
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 14740–14752
December 6-10, 2023 ©2023 Association for Computational Linguistics

CP-BCS: Binary Code Summarization Guided by Control Flow Graph and
Pseudo Code

Tong Ye1, Lingfei Wu2, Tengfei Ma3, Xuhong Zhang1, Yangkai Du1

Peiyu Liu1, Shouling Ji1, Wenhai Wang1∗,
1Zhejiang University; 2Anytime.AI; 3Stony Brook University

{tongye,zhangxuhong,yangkaidu,liupeiyu,sji,zdzzlab}@zju.edu.cn
lwu@anytime-ai.com, tengfei.ma@stonybrook.edu

Abstract
Automatically generating function summaries
for binaries is an extremely valuable but chal-
lenging task, since it involves translating the ex-
ecution behavior and semantics of the low-level
language (assembly code) into human-readable
natural language. However, most current works
on understanding assembly code are oriented
towards generating function names, which in-
volve numerous abbreviations that make them
still confusing. To bridge this gap, we focus
on generating complete summaries for binary
functions, especially for stripped binary (no
symbol table and debug information in real-
ity). To fully exploit the semantics of assem-
bly code, we present a control flow graph and
pseudo code guided binary code summariza-
tion framework called CP-BCS. CP-BCS uti-
lizes a bidirectional instruction-level control
flow graph and pseudo code that incorporates
expert knowledge to learn the comprehensive
binary function execution behavior and logic
semantics. We evaluate CP-BCS on 3 different
binary optimization levels (O1, O2, and O3) for
3 different computer architectures (X86, X64,
and ARM). The evaluation results demonstrate
CP-BCS is superior and significantly improves
the efficiency of reverse engineering.

1 Introduction

Most commercial off-the-shelf software is closed-
source and typically distributed as stripped binaries
that lack a symbol table or any debug information
(e.g., variable names, function names). This prac-
tice is mainly done for easy distribution, copyright
protection, and malicious evasion. Professionals
seeking to analyze these stripped binaries must per-
form reverse engineering and inspect the logic at
the binary level. While current binary disassem-
blers, such as IDA Pro (Hex-Rays, 2021) and Ret-
Dec (Avast Software, 2021), can translate machine
code into assembly code, the assembly representa-
tion only consists of plain instruction mnemonics

∗ Corresponding author.

with limited high-level information, making it dif-
ficult to read and understand, as shown in Figure
1. Even an experienced reverse engineer needs to
spend a significant amount of time determining the
functionality of an assembly code snippet.

1. mov rax, [rdi]
2. test rax, rax
3. jz short loc_FFFFFFFF81752D04
4. push rbp
5. mov rbp, rsp
6. push rbx
7. mov rbx, rdi
8. mov rdi, [rax+8]
9. test rdi, rdi
10. jz short loc_FFFFFFFF81752CE2
11. mov rax, [rax]
12. mov rax, [rax+48h]
13. call qword ptr [rax+28h]
14. mov rax, [rbx]
15. mov rdi, [rax]
16. call sub_FFFFFFFF8175287F
17. mov rdi, [rbx]
18. call sub_FFFFFFFF8114766E
19. mov qword ptr [rbx], 0
20. mov eax, 0
21. pop rbx
22. pop rbp
23. retn

Figure 1: A sample of assembly code. The function
name is: gss_del_sec_context. The summary is: free
all resources associated with context_handle.

To mitigate this issue, researchers have made
initial attempts, with recent studies focusing on pre-
dicting function names of binaries (Gao et al., 2021;
Jin et al., 2022; Patrick-Evans et al., 2023). Func-
tion name prediction is the process of automatically
generating a function name for a given assembly
code snippet, which aims at showing the high-level
meaning of the function. As shown in Fig 1, the
target function name is “gss_del_sec_context”. Al-
though some progress has been achieved in func-
tion name prediction, function names themselves
can only partially and superficially represent the
semantics of assembly code. Furthermore, function
names frequently contain various abbreviations and
custom tokens defined by developers (e.g., “gss”,
“del”, “sec” in the example above). Consequently,

14740

relying solely on function names can make it diffi-
cult to obtain an accurate description of an assem-
bly code snippet and may even cause confusion.

We argue that generating a high-quality descrip-
tive summary is a more direct and fundamental ap-
proach to strike at the essence compared to function
name prediction (e.g., “free all resources associ-
ated with context_handle.” in the Figure 1). Similar
tasks have been extensively studied at the source
code level (known as source code summarization)
for languages such as Python and Java (LeClair
et al., 2020; Shi et al., 2021; Wu et al., 2021; Guo
et al., 2022c). At the source code level, researchers
typically rely on advanced code analysis tools to
extract fine-grained code structure properties and
leverage the high-level semantic information inher-
ent in the source code itself. However, assembly
code, a low-level language, often lacks high-level,
human-readable information and is prone to ambi-
guity. Moreover, the absence of fine-grained assem-
bly code analysis tools makes it more challenging
to gain a semantic understanding of assembly code.
Furthermore, we discover that current large lan-
guage models, such as ChatGPT (OpenAI, 2022),
generally possess only a rudimentary understand-
ing of assembly code without high-level abstract
semantic comprehension (shown in Appendix A).

In this paper, we specifically concentrate on
binary code summarization in stripped scenarios,
which is a highly practical setting, and present CP-
BCS. The novel CP-BCS framework comprehen-
sively represents the execution behavior and seman-
tics of assembly code from three different perspec-
tives inspired by observing how human engineers
analyze assembly code in practice. (1) Assem-
bly Instruction: the assembly instructions them-
selves provide certain features such as memory
operations and setting of register values. In addi-
tion, we also take into account some meaningful
strings that remained in stripped binaries, such as
the name of externally called function. (2) Con-
trol Flow Graph: to obtain the logical execution
order of the assembly code, we extract the Control
Flow Graph (CFG) of the assembly code. Con-
sidering the order relationship between adjacency
instruction, we augment the original basic-block
level CFG to a Bidirectional Instruction-level Con-
trol Flow Graph (BI-CFG). (3) Pseudo Code: due
to the difficulty of understanding assembly code,
plugins that attempt to decompile assembly code
into high-level, C-like language (known as Pseudo

Code) are available. Although many of the result-
ing pseudo codes are imprecise and usually cannot
be compiled, it still encompasses expert knowl-
edge and understanding derived from human re-
verse engineers. Furthermore, considering the lack
of meaningful high-level strings in pseudo code in
realistic scenarios, inspired by pre-trained models
such as CodeT5’s (Wang et al., 2021) great per-
formance in source code-related tasks, we explore
the potential of utilizing such pre-trained models to
recover missing semantic strings in pseudo code on
stripped binaries. Our objective is to further narrow
the gap between pseudo code and natural language
by leveraging the capability of pre-trained models.

