiments were conducted
on Google’s Colab platform with cpu type. Over-
all, UniChart shows much faster inference times
compared to MatCha as shown in Fig. 4.

A.8 Templates for Numerical and Visual
Reasoning Question Generation

Table 9 is the list of the templates we used to gen-
erate numerical and visual reasoning questions.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 2: Visually diverse charts generated by D3 and Vegalite for WDC corpus (Fig. 2a, Fig. 2b, Fig. 2c, Fig. 2d,
Fig. 2g and Fig. 2h from D3-WDC, Fig. 2e and Fig. 2f from Vegalite-WDC. Visual factors like color scheme, width
of bars, and existence of grids and axis labels are different among the samples.
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Figure 3: An example of the performance of InstructGPT in generation summaries for data tables. On the left side,
the red text is a full example of a demonstration and its summary followed by the demonstration for the target chart.
The paragraph in green shows the summary generated by the model.

Figure 4: Average inference time for 10 random samples from three major benchmarks in chart understanding
domain for UniChart and MatCha models
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The line chart shows the amount of agricultural
raw materials, food, and fuel exports of Norway
from 1990 to 1995. Agricultural raw materials
exports decreased from 2.18% in 1990 to 1.32%
in 1993. Food exports increased from 6.94% in
1990 to 8.85% in 1994. Fuel exports increased
from 47.78% in 1990 to 51.26% in 1993.
Overall, the trend shows a decrease in the
amount of agricultural raw materials, food, and
fuel exports of Norway from 1990 to 1995.

The line chart displays the number of domestic
takeoffs and takeoffs abroad of air carriers
registered in Israel over a six-year period from 1998
to 2003. The number of flight takeoffs started at
50,100 in 1998, increased to 51,010 in 1999, then
decreased to 56,427 in 2000, decreased further to
47,648 in 2001, increased to 49,404 in 2002, and
decreased again to 46,334 in 2003. Therefore, the
chart depicts a fluctuating trend of the number of
flight takeoffs of air carriers registered in Israel
during the six-year period, with an overall
decreasing trend from 1998 to 2003.

The line chart shows the statistical performance of
individual players from Delaware Valley and
Widener in a football game on November 10, 2012.
The categories measured are number of carries
(NO), yards gained (YDS), average yards per
carry (AVG), longest gain (LG), and touchdowns
scored (TD). Among the players, Lewis Vincent
had the most carries (5.09) and yards gained
(64.09), with an impressive average of 13.09 yards
per carry. Chris Ruiz also had a strong
performance, with an average of 8.42 yards per
carry and 0.42 touchdowns scored. Meanwhile,
Mike Anusky had the fewest carries (1.42) and
yards gained (6.09), but still managed to score a
touchdown. Overall, the chart shows that the
players from both teams had varying levels of
performance in the game.

The bar chart compares the performance of two
high school girls soccer teams, Fleetwood and
Trinity, in a game. Both teams had a goal
difference of 1.0, with Fleetwood scoring 1.0 goal
and Trinity scoring 0.0. Both teams had 0.0 in
shots on goal, saves, points, and corner kicks.
However, Fleetwood had 4.0 shots on goal, 7.0
saves, 2.0 points, and 6.0 corner kicks, while
Trinity had 8.0 shots on goal, 3.0 saves, 2.0 points,
and 3.0 corner kicks. Overall, the chart shows
that both teams had similar performances in the
game, with Fleetwood scoring 1.0 goal and
Trinity scoring 0.0.

The bar chart shows the results of the
Vital Leeds poll in chronological order for
seven teams: Huddersfield, Hull City,
Ipswich, Leeds United, Middlesbrough,
MK Dons, and Preston. All teams had a
score of 0.0 in the poll, indicating that they
had not been voted on yet. This suggests
that the team was not yet considered to be
a clear favorite in the poll, and that the
results of the poll may be skewed by the
outcome of the next few games.

