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Abstract
Scaling the size of language models usually
leads to remarkable advancements in NLP
tasks. But it often comes with a price of grow-
ing computational cost. Although a sparse Mix-
ture of Experts (MoE) can reduce the cost by ac-
tivating a small subset of parameters (e.g., one
expert) for each input, its computation escalates
significantly if increasing the number of acti-
vated experts, limiting its practical utility. Can
we retain the advantages of adding more ex-
perts without substantially increasing the com-
putational costs? In this paper, we first demon-
strate the superiority of selecting multiple ex-
perts and then propose a computation-efficient
approach called Merging Experts into One
(MEO), which reduces the computation cost
to that of a single expert. Extensive experi-
ments show that MEO significantly improves
computational efficiency, e.g., FLOPS drops
from 72.0G of vanilla MoE to 28.9G (MEO).
Moreover, we propose a token-level attention
block that further enhances the efficiency and
performance of token-level MEO, e.g., 83.3%
(MEO) vs. 82.6% (vanilla MoE) average score
on the GLUE benchmark. Our code will be re-
leased upon acceptance. Code will be released
at: https://github.com/Shwai-He/MEO.

1 Introduction

Scaling language models has achieved promising
progress in the field of NLP (Brown et al., 2020;
OpenAI, 2023). To further increase the model size
under a computational budget, sparsely activated
networks (Du et al., 2022; Artetxe et al., 2022) only
employ a few parameters for each input. A widely
studied approach is the Mixture-of-Experts (MoE,
Shazeer et al., 2017), which trains multiple expert
networks but only selects a subset of them for
a specific input (Jacobs et al., 1991; Jordan and
Jacobs, 1994). Compared to dense networks of
the same model size, MoE effectively reduces
computational costs.

∗Corresponding author

Figure 1: Performance vs. FLOPs of MoE and MEO
at the token level when different numbers of experts
(i.e., 1, 2, 4, 8, 16, 32) are selected. We take three
different sizes of BERT as the expert model.

Although increasing the experts selected for
each input can improve the representation diver-
sity (Yang et al., 2019) and downstream task per-
formance (Shazeer et al., 2017; Yang et al., 2019), it
usually comes with a price of significantly growing
computational cost. Our empirical study (Figure 1
and Table 1) verifies the Pros and Cons (superior
performance vs. high computational cost) of se-
lecting multiple experts at MoE inference. Hence,
to retain the advantage of MoE on computational
efficiency, existing work mainly selects only one
expert per input in applications or experiments (Fe-
dus et al., 2021), which inevitably compromises
the performance.

Our work aims to improve the computational
efficiency of MoE inference with multiple experts
selected, for greatly rejuvenating the compromised
performance. The computation involved in MoE
primarily consists of the inference on each selected
expert and the summation of their outputs, with
the former dominating the cost. Hence, the cost
linearly grows with the number of selected experts.
To overcome the computational bottleneck, we in-
stead propose Merging Experts into One (MEO),
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Figure 2: The diagrams of (a) MoE and (b) our proposed MEO, with a case of m = 2 experts are selected. MoE
linearly combines the outputs from experts, while MEO first merges experts into one and then computes the input.

which alters the calculation order of the two op-
erations, i.e., first merging the parameters of the
selected experts into one expert followed by infer-
ence on the merged expert. Since the parameter
merging only requires summation, an MEO layer
(approximately) only consumes the computation of
single-expert inference, no matter how many ex-
perts are selected. This leads to a nearly constant
inference cost when scaling up the model capacity
(i.e., the number of selected experts) to improve
the performance.

MEO can be applied as a drop-in replacement
for MoE, which has been deployed at various lev-
els, e.g., selecting experts for each token (Shazeer
et al., 2017), each sequence (Ye et al., 2022), each
task (Kudugunta et al., 2021), etc. On the se-
quence/task level, our empirical studies demon-
strate that replacing MoE with MEO significantly
improves computational efficiency, e.g., reducing
FLOPs from 72.0G to 28.9G, without hurting the
performance. In addition, we propose a token-level
attention mechanism that further enhances the effi-
ciency and performance, e.g., from 82.6% (MoE)
to 83.3% (MEO) on BERT-Base (Figure 1).