To facilitate further research in this area, we have
made our dataset and code publicly available 1. In
summary, the contributions of this paper can be
outlined as follows:

• To the best of our knowledge, CP-BCS is
the first system for practically stripped binary
code summarization. CP-BCS fully learns the
execution behavior and semantics preserved
in binary functions from three perspectives.

• We manually construct a comprehensive
dataset, which is the first dataset to include
{assembly code, summary} pairs for three dif-
ferent computer architectures (X86, X64, and
ARM) and three different optimization levels
(O1, O2, and O3).

• We conduct extensive experiments to evalu-
ate the effectiveness of CP-BCS. The results
on both automatic metrics and human evalua-
tion demonstrate the superiority of CP-BCS.
In particular, the human evaluation indicates
that CP-BCS can significantly improve the ef-
ficiency of reverse engineers’ comprehension
of binary functions.

2 Related Works

Function Name Prediction in Binary. Function
name prediction is a task for binaries aimed at
generating binary function names. NFRE (Gao
et al., 2021) proposes two data-preprocessing ap-
proaches to mitigate the ambiguity of function
names. SYMLM (Jin et al., 2022) proposes a neural
architecture by learning context-sensitive behavior-
aware code embedding. However, they still have

1https://github.com/tongye98/BinaryCodeSummary

14741

https://github.com/tongye98/BinaryCodeSummary

CFG
mov rax, [rdi]
test rax, rax

jz short loc_81752D04

push rbp
mov rbp, rsp

push rbx
mov rbx, rdi

mov rdi, [rax+8]
test rdi, rdi

jz short loc_81752CE2

mov rax, [rax]
mov rax, [rax+48h]

call qword ptr [rax+28h]

mov rax, [rbx]
mov rdi, [rax]

call sub_8175287F
mov rdi, [rbx]

......
pop rbx
pop rbp
retn

__int64 __fastcall sub_FFFFFFFF81752CBF(_QWORD *a1)
 {_QWORD *v1; // rax

v1 = (_QWORD *)*a1;
 if (!*a1)
 return 0x80000LL;
 if (v1[1])
 (*(void (**)(void))(*(_QWORD *)

(*v1 + 72LL) + 40LL))();
 sub_FFFFFFFF8175287F(*(_QWORD *)*a1);
 sub_FFFFFFFF8114766E(*a1);
 *a1 = 0LL;
 return 0LL;}

Pseudo Code

3
1

2

BI-CFG

BI-CFG Encoder

4
5

Pseudo Code Encoder

Fine-tuned CodeT5

Refined Pseudo Code

Assembly Instruction
Encoder

mov rax[rdi]test
String Feature

Masked
Self Attention

Pseudo Code
Multi-Head

Cross Attention

Assembly code
Multi-Head

Cross-Attention

BI-CFG
Multi-Head

Cross-Attention

Feed Forward Network

Decompilation

Construction
Assembly Code
mov rax, [rdi]
test rax, rax
jz short loc_81752D04
push rbp
mov rbp, rsp
......
mov eax, 0
pop rbx
pop rbp
retn

Disassemble

Figure 2: The overall architecture of CP-BCS.

not solved the ambiguous function name issues.
XFL (Patrick-Evans et al., 2023) performs multi-
label classification and learns an XML model to
predict common tokens found in the names of func-
tions from C binaries in Debian. As XFL predicts
labels instead of whole function names, it is able
to predict names for functions even when no func-
tion of that name is contained in the training set.
The biggest difference between them and us is that
we directly generate function summary sentences
rather than a few function name tokens.

Source Code Summarization. Both binary and
source code summarization aim to generate a con-
cise and human-readable summary of a given code
snippet. However, there are many sophisticated
tools available for source code, such as parsers
and token-level code analysis tools, which can
help with the summarization process. Based on
these tools, many approaches propose exploiting
source code’s structural properties, including Ab-
stract Syntax Tree, Program Dependency Graph in
a hybrid way (Iyer et al., 2020; Choi et al., 2021;
Shi et al., 2021; Zhu et al., 2022), or structured-
guided way (Son et al., 2022; Guo et al., 2022c;
Ye et al., 2023). In contrast, binary code analy-
sis tools are much coarser and can only achieve
basic functionalities such as block jumping and
function cross-referencing. In summary, source
code summarization is generally easier due to the

human-readable nature of the code, preservation
of information, and availability of tools. Binary
code summarization, on the other hand, is more
challenging due to its lower-level representation,
loss of information, and ambiguity.

3 Methodology

3.1 Overview
Our proposed CP-BCS framework is designed as
a plugin in the disassembler, such as IDA Pro
or an online service2, which automatically gen-
erates a human-readable descriptive summary for
stripped functions. The whole architecture of CP-
BCS is presented in Figure 2. As a prerequisite,
the stripped binary is disassembled into assembly
code by IDA Pro, and the functions in the binary
are correctly recognized. The assembly code is
then input into CP-BCS, which is essentially an
encoder-decoder architecture, to ultimately gener-
ate the corresponding summary. CP-BCS consists
of three encoders (Assembly Instruction Encoder,
BI-CFG Encoder, and Pseudo Code Encoder) and
a summary decoder. Next, we elaborate on the
principle and implementation of CP-BCS.

3.2 Assembly Instruction Encoder
To understand the semantics of binary functions,
the assembly code itself is the first-hand source that

2http://www.binarycodesummarization.com

14742

http://www.binarycodesummarization.com

can be utilized. It composes of a series of instruc-
tions, each of which is responsible for performing
an action, such as reading and writing register or
memory addresses. Each instruction is composed
of an opcode (e.g., mov, add) and one or more
operands (e.g., rax, [rdi]). We treat each opcode
and operand as a separate token. This is because
each opcode or operand carries its own semantic
information, and we aim to learn the semantics of
each word as finely as possible rather than treating
the entire instruction as one token, like in binary
function name prediction (Gao et al., 2021).

Although stripped binaries lack symbol tables
and debugging information, we have found that
there is still some string information in the assem-
bly code, such as the names of externally called
functions, which we called string features. These
string features provide additional high-level infor-
mation that can help to some extent in understand-
ing the behavior of the assembly code.