The pie chart shows the results of the
Hungarian Grand Prix motor race in 2020,
categorized by the winner of the race. The
winner of the race was Sebastian Vettel, who
accounted for 17% of the total results, followed
by Daniil Kvyat at 33%, and Daniel Ricciardo
at 50%. This chart indicates that the race was
closely contested, with all three drivers finishing
within a close margin of each other.

The line chart displays the number of non-fatal
injuries from terrorist attacks over a nine-year
period from 1970 to 1982. The x-axis shows the
number of non-fatal injuries, while the y-axis
shows the number of fatalities. The number of
non-fatal injuries increased from 4.23 in 1970 to
271.09 in 1980, before decreasing to 42.18 in
1981. Overall, the chart shows an increasing
trend in the number of non-fatal injuries from
terrorist attacks during the nine-year period,
with a slight decrease in 1978.

The bar chart shows the number of one-year-olds
who did not receive the vaccine against diphtheria,
pertussis, and tetanus (DTP3) in 2000 for five
countries: Lebanon, Eritrea, Iran, Comoros, and Sri
Lanka. Lebanon had the highest number of one-
year-olds who did not receive the vaccine with
13,958 while Eritrea had 12,089 and Iran had
11,401. Comoros had 5,467 and Sri Lanka had 3,291.
The data suggests that there is a significant
variation in the number of one-year-olds who did
not receive the vaccine against diphtheria, pertussis,
and tetanus across these countries.

The bar chart compares the number of patents on
environment technologies between Canada and
Mexico. Canada has 6.8 patents on environment
technologies, while Mexico has 26.3. This indicates
that Mexico has more than double the number of
patents on environment technologies compared to
Canada. This suggests that Mexico is more active in
the field of environment technologies.

Figure 5: Examples of summaries generated by Flan-T5 XL model after fine-tuning.
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The chart shows the percentage of U.S. teens, ages
13 to 17, who feel overwhelmed by drama, excluded
by friends, pressured to post content for likes, or
worse about their life due to social media. Girls are
more likely than boys to feel overwhelmed by drama,
excluded by friends, and worse about their life. Around
45% of girls report feeling overwhelmed by drama,
while only 32% of boys feel the same. Similarly, 37%
of girls report feeling excluded by their friends
compared to 24% of boys. Regarding pressure to post
content for likes, 32% of boys and 27% of girls feel
this pressure. Finally, 28% of girls and 18% of boys
report feeling worse about their own life due to social
media. Overall, the chart suggests that social media
has a greater negative impact on the mental health of
teen girls than teen boys.

Analyze the following chart in one paragraph.
Teen girls more likely than teen boysto say social
media has made them feel overwhelmed by drama,
excluded by friends or worse about their life
%ofU.S. teens whosay thatin general, what theyseeonsocial media makes
themfeela lot or little...
                                                                             U.S.
                                                                             teens
                                             Boys     Girls
     Overwhelmed because ofall               320      045                     38
                    the drama

     Liketheir friends are leaving        240 -037                            31
               them outofthings

Pressure to post content thatwill
                                           270032                             29
    getlots of comments or likes

       Worse about their own life - 18       28                               23
                                     0                  50             100

Note: Teensare thoseages 13to 17.Thosewho did notgivean
answerorwhogaveother
responses are not shown.
Source: Survey conducted April 14-May4,2022.
"Connection, Creativityand Drama: Teen Life on Social Media in 2022"
   PEW RESEARCH CENTER

ChatGPT

Generated SummaryOCR text extracted from chart

Figure 6: An example of the layout-preserved OCR-extracted text for a PewResearch chart image where the
underlying data table is not available. The extracted text is then given to ChatGPT to generate a summary. ChatGPT
can still extract and comprehend important information and insights from the layout-preserving text of the chart
image.

1. Read the summary carefully and ensure understanding of the
information presented in the chart data table.

2. Evaluate the informativeness of the summary by assessing how
much information from the data table is covered.

3. Rate the informativeness of the summary on a scale of 1 to 5,
with 1 being not informative at all and 5 being highly informative
and containing all key insights.

4. Consider whether the summary effectively conveys the key
information from the chart data table and is factually accurate.