2 Methodology

Review of Mixture of Experts. Given a token
xi in the input sequence x ∈ Rs×d, MoE selects
m experts from n (m ≤ n) experts (E1, . . . , En)
based on a gating network. We denote G as the gat-
ing scores and T as the indices of selected experts.
MoE linearly combines the outputs of selected ex-
perts:

yi =
∑

k∈T
Gk(xi) · Ek(xi). (1)

MoE performs at various levels, e.g., token, se-
quence, and task, where MoE selects experts based
on a single token, input sequence, or task embed-

ding (or task ids):

G(xi) =





GATE(xi), Token-level
GATE( 1

s

∑s
i=1 xi), Sequence-level

GATE(task_ids), Task-level
, (2)

where “GATE” denotes the gating function.

Table 1: Effects of the number of selected experts on
performance. The best results are bold.

m #FLOPs. SST-2 STSB MNLI QNLI Avg.

1 7.5G 87.1 86.1 77.8 85.8 84.2
2 9.6G 87.9 86.8 78.2 86.2 84.8
4 13.9G 88.2 87.1 78.3 86.4 85.0
8 22.5G 88.3 87.7 79.1 86.8 85.5
16 39.7G 88.4 87.5 78.8 86.6 85.3
32 74.1G 88.2 87.6 78.6 86.3 85.2

Motivation. While many predominant MoE mod-
els tend to select the top-1 expert (Fedus et al.,
2021), selecting multiple experts has the potential
of boosting the representation power (Chen et al.,
2020; Yang et al., 2019). Empirically, we conduct
preliminary experiments on the BERT-Small (Bhar-
gava et al., 2021) to verify it.

In Table 1, it is evident that selecting multiple
experts contributes to better performance. Even
though selecting excessive experts is suboptimal as
it introduces the interference between experts that
hinders the performance (Mustafa et al., 2022; Zhu
et al., 2022), our preliminary experiments necessi-
tates the selection of multiple experts.

However, selecting more experts leads to a sub-
stantial increase in FLOPs (e.g., 74.1G v.s. 7.5G
when increasing m from 1 to 32). This phe-
nomenon urges us to reflect whether there exists
an efficient approach to achieve both high perfor-
mance and computational efficiency. Our goal is
to ensure consistent computational cost, regardless
of the number of selected experts.
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Merging Experts into One. The computation
cost of MoE primarily involves the computation
of individual experts (i.e.,

∑
k∈T O(Ek)) and the

mixture of outputs from experts (i.e., O(G) and
O(

∑
k∈T Gk · Ek)). Notably, the computation of

individual experts plays a dominant role, with even
the cost of a single expert being significantly out-
weighing that of the mixture:

O(Ek)≫ O(G) +O(
∑

k∈T
Gk · Ek), (3)

where O(·) measures the computational cost.
On the other hand, as the number of selected

experts m increases, the term
∑

k∈T O(Ek) ex-
periences a substantial increase, whereas the in-
crease in O(

∑
k∈T Gk · Ek) is marginal. There-

fore, it is essential to address the growing trend of∑
k∈T O(Ek) to enhance computational efficiency.
As illustrated in Figure 2, we propose the method

called Merging Experts into One (MEO), where
the key idea is to leverage the gating scores to
aggregate the parameters of the selected experts
(which is akin to the simple weighted model fusion
mechanism (Li et al., 2023)):

Ŵi =
∑

k∈T
Gk(xi) ·Wk, b̂i =

∑

k∈T
Gk(xi) · bk, (4)

where Wk, bk represent the weight and bias of the
k-th expert, while Ŵi, b̂i are the aggregated weight
and bias for xi. The output of MEO is given by:

yi = σ(Ŵixi + b̂i), (5)

where σ represents the activation function.
The computation cost of MEO primarily con-

sists of O(σ(Ŵixi + b̂i)), O(
∑

k∈T Gk · Wk),
O(

∑
k∈T Gk · bk), and O(G). Among them,

O(σ(Ŵixi + b̂i)) is the dominant factor. It is
worth noting that O(σ(Ŵixi + b̂i)) is equivalent
to the computation cost of a fully connected net-
work and independent of the number of selected
experts. Therefore, MEO compresses computation
costs significantly.