We input the assembly tokens and string features
into the Assembly Instruction Encoder (AIEnc).
The AIEnc is essentially a Transformer encoder
(Vaswani et al., 2017), which consists of stacked
multi-head attention and parameterized linear trans-
formation layers. Each layer emphasizes on self-
attention mechanism. Considering that the seman-
tic representation of the opcode and operand does
not rely on the absolute positions, instead, their
mutual interactions influence the meaning of the
assembly code. To achieve this, we adopt a rela-
tive position encoding (Shaw et al., 2018) instead
of an absolute position to better learn the seman-
tic representation of each assembly token. The
assembly code snippet is assumed to consist of p
tokens [t1, t2, ..., tp], after AIEnc, each token has
a corresponding semantic representation, which is
denoted as:

[h1, h2, ..., hp] = AIEnc([t1, t2, ..., tp])

3.3 BI-CFG Encoder
In order to better understand the structure and exe-
cution behavior of assembly code, we extract the
Control Flow Graph. A canonical CFG is com-
prised of basic blocks and jump control flows. The
nodes portray basic blocks, and the edges portray
jump control flows, as shown in the upper left cor-
ner of Figure 2. However, it should be noted that
canonical CFGs are based on basic blocks, which
overlook the sequential execution relationships be-
tween adjacent instructions within basic blocks.

Further, traditional CFGs are unidirectional, which
means each instruction cannot receive informa-
tion from the instruction executed after it. To ad-
dress these limitations, we propose a Bidirectional
Instruction-level Control Flow Graph (BI-CFG).
BI-CFG treats each instruction as a node and incor-
porates the logical execution order between instruc-
tions, as well as the jumps control flow between
basic blocks, achieving a level of granularity at
the instruction level. Furthermore, BI-CFG allows
each instruction to aggregate node features from
both forward and backward instructions, enabling
bidirectional processing.

To improve the representation ability of BI-CFG,
advanced graph neural networks are adopted to
achieve this goal. Taking advantage of the GAT’s
(Veličković et al., 2018) exceptional performance
and its ability to assign adaptive attention weights
to different nodes, we employ GAT Encoder (GA-
TEnc) to represent each node in the BI-CFG. The
GATEnc layer processes the BI-CFG by first aggre-
gating the neighbors of the instruction nodes with
edge information. It then updates the instruction
nodes with the aggregated information from their
neighborhoods. After updating the node informa-
tion, the node representations are put together into
a ReLU activation followed by residual connec-
tion (He et al., 2016) and layer normalization (Ba
et al., 2016). Assuming the BI-CFG contains q in-
struction nodes [n1, n2, ..., nq], after the GATEnc,
each node has a semantic representation:

[r1, r2, ..., rq] = GATEnc([n1, n2, ..., nq])

3.4 Pseudo Code Encoder
Considering that assembly code is extremely low-
level and hard to comprehend, there is a large gap
between it and natural language summary. How-
ever, plugins are available that can facilitate the
comprehension of assembly code by decompiling
it into pseudo code. Compared to assembly code,
pseudo code is a higher-level C-like language and
can narrow the gap and alleviate the difficulty for
reverse engineers to analyze assembly code. Al-
though the generated pseudo code is not precise
and often cannot be compiled, it still embodies ex-
pertise and comprehension derived from human re-
verse engineers. We believe that integrating pseudo
code with expert knowledge can facilitate a more
comprehensive comprehension of the semantics of
assembly code from an alternative perspective.

However, in real-world stripped scenarios,

14743

pseudo code often lacks meaningful strings, such
as variable and function names, which are replaced
by placeholders. This inspires us to explore ways to
recover these missing strings as much as possible.
With the emergence of pre-trained models, such
as CodeT5 (Wang et al., 2021), Unixcoder (Guo
et al., 2022a), which have demonstrated remark-
able performance on source code-related tasks, we
are motivated to consider utilizing the pre-trained
models’ comprehension of source code and natural
language to recover the missing semantic strings
in pseudo code to the fullest extent possible. To
achieve this goal, we take the pseudo code decom-
piled from the stripped binary as input and the cor-
responding pseudo code decompiled from the non-
stripped binary as the target to fine-tune CodeT5,
as shown in Figure 3. We expect the fine-tuned
CodeT5 can recover meaningful strings in the orig-
inal pseudo code, such as function names, variable
names, and other comments, etc. Following such
recovery, the original pseudo code is enriched with
more high-level string content, which we refer to
as refined pseudo code.

For refined pseudo code, we employ an addi-
tional encoder, known as Pseudo Code Encoder
(PSEnc), that is identical to the AIEnc for repre-
sentation learning. Assuming the refined pseudo
code contains n tokens [p1, p2, ..., pn], after PSEnc,
each token has a semantic representation, which is
denoted as:

[v1, v2, ..., vn] = PSEnc([p1, p2, ..., pn])

3.5 Summary Decoder
The summary decoder is designed with modified
Transformer decoding blocks. At time step t, given
the existing summary tokens [s1, s2, ..., st−1], the
decoding blocks first encode them by masked multi-
head attention. After that, we expand the Trans-
former block by leveraging three multi-head cross-
attention modules to interact with the three en-
coders for summary decoding, as shown on the
right side in Figure 2. A multi-head cross-attention
module is applied to the pseudo code token fea-
tures to obtain the first-stage decoded representa-
tion. This representation is then passed through
another multi-head cross-attention module over the
learned assembly token features for the second-
stage decoding, which is further fed into the third
multi-head cross-attention module over the learned
instruction node features for the third-stage decod-
ing. Then the decoded summary vectors are put

__int64 __fastcall sub_FFFFFFFF81752CBF(_QWORD *a1)
 {_QWORD *v1; // rax

v1 = (_QWORD *)*a1;
 if (!*a1)
 return 0x80000LL;
 if (v1[1])
 (*(void (**)(void))(*(_QWORD *)

(*v1 + 72LL) + 40LL))();
 sub_FFFFFFFF8175287F(*(_QWORD *)*a1);
 sub_FFFFFFFF8114766E(*a1);
 *a1 = 0LL;
 return 0LL;}

Pseudo Code
in stripped

binary

__int64 __fastcall gss_delete_sec_context(_QWORD *a1)
 {_QWORD *v1; // rax
 v1 = (_QWORD *)*a1;
 if (!*a1)
 return 0x80000LL;
 if (v1[1])
 (*(void (**)(void))(*(_QWORD *)

(*v1 + 72LL) + 40LL))();
 gss_mech_put(*(_QWORD *)*a1);
 kfree(*a1);
 *a1 = 0LL;
 return 0LL;}

Pseudo Code
in non-stripped

binary

Figure 3: Fine-tune CodeT5 using Pseudo Code from
stripped binary and corresponding Pseudo Code from
non-stripped binary.

into a feed-forward network for non-linear transfor-
mation.

4 Dataset Construction and Statistics

4.1 Dataset Construction

It is non-trivial to obtain high-quality datasets for
binary code summarization in the stripped scenario.
The construction process of the entire dataset is
shown in Figure 4.