5. Provide specific feedback on areas for improvement, if necessary.

ChatGPTYou will be given one summary written for a chart. Your task is to rate
the summary on one metric and provide appropriate feedback.

Evaluation Criteria: Informativeness (1-5) - It measures how
informative the generated summary is. In other words,
informativeness measures how much information from the data table
of the chart the summary covers. Ideally, an informative summary
should contain high-level insights from the chart, such as important
patterns, trends and outliers in data.

Evaluation steps:

This statistic shows the economic contribution of the travel
and tourism industry to the United Kingdom ( UK ) in 2017, by
sector. The direct contribution to GDP is approximately 93.5
billion U.S. dollars.

ChatGPT

Initial Instruction Detailed Steps Generated By ChatGPT

Evaluation:

Informativeness: 2/5

Feedback: The summary only covers one data point
from the table, which is the direct contribution to GDP. It
does not provide any information on the total
contribution to GDP, visitor exports, domestic spending,
leisure spending, business spending, or capital
investment. The summary is not informative enough as
it does not contain any key insights from the chart data
table. The summary needs to include more information
from the table in order to be more informative.

Feedback Generated By ChatGPT

Chart Sample

Summary Sample

Figure 7: The pipeline designed for the ChatGPT Evaluation Experiment. First, we feed the task description followed by our
desired criteria into ChatGPT in order to get detailed grading instructions. Then, the chart (underlying data table representation)
and a sample summary are appended to the prompt which is fed again into ChatGPT to receive the feedback.
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(a)

(b)

Figure 8: Human evaluation interface.
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Q1: What is the largest value of red bar?
Answer: 25       UniChart: 25         MatCha: 40

Q3: Summarize the chart.
UniChart ZeroShot: The line chart shows the year-on-year change in air
operations due to the outbreak of COVID-19 in Poland from March to
November 2020, broken down by major occupations. The occupations are
measured in air operations (excluding Fight operations), in wholes
(excluding Fight operations), and in wholes (excluding Fight
operations).The occupations are measured in air operations (excluding
Fight operations), in wholes (excluding Fight operations), and in wholes
(excluding Fight operations). The occupations are measured in air
operations (excluding Fight operations), in wholes (excluding Fight
operations), and in wholes (excluding Fight operations). The occupations
are measured in air operations (excluding Fight operations), in wholes
(excluding Fight operations), ................................................................. 
revehivehivehivehivehivehivehivehivehivehivehivehivehivehivehivehiveh.

Q2: What's the average of all the values in the green
bars (round to one decimal)?
Answer: 21.6        UniChart: 0.4         MatCha:0.51

Q4: Summarize the chart.
UniChart Finetuned: This statistic illustrates the
annual consumption of fluid cow milk worldwide in
2019, by country. In that year, India's fluid cow milk
amounted to 77.7 million metric tons, making it the
world's second largest consumer of milk.

Figure 9: Some challenging examples from the ChartQA and Chart-to-text benchmarks.
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Template-based Questions