MEO at Different Levels. In the case of se-
quence and task level MEO, all tokens within a
sequence share the same gating scores, as well as
the aggregated parameters Ŵ and b̂ 1. This property
allows for easy adoption of MEO at these levels.

1we omit subscripts of Ŵ and b̂ at the sequence and task
level given each token shares the same aggregated parameters.

However, when directly applying MEO at the
token level, the situation is different. Since the
gating scores of each token within a sequence are
unique, the straightforward usage of MEO would
require the aggregation of multiple sets of weights
and biases, resulting in increased deployment cost.
Therefore, we refine and enhance the framework of
token-level MEO specifically.

Token-Level MEO. Our proposed token-level
MEO aims to incorporate token-level information
with minimal extra computational cost. Specifi-
cally, the expert selection is performed at the se-
quence level, thereby preserving context informa-
tion and eliminating the necessity of aggregating
multiple weights and biases for individual tokens.
To capture the identification of each token, we
leverage the token attention mechanism inspired by
Houlsby et al. (2019); Li et al. (2021).

Specifically, given the input sequence x ∈ Rs×d,
we employ a specialized bottleneck block, inspired
by adapter-like structures (Houlsby et al., 2019;
Pfeiffer et al., 2021). The bottleneck layer incor-
porates down-projection weights Wdown ∈ Rd× d

r ,
an activation function f and up-projection weights
Wup ∈ R

d
r
×d, with reduce factor r = 64 that en-

sures low extra computational cost. By operating
on each token individually, the bottleneck applies
token-level attention to the input sequence x:

x← x+ f(xWdown)Wup. (6)

With the inclusion of token identification in the
updated input, MEO performs aggregation of Ŵ
and b̂ through sequence-level expert selection. Sub-
sequently, these aggregated Ŵ and b̂ are used to
compute the output in conjunction with the input.

3 Empirical Evaluation

Experimental Setup. Experiments were con-
ducted on Four widely-used benchmarks, span-
ning understanding and generation tasks: (1)
GLUE (Wang et al., 2019), containing understand-
ing tasks like natural language inference, sentiment
analysis, and sentence similarity evaluation; (2)
XSum (Narayan et al., 2018), a summarization
dataset where the models are required to generate
a short summary for a given article; (3) WikiText-
2 (Merity et al., 2016), a collection of over 100
million tokens extracted from the set of verified
Good and Featured articles on Wikipedia where the
models are utilized to generate the next tokens; (4)
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Table 2: Empirical results for MEO and MoE in task-level (task) and sequence-level (seq). We also report the
performance of vanilla feedforward layers (“Vanilla”) as a reference. The shown results are the averaged score for 5
runs. The best results are bold. ✶ indicates the method with the fewest the fewer FLOPs (“Vanilla” is not included).

Method #FLOPs. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg

Vanilla 28.5G 54.6 91.1 84.6 85.8 90.2 80.6 90.4 66.4 80.5
MoEtask 72.0G 58.5 91.3 85.8 89.2 90.5 82.7 90.5 69.3 82.2
MEOtask ✶28.9G 59.1 91.2 85.5 89.3 90.4 83.0 90.9 68.9 82.3
MoEseq 72.0G 59.8 91.5 86.5 89.5 90.6 83.4 90.7 70.4 82.8
MEOseq ✶28.9G 60.1 91.9 86.3 89.4 90.7 83.7 91.2 70.3 83.0

SQuAD v1.1 (Rajpurkar et al., 2016), a pair-wise
dataset for questions and Wikipedia paragraphs
where models select the answer span to the ques-
tion from the paragraph.