① Preliminary Survey. We conduct a prelimi-
nary investigation with 15 reverse engineers from
academia and industry to explore the types of bina-
ries that reverse engineers encounter in their daily
work, as well as other related questions (further
details can be found in Appendix B). Additionally,
we also include binaries commonly utilized in other
binary-related tasks, such as binary clone detection
(Ding et al., 2019; Yang et al., 2022). In total, we
identify 51 corresponding binary projects in real-
world scenarios. The specific binary projects are
listed in Appendix C.

② Source Code Collection. Based on the prelim-
inary survey, we collect these 51 binary projects
and their corresponding source code from Github
or their official websites.

③ Compiled Source Code. We manually com-
pile these binary projects using the compiler (gcc-
7.3.0) into three different optimization levels (O1,
O2, O3) for three different computer architectures
(X86, X64, ARM). It is noted that each binary file
contains nine different variants.

14744

Preliminary
Survey

Binary
Projects

Collection
Source Code

Stripped
Binary

Binary

Assembly
Code

Summary

Dataset

1

2

4

3

5

67

Figure 4: The construction process of the dataset.

④ Summary Extraction. We extract separate
function-summary pairs from the source code. Spe-
cially, we extract functions and the associated com-
ments marked by special characters “/**” and “*/”
over the function declaration. These comments
can be considered as explanations of the functions.
We filter comments inside the function, and the
first sentence was selected as the summary, which
is consistent with the approach used in extracting
summary in the source code summarization domain
(Hu et al., 2018a; Liu et al., 2021). As a result, we
get {function_name, summary} tuples.

⑤ Binary Stripping. To ensure consistency with
the real stripped scenario, we employ the “strip
-s” command to strip the binary. The strip opera-
tion removes sections such as “debug”, “symtable”,
“strtab”, etc., resulting in the elimination of sym-
bol tables and all debugging information from the
binary file.

⑥ Binary Disassembling. We use IDA Pro (Hex-
Rays, 2021) to disassemble the original binary and
the stripped binary to obtain their corresponding as-
sembly code. We then separate the assembly code
at the function level. For the assembly code from
the original binary, we extract tuples in the form
of {function_name, function_boundaries}. How-
ever, in the stripped binary, the function name is
replaced by a placeholder sub_address, but the
function boundaries remain unchanged whether
or not the binary is stripped. For the assembly
code from the stripped binary, we extract triplets in
the form of {sub_address, stripped assembly code,
function_boundaries}.

⑦ Making of Pairs. Initially, we use the func-
tion_boundaries as indices to assign the function
name to the function in the stripped binary. Next,
we use function_name as indices to connect the
summary and the corresponding stripped assembly
code together. Finally, we construct pairs in the for-
mat of {stripped assembly code, summary}, which
forms instances of the final Dataset.

4.2 Dataset Statistics

Datasets (Arch: X64) O1 O2 O3
Train 12,801 11,949 10,812

Validation 1,600 1,494 1,351
Test 1,599 1,493 1,351

Assembly Code: Avg. tokens 213.08 222.61 316.47
BI-CFG: Avg. nodes 42.57 44.83 57.54
BI-CFG: Avg. edges 62.78 69.14 93.84

Pseudo Code: Avg. tokens 228.65 243.32 359.99
Summary: Avg. tokens 9.74 9.58 9.68

Table 1: Dataset statistics for X64 architecture with (O1,
O2, and O3) optimization levels.

Table 1 displays the statistics of three datasets
under three optimization levels on the X64 archi-
tecture. Each specific architecture and optimization
level corresponds to a specific dataset. The statis-
tics of the datasets for two other architectures (X86,
ARM) and some additional explanations about the
datasets can be found in Appendix D.

5 Experiments

5.1 Experimental Setup
Out-of-Vocabulary. The vast operators in assem-
bly code may produce a much larger vocabulary
than natural language, which can cause Out-of-
Vocabulary problem. To avoid this problem, in-
spired by related studies (Gao et al., 2021; Patrick-
Evans et al., 2023), we empirically set the follow-
ing rules to normalize assembly code:

• Retaining all the mnemonics and registers.

• Replacing all the constant values with <Posi-
tive>, <Negative> and <Zero>.

• Replacing all internal functions with <ICall>.

• Replacing all the destinations of local jump
with <JumpAddress>.

Metrics. Similar to source code summarization,
we evaluate the binary code summarization perfor-
mance using three widely-used metrics, BLEU (Pa-
pineni et al., 2002), METEOR (Banerjee and Lavie,

14745

2005) and ROUGE-L (Lin, 2004). Furthermore, to
provide a more accurate reflection of actual per-
formance, we have designed a human evaluation
that includes three aspects: Similarity (the sim-
ilarity between CP-BCS generated summary and
the ground-truth), Fluency (the fluency level of the
results generated by CP-BCS) and Time-Cost (to
what extent our model can improve the efficiency of
reverse engineering). Further details on the human
evaluation are deferred to Appendix E.

Training Details. We implement our approach
based on NVIDIA 3090. The batch size is set to 32
and Adam optimizer is used with an initial learning
rate 10−4. The training process will terminate af-
ter 100 epochs or stop early if the performance on
validation set does not improve for 10 epochs. In
addition, we leverage greedy search during valida-
tion and beam search (Koehn, 2004) during model
inference and set beam width to 4.

5.2 Main Results

ARCH OPT BLEU ROUGL-L METEOR
ARM O1 29.75 27.84 16.81
ARM O2 29.56 27.67 15.98
ARM O3 26.66 24.26 14.03
Avg. - 28.66 26.59 15.61

X86 O1 26.57 25.04 13.50
X86 O2 25.74 23.74 13.34
X86 O3 26.38 25.04 13.24
Avg. - 26.23 24.60 13.36

X64 O1 26.86 26.62 14.59
X64 O2 25.50 23.64 12.70
X64 O3 25.14 23.92 13.30
Avg. - 25.83 24.73 13.53

Table 2: CP-BCS overall performance across different
architectures (ARCH) and optimizations (OPT).

We first evaluate the overall performance of CP-
BCS on our datasets. As shown in Table 2, the
BLEU metric falls within the range of 20-30, in-
dicating that "the gist is clear, but has grammati-
cal errors" according to Google interpretation3 of
BLEU. Besides, there are two interesting findings:
(1) CP-BCS performs better on the ARM archi-
tecture compared to X86 and X64. On average,
CP-BCS on ARM outperforms X86 and X64 by

3https://cloud.google.com/translate/automl/
docs/evaluate. Intervals of 10-19 indicate that the summary
is "hard to get the gist", while intervals of 30-40 mean the
summary is "understandable to good translations".