1) First bar from the top/left in the second group from the top/left
2) First bar from the bottom/right in the second group from the bottom/right
3) Second bar from the bottom/right in the first group from the bottom/right
4) Second bar from the right/bottom in the first group from the left/top
5) Topmost/Leftmost bar
6) Bottommost/Rightmost bar
7) Second bar from the top/left
8) Second bar from the right/bottom
9) Leftmost topmost bar
10) Leftmost bottommost bar
11) Rightmost topmost bar
12) Rightmost bottommost bar
13) Leftmost <color> data
14) Rightmost <color> data
15) Second from the left <color> data
16) Second from the right <color> data
17) Which legend represented by <color>?
18) What is the color of <legend>?
19) Which one is greater, <x1> or <x2>?
20) Divide the sum of largest and lowest values by <n>
21) When did line <legend - label> peak?
22) What is the difference between maximum and minimum of <legend - label>?
23) Sum pie segments above <value>
24) What is the sum of top three values?
25) What is the median/mode of <legend - label>?
26) What is the negative peak of <legend - label>?
27) What is the largest/smallest value of <legend - label>?
28) Which two x-axis labels of <legend - label> sums up to <value>?
29) What is the sum of the second highest and second lowest value of <legend - label>?
30) Which x-axis label is second highest for <legend - label>?
31) What is the sum of two middle values of <legend - label>?
32) Which two x-axis labels of <legend - label> have a difference of <value> ?
33) What is the average of <legend - label> from <x - label - 1> to <x - label - 2>?
34) What is the average of the highest and lowest value of <legend - label - l>?
35) What is the sum of the average of <legend - label - 1> and average of <legend - label - 2>?
36) What is the sum/difference of the maximum of <legend - label - 1> and minimum of <legend - label - 2>?
37) Which x-axis label has the maximum/minimum difference between <legend - label - 1> and minimum of <legend - label - 2>?
38) Which x-axis label witnessed the smallest value of <legend - label>?
39) Which label contains largest/smallest values across all labels?
40) Sum up the medians of all the data series in this chart
41) What is the average of all values above <value>?
42) What is the sum of the largest and smallest difference between <legend - label - 1> and <legend - label - 2>?
43) What is the maximum/minimum difference between <legend - label - 1> and <legend - label - 2>?
44) What is the ratio of the largest to the smallest pie segment?
45) What is the ratio of the two largest/smallest segments?
46) What is the difference between the leftmost and rightmost bars?
47) What is the sum of the bars in the second group from the left?
48) What is the sum of the bars in the first group from the right?
49) What is the ratio between the two leftmost bars?
50) What is the difference between the rightmost <color - 1> bar and leftmost <color - 2> bar?
51) What is the average of <color> bars values?
52) How many <color>bars are larger than <N> ?
53) What is the average of the bars in the second group from the right?
54) How many bars in the leftmost group have a value over <N>?
55) What does the <color> represent?
56) What is the median value of the <color> bars/line?
57) What is the average of the <color - 1> sum and <color - 2> sum?
58) What is the average of the <color - 1> median and <color - 2> median?
59) What is the least difference between the <color - 1> and <color - 2> bars/line?
60) What is the ratio between the leftmost and rightmost bar in the first group from the left?
61) What is the maximum value in the <color> bars/line?
62) What is the minimum value in the <color> bars/line?
63) What is the sum of <color> bars/line?
64) What is the difference between the maximum values of the two leftmost bar groups?
65) Sum of the first <color - 1> and last <color - 2> bars/line points
66) Difference between the two lowest <color> bars
67) Add largest and smallest <color> line/bar values and divide by 2
68) What is the value of <color> line/bars in <x - axis - label>?
69) Sum/Average of <color - 1> and <color - 2> values in <x - axis - label>?
70) Sum of highest points in <color - 1> and <color - 2> lines/bars
71) Which color has the highest/smallest values?
72) How many values are equal in <color - 1> line/bar?
73) Sum two rightmost values of <color> graph
74) Product of two smallest values in the graph
75) Sum of lowest and median values of <color> graph/bars
76) When did <color> line reached the peak?
77) What is the average of the rightmost three points of <color> line?
78) How many <color> data points are above <value>?
79) What’s the ratio of the largest and the third/second-largest <color> bar?
80) Is the sum of lowest value of <color - 1> and <color - 2> bar greater than largest value of <color - 3> bar?
81) Is the median value of <color - 1> bars greater than the median value of <color - 2> bars?
82) Is the median of all the <color - 1> bars greater than the largest value of <color - 2> bar?
83) What’s the product of <color> bars in India and Japan?
84) Is the sum of the two middle bars greater than the sum of top and bottom bars?
85) What’s the ratio of the <x - axis - label - 1> <color - 1> bar and the <x - axis - 2> <color - 2> bar?
86) Is the total of all <color - 1> bars greater than the total of all <color - 2> bars?
87) Take the sum of the two smallest <color - 1> bars and smallest <color - 2> bars, deduct the smaller value from the larger value, what’s the result?
88) What is the sum/average of two smallest/largest <color> bars?
89) What is the ratio of <color - 1> and <color - 2> segments?
90) What segment is represented by <color>?

Table 9: Numerical & Visual reasoning templates.
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