We follow Zhong et al. (2022a,b); He et al.
(2023a) to conduct experiments on the widely-used
GLUE benchmark, containing understanding tasks
like natural language inference, sentiment analy-
sis, sentence similarity evaluation, etc. We use
Adam (Kingma and Ba, 2015) as the optimizer
with β1, β2 = 0.9, 0.98. For regularization, we set
the weight decay as 0.1 and grid-search the learning
rate from {1e-5, 5e-5, 1e-4, 5e-4}, where we warm
up the learning rate in the first 10% steps (of the
total training steps). For different data scales, we
grid-search the training epoch and batch size from
{5, 10, 15, 20}, and {8, 16, 32, 64}, respectively.
The maximum length is 128 for GLUE, 1024 for
WikiText, and 384 for SQuAD. For XSum, we set
the max length of source articles to be 512 and
the max length of the target summary to be 128.
We follow previous works (Phang et al., 2018; Lee
et al., 2020; Dodge et al., 2020; Wang et al., 2022;
He et al., 2023b) to fine-tune the pretrained lan-
guage models, e.g. BERT (Devlin et al., 2019), on
the downstream training set and report results using
the last checkpoint.

Main Results. Following Shazeer et al. (2017);
Gao et al. (2022), we conduct experiments on
BERT-Base (Devlin et al., 2019) and replace feed-
forward layers (“Vanilla”) with MoE or MEO, with
the setting m = 4 and n = 16. In Table 2, we
carefully compare our proposed MEO with MoE at
task and sequence levels, in terms of computational
efficiency and performance. Compared to MoE,
MEO significantly reduces the computation cost
while achieving comparable performance. Specifi-
cally, compared to vanilla feed-forward layers, the
Floating Point Operations (FLOPs) of MEO only
increase marginally (i.e., about 1%), while MoE
multiplies the FLOPs about 2.53 times.

1 2 4 8 16
Selected Experts

15

20

25

30

35

40

45

In
fe

re
nc

e 
Ti

m
e 

(s
)

MoE MEO

Figure 3: Comparison of inference time between
MoE and MEO under a series of different numbers
of selected experts (i.e., 1, 2 , 4, 8, 16).

Analysis of Reduced Computation. Compared
to a fully connected layer, MEO only intro-
duces computation in gating network O(G(x))
and merging experts (i.e., O(

∑
k∈T Gk ·Wk) and

O(
∑

k∈T Gk · bk)). The additional computation is
minimal compared to that of individual experts.

In practice, we use eight NVIDIA V100 Tensor
Core GPUs to measure the inference time of MEO
and MoE on BERT-Base when selecting different
numbers of experts (i.e., n = 1, 2, 4, 8, 16). Infer-
ence time is calculated by the total running time
on the MNLI validation dataset with batch size 16.
According to Figure 3, as the number of selected
experts increases, the inference time of MEO is
relatively consistent, while MoE exhibits a signif-
icantly increased inference time. This highlights
the advantage of MEO in computational efficiency,
which becomes even more pronounced as the num-
ber of selected experts grows.

Table 3: Comparison between MEO and MoE with
different activation function usage (i.e., activation
function within (in) and outside (out) experts).

Method FLOPs SST-2 QQP MNLI QNLI Avg.

Vanilla 7.5G 86.9 89.1 77.2 85.2 84.6
MoEin 22.6G 87.9 89.4 77.8 85.7 85.2
MoEout 22.5G 87.6 89.2 78.0 85.6 85.1
MEO ✶7.7G 88.1 89.7 78.2 86.2 85.6
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Figure 4: Performance comparison between token
level MoE and MEO, where we take BERT-Small as
the backbone with the setting m = 8 and n = 32.

Analysis of Activation Function. In many cases
where an expert Ei represents a linear layer without
a nonlinear activation function, the output of MEO
(yi = σ(Ŵixi + b̂i)) is equivalent to that of MoE
(yi = σ(

∑
k∈T Gk · (Wkxi + bk))). However, if

the expert Ei involves an activation function, the
output of MoE is yi =

∑
k∈T (Gk · σ(Wkxi + bk)),

which leads to differences in outputs and poten-
tially in performance. As depicted in Figure 3, we
compare MEO with MoE with different usage of
activation, where we consider two scenarios: activa-
tion function within or outside experts. The results
demonstrate that the performance gap between the
two scenarios is minimal and indicates the effec-
tiveness of MEO in handling expert networks that
incorporate activation functions.