2.43 and 2.83 BLEU points, respectively. This is
attributed to the simpler and more flexible Reduced
Instruction Set Computing (RISC) architecture of
ARM, while X86 and X64 rely on the Complex
Instruction Set Computing (CISC) with a larger
number of operation codes and registers to support
complex mathematical operations, making it more
challenging for CP-BCS to understand their assem-
bly codes. (2) CP-BCS performs better under
the O1 optimization level compared to O2 and
O3. Through our empirical observation of assem-
bly code under different optimization levels, the
O2 and O3 optimization levels employ abundant
advanced techniques such as vectorization instruc-
tions and loop unrolling to improve program exe-
cution speed but generate more complex assembly
code. By contrast, O1 uses simpler methods, such
as register allocation and basic block reordering,
without generating overly complex assembly code,
which can also be reflected in dataset statistics in
Table 1. Thus, the assembly code generated by
O1 is relatively simpler and easier for CP-BCS to
extract semantic features.

5.3 Baselines and Ablation Study

Model BLEU ROUGL-L METEOR

Assembly Code Only 22.88 18.82 11.09

Pseudo Code (CodeT5) 22.89 22.04 11.89

Pseudo Code (CodeT5+) 24.14 23.83 12.48

Pseudo Code (UniXcoder) 23.17 22.65 12.35

CP-BCS w/o Pseudo Code 24.50 21.54 12.35

CP-BCS w/o BI-CFG 24.37 21.75 12.53

CP-BCS w/o Refined 25.61 23.20 13.12

CP-BCS (Full Model) 26.86 26.62 14.59

Table 3: Baselines and ablation study results on the
dataset for X64 architecture with O1 optimization level.

Baselines. While binary function name predic-
tion methods exist and have made processes, such
as mitigating the ambiguity of function names (Gao
et al., 2021) and converting to multi-label classi-
fication (Patrick-Evans et al., 2023), their entire
workflow and goals differ greatly from our task.
Therefore, it is difficult to directly compare the per-
formance of these methods with our approach. We
adopt “Assembly Code Only” and “Pseudo Code”
as our baselines. The formal solely uses assembly
code to generate the summary, while the latter uses
the corresponding pseudo code and summary pairs
to fine-tune pre-trained models, such as CodeT5

14746

https://cloud.google.com/translate/automl/docs/evaluate
https://cloud.google.com/translate/automl/docs/evaluate

(Wang et al., 2021), CodeT5+ (Wang et al., 2023)
and UniXcoder (Guo et al., 2022b). We select these
two classes as baselines because they are the most
straightforward and intuitive ways to tackle the
task.

Ablation Study. To evaluate the effectiveness of
CP-BCS components, we conduct a set of ablation
studies. We design three models for comparison,
each one removing an important component from
CP-BCS, as follows: (1) remove BI-CFG, labeled
as CP-BCS w/o BI-CFG; (2) remove pseudo code,
labeled as CP-BCS w/o Pseudo Code; (3) keep
pseudo code but without refined, labeled as CP-
BCS w/o Refined. For demonstration purposes, we
choose a dataset with a specific architecture (X64)
and optimization level (O1). The ablation experi-
ment results for other architectures and other op-
timization levels (the remaining eight groups) are
included in Appendix F. As shown in Table 3, the
performance of CP-BCS is affected when any of
these components are removed. The result of CP-
BCS w/o BI-CFG and CP-BCS w/o Pseudo Code
show that the BI-CFG and pseudo code are the most
significant learning components of CP-BCS. Re-
moving BI-CFG and pseudo code resulted in a per-
formance decrease of 2.49 and 2.36 BLEU points,
respectively. Moreover, the performance of CP-
BCS w/o Refined indicates that refined pseudo code
can further enhance the performance of CP-BCS;
a detailed case is shown in Section 5.6. Similar
conclusions can be drawn from the ablation experi-
ments on other datasets, further demonstrating the
universality of the three important components.

5.4 Human Evaluation

2

Similarity Fluency Time-Cost

Ev
al

ua
tio

n

Assembly Code Only Pseudo Code (CodeT5)

CP-BCS

0

1

3

4

5

None Function Name

Sp
ee

d
U

p

1X

2.2X

9.7X

8.1X
8.4X

1.87
2.23

3.41

2.32

3.85

4.37

Figure 5: Human evaluation. “Assembly Code Only”
and “Pseudo Code (CodeT5+)” are the two baselines.
“None” means only given assembly code; “Function
Name” means given assembly code and the correspond-
ing function name.

We conduct a human evaluation (details pro-
vided in Appendix E) to assess the quality of the
generated summaries by CP-BCS in terms of Sim-
ilarity, Fluency, and Time-Cost, as depicted in
Figure 5. The results on the similarity and fluency
metrics show that CP-BCS can generate summaries
that are more similar to the ground truth and more
fluent in naturalness. Moreover, the time-cost re-
sults indicate that CP-BCS significantly enhances
the efficiency of reverse engineers’ comprehension
of assembly code. In particular, compared to the
“None” scenario (only given assembly code), CP-
BCS improves speed by 9.7 times.

5.5 Study on the Model Structures

In this section, we evaluate the performance of CP-
BCS across varied model structures. Specially, we
investigate the impact of the sequencing among
three distinct cross-attention modules in the sum-
mary decoder on the final performance. Further-
more, we explore the implications of directly con-
catenating assembly code with pseudo code and
using a single encoder for representation.

Cross-attention Module Orders BLEU ROUGL-L METEOR

assembly code→BI-CFG→pseudo code 26.71 26.37 14.45

assembly code→pseudo code→BI-CFG 26.50 26.40 14.39

BI-CFG→assembly code→pseudo code 26.45 25.95 14.31

BI-CFG→pseudo code→assembly code 26.47 26.08 14.49

pseudo code→assembly code→BI-CFG 26.86 26.62 14.59

pseudo code→BI-CFG→assembly code 26.86 26.45 14.67

Table 4: Different cross-attention module orders on the
dataset for X64 architecture with O1 optimization level.

ARCH:X64; OPT:O1 BLEU ROUGL-L METEOR

concat (assembly + pseudo) 24.49 21.71 12.68

concat (assembly + pseudo) + BI-CFG 25.83 24.33 13.55

CP-BCS 26.86 26.62 14.59

Table 5: Directly concatenation of assembly code and
pseudo code on the dataset for X64 architecture with O1
optimization level.

Table 4 presents the performance of different
orders (first→second→third) among the three dis-
tinct cross-attention modules (assembly code, BI-
CFG, and pseudo code) in the summary decoder on
the dataset for X64 architecture with O1 optimiza-
tion level. The results shows that different orders
only have a slight impact on the final performance
(the BLEU score did not fluctuate by more than
0.5 points). In Table 5, we use “concat (assem-
bly + pseudo)” to present directly concatenating

14747

assembly code with pseudo code. The results show
that using a single encoder to represent the concate-
nated body of assembly code and pseudo code can
degrade the model’s final performance. Therefore,
assigning a separate encoder for assembly code and
pseudo code is a better choice.

5.6 Case Study of Refined Pseudo Code

Pseudo Code
(Stripped)

int __fastcall
sub_E6D18(_DWORD *a1) {
if (a1[55] != dword_162354)

return 0;
sub_E6C4C(a1);
--dword_162354;
return 1; }

Refined
Pseudo Code

int __fastcall
burn_drive_free_subs
(burn_drive *d) {
if (d->sub.nodep.cnt !=

subs_allocated)
return 0;

burn_drive_free_subs(d);
--subs_allocated;
return 1; }

Table 6: Pseudo code in stripped binary and correspond-
ing refined pseudo code.

To intuitively demonstrate the effect of refined
pseudo code, we provide a concrete example in
Table 6. In real world strip scenario, the pseudo
code decompiled from assembly code often lacks
descriptive function and variable names and in-
stead uses placeholders such as “sub_E6D18”,

“dword_162354”. To narrow the gap between
pseudo code and natural language, we utilized the
fine-tuned CodeT5 to recover meaningful names
and strings, such as “burn_drive_free_subs”,

“subs_allocated”, which provide additional seman-
tic information, even though the recovered strings
may not be entirely accurate.

6 Conclusion

In this paper, we propose the CP-BCS framework,
a novel approach that makes use of the control flow
graph and pseudo code guidance. We manually
construct the corresponding dataset that takes into
account real-world scenarios. Finally, extensive
experiments, ablation studies, and human evalua-
tions demonstrate the effectiveness of CP-BCS. In
practical applications, CP-BCS can significantly
aid reverse engineers and security analysts in effi-
ciently comprehending assembly code. We hope
that our work can serve as a baseline while further
prompting the development of this field.

Limitations

Although our approach has been proven effective, it
does not take into account code obfuscation (Men-
guy et al., 2021; Schloegel et al., 2022). Code ob-
fuscation is a technique that alters the structure and
logic of a program’s code to make it difficult to an-
alyze, preventing malicious actors from obtaining
sensitive information or exploiting its vulnerabil-
ities. We treat code obfuscation as an orthogonal
problem, and any progress made in addressing it
would be complementary to our approach.

Acknowledgements

This work was partly supported by NSFC under
No.62102360, CNKLSTISS, the Fundamental Re-
search Funds for the Central Universities (Zhejiang
University NGICS Platform), and the advanced
computing resources provided by the Supercom-
puting Center of Hangzhou City University.

References
Avast Software. 2021. RetDec: A retargetable machine-

code decompiler. https://retdec.com/.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

YunSeok Choi, JinYeong Bak, CheolWon Na, and Jee-
Hyong Lee. 2021. Learning sequential and structural
information for source code summarization. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 2842–2851, Online.
Association for Computational Linguistics.

Steven H. H. Ding, Benjamin C. M. Fung, and Philippe
Charland. 2019. Asm2vec: Boosting static repre-
sentation robustness for binary clone search against
code obfuscation and compiler optimization. In
2019 IEEE Symposium on Security and Privacy (SP),
pages 472–489.

Han Gao, Shaoyin Cheng, Yinxing Xue, and Weiming
Zhang. 2021. A lightweight framework for function
name reassignment based on large-scale stripped bi-
naries. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and
Analysis, ISSTA 2021, page 607–619, New York,
NY, USA. Association for Computing Machinery.

14748

https://retdec.com/
https://retdec.com/
https://retdec.com/
https://arxiv.org/abs/1607.06450
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/2021.findings-acl.251
https://doi.org/10.18653/v1/2021.findings-acl.251
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1145/3460319.3464804
https://doi.org/10.1145/3460319.3464804
https://doi.org/10.1145/3460319.3464804

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022a. UniXcoder: Unified
cross-modal pre-training for code representation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 7212–7225, Dublin, Ireland. As-
sociation for Computational Linguistics.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022b. UniXcoder: Unified
cross-modal pre-training for code representation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 7212–7225, Dublin, Ireland. As-
sociation for Computational Linguistics.

Juncai Guo, Jin Liu, Yao Wan, Li Li, and Pingyi Zhou.
2022c. Modeling hierarchical syntax structure with
triplet position for source code summarization. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 486–500, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Hex-Rays. 2021. IDA Pro. [Computer software].

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a.
Deep code comment generation. In Proceedings of
the 26th Conference on Program Comprehension,
ICPC ’18, page 200–210, New York, NY, USA. As-
sociation for Computing Machinery.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018b.
Deep code comment generation. In Proceedings of
the 26th Conference on Program Comprehension,
ICPC ’18, page 200–210, New York, NY, USA. As-
sociation for Computing Machinery.

Roshni Iyer, Yizhou Sun, Wei Wang, and Justin
Gottschlich. 2020. Software language comprehen-
sion using a program-derived semantics graph. In
NeurIPS 2020 Workshop on Computer-Assisted Pro-
gramming.

Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin.
2022. Symlm: Predicting function names in stripped
binaries via context-sensitive execution-aware code
embeddings. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’22, page 1631–1645, New York,
NY, USA. Association for Computing Machinery.

Philipp Koehn. 2004. Pharaoh: a beam search de-
coder for phrase-based statistical machine transla-
tion models. In Machine Translation: From Real
Users to Research: 6th Conference of the Associa-
tion for Machine Translation in the Americas, AMTA
2004, Washington, DC, USA, September 28-October
2, 2004. Proceedings 6, pages 115–124. Springer.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings of
the 28th International Conference on Program Com-
prehension, ICPC ’20, page 184–195, New York, NY,
USA. Association for Computing Machinery.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,
and Yang Liu. 2021. Retrieval-augmented generation
for code summarization via hybrid {gnn}. In Inter-
national Conference on Learning Representations.

Grégoire Menguy, Sébastien Bardin, Richard Bonichon,
and Cauim de Souza Lima. 2021. Search-based local
black-box deobfuscation: Understand, improve and
mitigate. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Se-
curity, CCS ’21, page 2513–2525, New York, NY,
USA. Association for Computing Machinery.

OpenAI. 2022. Introducing chatgpt.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.

J. Patrick-Evans, M. Dannehl, and J. Kinder. 2023. Xfl:
Naming functions in binaries with extreme multi-
label learning. In 2023 2023 IEEE Symposium on
Security and Privacy (SP) (SP), pages 2375–2390,
Los Alamitos, CA, USA. IEEE Computer Society.