Table 4: Performance of Token-Level MEO, where
we take BERT-Large as the backbone with the setting
m = 2 and n = 8.

Method FLOPs SST-2 MRPC STSB QNLI Avg.

Vanilla 87.2G 93.2 86.8 89.1 91.8 90.2
MoE 139.0G 93.7 87.2 89.7 92.2 90.7
MEO ✶91.2G 94.1 87.5 89.8 92.4 91.0

Effectiveness of Token-Level MEO. For MEO
at the token-level MEO, we have incorporated
token-level attention blocks. To assess the deploy-
ment cost of newly added blocks, we first calculate
the extra parameters and FLOPs, with BERT-Small
as the backbone. The extra cost of added blocks is
minimal (i.e., 0.6M parameters and 0.15 GFLOPs).
Furthermore, in Figure 4, we present a performance
comparison between token level MEO and MoE in
four natural language understanding tasks, where
MEO outperforms MoE consistently across these
tasks, e.g., 78.9% v.s. 78.1% on MNLI. For the av-
erage score on the GLUE benchmark, MEO boosts
the performance significantly, i.e. 83.3% v.s. 82.6%

on BERT-Base and 77.8% v.s. 77.3% on BERT-
Small.

We also implement the token-level MEO on
BERT-Large, utilizing 8 experts and selecting 2
experts, resulting in a model with about 1.75 bil-
lion parameters. As demonstrated in Table 4, MEO
consistently enhances performance across various
tasks, e.g., 0.4% improvement in SST-2 when com-
pared to MoE. Notably, the additional computa-
tional cost is minimal, with only a 4.0 GFLOPs
increase over the Vanilla model. Therefore, token-
level MEO proves to be an efficient and effective
alternative to token-level MoE.

Transfer to different architectures and tasks.
Utilizing MEO in BERT architectures enhances
computational efficiency and performance, and we
further validate the effectiveness of MEO on a wide
range of architectures for different tasks. In Table 5,
we use BART-Large (Lewis et al., 2020) for XSum
(Narayan et al., 2018), GPT-2-Small (Radford et al.,
2019) for WikiText (Merity et al., 2016), and T5-
Base (Raffel et al., 2020) for SQuAD (Rajpurkar
et al., 2016). MEO and MoE are deployed at the
token level. Considering the limited computation
resource, we set m = 2 and n = 8 for BART and
GPT-2, while m = 4 and n = 16 are set for T5.

Clearly, MEO outperforms the standard MoE in
three tasks, showing its universality in both natural
language understanding and generation.

Table 5: Effectiveness on different architectures and
tasks. XSum, WikiText, and SQuAD are evaluated with
ROUGE-2 (R2.), Perplexity (PPL), and Exact Match
(EM), respectively.

Method XSum WikiText SQuAD

FLOPs R2. FLOPs PPL FLOPs EM

Vanilla 369.4G 21.9 295.4G 21.9 90.2G 81.6

MoE 576.6G 22.2 412.2G 21.1 221.3G 82.0
MEO ✶383.6G 22.4 ✶303.2G 20.9 ✶93.5G 82.1

4 Conclusion

In this work, we systematically investigate the com-
putational cost of the Mixture of Experts. Based
on our findings, we propose a drop-in replacement
called Merging Experts into One (MEO) to enhance
computational efficiency. Additionally, we propose
a Token-Level attention mechanism that further
boosts performance. Our study empirically indi-
cates the potential to make MEO a golden standard
efficient architecture within the NLP community.
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5 Limitations

Despite the progress we have made, there are still
limitations in our work. While our architecture for
the mixture of experts demonstrates improved ef-
ficiency, there is a need for further exploration in
terms of its deployment. Specifically, determining
the optimal number of experts in specific layers
and selecting different levels of MoEs require ad-
ditional investigation. We believe that with the
implementation of efficient deployment strategies,
our method has the potential to become even more
competitive.
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