Moritz Schloegel, Tim Blazytko, Moritz Contag, Cor-
nelius Aschermann, Julius Basler, Thorsten Holz, and
Ali Abbasi. 2022. Loki: Hardening code obfuscation
against automated attacks. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3055–3073,
Boston, MA. USENIX Association.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang,
Shi Han, Dongmei Zhang, and Hongbin Sun. 2021.
CAST: Enhancing code summarization with hierar-
chical splitting and reconstruction of abstract syntax
trees. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4053–4062, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

14749

https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.37
https://doi.org/10.18653/v1/2022.acl-long.37
https://ieeexplore.ieee.org/document/7780459/
https://ieeexplore.ieee.org/document/7780459/
https://hex-rays.com/ida-pro/
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1145/3196321.3196334
https://openreview.net/forum?id=AGLG_DgpE2l
https://openreview.net/forum?id=AGLG_DgpE2l
https://doi.org/10.1145/3548606.3560612
https://doi.org/10.1145/3548606.3560612
https://doi.org/10.1145/3548606.3560612
https://link.springer.com/chapter/10.1007/978-3-540-30194-3_13
https://link.springer.com/chapter/10.1007/978-3-540-30194-3_13
https://link.springer.com/chapter/10.1007/978-3-540-30194-3_13
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1145/3460120.3485250
https://openai.com/blog/chatgpt
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/SP46215.2023.00096
https://doi.org/10.1109/SP46215.2023.00096
https://doi.org/10.1109/SP46215.2023.00096
https://www.usenix.org/conference/usenixsecurity22/presentation/schloegel
https://www.usenix.org/conference/usenixsecurity22/presentation/schloegel
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/2021.emnlp-main.332
https://doi.org/10.18653/v1/2021.emnlp-main.332
https://doi.org/10.18653/v1/2021.emnlp-main.332

Jikyoeng Son, Joonghyuk Hahn, HyeonTae Seo, and
Yo-Sub Han. 2022. Boosting code summarization
by embedding code structures. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 5966–5977, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Proceedings of
the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE ’18, page
397–407, New York, NY, USA. Association for Com-
puting Machinery.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Hongqiu Wu, Hai Zhao, and Min Zhang. 2021. Code
summarization with structure-induced transformer.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1078–1090,
Online. Association for Computational Linguistics.

Jia Yang, Cai Fu, Xiao-Yang Liu, Heng Yin, and Pan
Zhou. 2022. Codee: A tensor embedding scheme for
binary code search. IEEE Transactions on Software
Engineering, 48(7):2224–2244.

Tong Ye, Lingfei Wu, Tengfei Ma, Xuhong Zhang,
Yangkai Du, Peiyu Liu, Wenhai Wang, and Shouling
Ji. 2023. Tram: A token-level retrieval-augmented
mechanism for source code summarization. arXiv
preprint arXiv:2305.11074.

Renyu Zhu, Lei Yuan, Xiang Li, Ming Gao, and
Wenyuan Cai. 2022. A neural network architecture
for program understanding inspired by human behav-
iors. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 5142–5153.

A LLMs on Assembly Code

Considering the emergence of large language mod-
els (LLMs), such as ChatGPT (OpenAI, 2022), we
made an initial attempt to explore their potential in
understanding assembly code. Through numerous
attempts, we discover that LLMs generally pos-
sess only a rudimentary understanding of assembly
code, such as memory operations and conditional
jumps, as shown in Figure 6, without any higher-
level abstract semantic comprehension.

This is x86-64 assembly code that performs
memory operations and function calls,

including conditional jumps
and setting of register values,

before returning a 32-bit integer value.

mov rax, [rdi]; test rax, rax;
jz short loc_FFFFFFFF81752D04;
push rbp; mov rbp, rsp;
push rbx; mov rbx, rdi;
mov rdi, [rax+8]; test rdi, rdi;
jz short loc_FFFFFFFF81752CE2;
mov rax, [rax]; mov rax, [rax+48h];
call qword ptr [rax+28h];
mov rax, [rbx]; mov rdi, [rax];
call sub_FFFFFFFF8175287F;
mov rdi, [rbx];
call sub_FFFFFFFF8114766E;
mov qword ptr [rbx], 0;
mov eax, 0;
pop rbx; pop rbp; retn

Input
Assembly
Code
to

ChatGPT

Figure 6: Inputting assembly code into ChatGPT.

B Preliminary Survey

We conduct a preliminary investigation that aims
to explore the types of binaries that reverse engi-
neers encounter in their daily work, the binaries
that have impeded their process, and the specific
components that they are most concerned with dur-
ing the reverse engineering process. We conduct
a survey with 15 reverse engineers from academia
and industry and analyzed the collected data using
descriptive statistics and content analysis. Our find-
ings indicate that reverse engineers face a diverse
range of binary programs, including both open-
source and proprietary software, and encounter var-
ious challenges that affect their productivity and
effectiveness. The most common types of binaries
reported by participants were operating system util-
ities, drivers, and libraries. Regarding the specific
components that reverse engineers are most con-
cerned with during the reverse engineering process,
our survey revealed that system-level functions, as
well as networking and cryptography-related com-
ponents, are the most frequently cited ones.

C Binary Projects

Table 7 displays a list of 51 binary projects and
their corresponding versions.

14750

https://aclanthology.org/2022.coling-1.521
https://aclanthology.org/2022.coling-1.521
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.1109/TSE.2021.3056139
https://doi.org/10.1109/TSE.2021.3056139
https://arxiv.org/abs/2305.11074
https://arxiv.org/abs/2305.11074
https://aclanthology.org/2022.acl-long.353/
https://aclanthology.org/2022.acl-long.353/
https://aclanthology.org/2022.acl-long.353/

Binary Projects Version Binary Projects Version
a2ps 4.14 binutils 2.30
bool 0.2.2 ccd2cue 0.5
cflow 1.5 coreutils 8.29
cpio 2.12 cppi 1.18
dap 3.10 datamash 1.3

direvent 5.1 enscript 1.6.6
findutils 4.6.0 gawk 4.2.1

gcal 4.1 gdbm 1.15
glpk 4.65 gmp 6.1.2

gnudos 1.11.4 grep 3.1
gsasl 1.8.0 gsl 2.5
gss 1.0.3 gzip 1.9

hello 2.10 inetutils 1.9.4
libiconv 1.15 libidn2 2.0.5

libmicrohttpd 0.9.59 libosip2 5.0.0
libtasn1 4.13 libtool 2.4.6

libunistring 0.9.10 lightning 2.1.2
macchanger 1.6.0 nettle 3.4

patch 2.7.6 plotutils 2.6
readline 7.0 recutils 1.7

sed 4.5 sharutils 4.15.2
spell 1.1 tar 1.30

texinof 6.5 time 1.9
units 2.16 vmlinux 4.1.52
wdiff 1.2.2 which 2.21

xorriso 1.4.8 - -

Table 7: The 51 binary projects and versions.

D Dataset Statistics and Explanations

Table 8 displays the statistics of our dataset on the
X86 architecture for the three optimization levels.
Table 9 displays the statistics of our dataset on the
ARM architecture for the three optimization levels.

Currently, the dataset we’ve constructed is
around the scale of 14k, and each sample has 9
different variants (across three computer architec-
tures and three optimization options), leading to
a total dataset size exceeding 100k. Compared to
the source code summarization tasks where data
collection is easier, the widely-used Java (Hu et al.,
2018b) and Python (Wan et al., 2018) datasets have
sizes of 70k and 80k, respectively. Although our
dataset for a single architecture and single optimiza-
tion option might appear smaller in comparison,
there isn’t a considerable difference in the order of
magnitude. Notably, our collected binary projects
are diverse, encompassing domains such as operat-
ing systems, databases, and networking. Addition-
ally, it’s important to highlight that the assembly
of our dataset necessitates manual compilation—a
process that is both rigorous and time-intensive.

Datasets (Arch: X86) O1 O2 O3
Train 12,937 12,338 11,249

Validation 1,617 1,542 1,406
Test 1,617 1,542 1,406

Assembly Code: Avg. tokens 234.00 244.10 346.74
BI-CFG: Avg. nodes 39.46 41.38 51.88
BI-CFG: Avg. edges 63.94 70.37 94.92

Pseudo Code: Avg. tokens 203.30 222.62 332.74
Summary: Avg. tokens 9.66 9.67 9.59

Table 8: Dataset statistics for X86 architecture with (O1,
O2, and O3) optimization levels.

Datasets (Arch: ARM) O1 O2 O3
Train 7,453 6,839 5,963

Validation 932 855 745
Test 932 854 745

Assembly Code: Avg. tokens 276.87 279.26 390.37
BI-CFG: Avg. nodes 37.15 40.49 51.76
BI-CFG: Avg. edges 58.96 67.42 90.34

Pseudo Code: Avg. tokens 241.36 269.40 387.84
Summary: Avg. tokens 10.11 10.27 10.18

Table 9: Dataset statistics for ARM architecture with
(O1, O2, and O3) optimization levels.

E Human Evaluation

For our human evaluation, we invited 3 PhD stu-
dents and 7 reverse engineers as volunteers. All
of our volunteers have at least 1-3 years of experi-
ence in software engineering and reverse engineer-
ing. We randomly selected 200 examples from the
dataset for volunteers to evaluate. The volunteers
are required to answer the following questions.

• Similarity: How similar are the generated
summary and ground-truth?

• Fluency: Is this generated summary syntacti-
cally correct and fluent?

• Time-Cost: The time and effort required to
understand assembly functions.

For Similarity and Fluency metric, the rating scale
is from 1 to 5, where a higher score means better
quality. For Time-Cost metric, we divide assembly
code samples into five groups, each corresponding
to one of the following scenarios: “Assembly Code
Only”, “Pseudo Code (CodeT5+)”, “None”, “Func-
tion Name”, and “CP-BCS”, as shown in the Figure
5. There are no duplicates in the assembly code
samples between any of the groups. We calculate
the average time required by each volunteer to com-
prehend each group of assembly code samples. To
ensure fairness, we attempt to maintain the same

14751

Arch: ARM
O1 O2 O3

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

Assembly 26.24 23.09 13.84 27.55 24.44 14.85 24.14 21.18 12.14

Pseudo (CodeT5) 24.66 24.25 13.44 25.22 25.20 13.00 23.97 22.90 13.33

CP-BCS w/o pseudo 28.24 25.64 15.56 29.01 26.19 14.89 25.45 22.48 13.52

CP-BCS w/o BI-CFG 28.82 26.48 16.30 28.67 26.56 15.56 24.76 21.86 12.59

CP-BCS w/o Refine 29.13 27.10 15.58 29.84 27.77 16.30 25.59 23.38 13.48

CP-BCS 29.75 27.84 16.81 29.56 27.67 15.98 26.66 24.26 14.03

Table 10: Baselines and ablation study results on the dataset for ARM architecture.

Arch: X86
O1 O2 O3

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

Assembly 21.69 16.98 9.64 18.24 12.72 6.64 21.52 17.48 9.27

Pseudo (CodeT5) 23.83 23.73 12.45 21.73 20.93 10.97 22.42 22.11 11.19

CP-BCS w/o pseudo 24.59 21.61 12.13 24.59 21.30 12.55 24.57 22.02 11.93

CP-BCS w/o BI-CFG 24.61 21.92 12.27 24.44 21.83 12.32 24.52 21.68 11.79

CP-BCS w/o Refine 25.66 23.41 12.96 25.53 23.64 13.31 25.56 23.79 12.49

CP-BCS 26.57 25.04 13.50 25.74 23.74 13.34 26.38 25.04 13.24

Table 11: Baselines and ablation study results on the dataset for X86 architecture.

Arch: X64
O1 O2 O3

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

Assembly 22.88 18.82 11.09 21.52 16.96 8.77 22.53 19.03 11.01

Pseudo (CodeT5) 22.89 22.04 11.89 22.37 21.18 10.90 20.95 19.76 10.08

CP-BCS w/o pseudo 24.50 21.54 12.35 23.76 20.24 10.58 23.83 21.20 12.19

CP-BCS w/o BI-CFG 24.37 21.75 12.53 24.40 20.87 11.06 24.36 22.23 12.45

CP-BCS w/o Refine 25.61 23.20 13.12 24.96 21.98 11.89 24.31 21.78 12.52

CP-BCS 26.86 26.62 14.59 25.50 23.64 12.70 25.14 23.92 13.30

Table 12: Baselines and ablation study results on the dataset for X64 architecture.

number and length of assembly code instructions
across all groups of samples as much as possible.

ARCH:X86; OPT:O1 BLEU ROUGL-L METEOR

CP-BCS 26.57 25.04 13.50

CP-BCS on new test set 25.69 24.98 13.38

Table 13: Scalability Evaluations.

F Detailed Experimental Results

Table 10, Table 11 and Table 12 show the experi-
ment results of CP-BCS for three different archi-
tectures and three different optimization levels.

To further demonstrate the scalability of CP-
BCS, we conducted evaluations on approximately
200 newly compiled binary functions on X86 ar-
chitecture and O1 optimization level (referred to as
CP-BCS on new test set). The results, presented in

the Table 13, demonstrate that CP-BCS on new test
set maintained similar performance, underscoring
its scalability.

14752

