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Abstract

Large language models (LLMs) take advan-
tage of step-by-step reasoning instructions, e.g.,
chain-of-thought (CoT) prompting. Building
on this, their ability to perform CoT-style rea-
soning robustly is of interest from a probing
perspective. In this study, we inspect the step-
by-step reasoning ability of LLMs with a fo-
cus on negation, which is a core linguistic phe-
nomenon that is difficult to process. In partic-
ular, we introduce several controlled settings
(e.g., reasoning on fictional entities) to evalu-
ate the logical reasoning abilities of the models.
We observed that dozens of modern LLMs were
not robust against lexical negation (e.g., plausi-
ble→implausible) when performing CoT-style
reasoning, and the results highlight unique lim-
itations in each LLM family.

� https://github.com/muyo8692/
stepbystep-reasoning-vs-negation

1 Introduction

Few-shot learning (Brown et al., 2020) has led to a
remarkable performance in large language models
(LLMs). In particular, instructions to generate a
reasoning process along with the answer, i.e., chain-
of-thought (CoT) prompting (Wei et al., 2022; Ko-
jima et al., 2022), have improved the performance
of LLMs. Building on this, the ability of LLMs to
perform CoT-style reasoning robustly is of interest
from the probing perspective—how correctly these
models perform step-by-step reasoning?; however,
to the best of our knowledge, deeper analyses have
yet to be explored fully. To address this question,
this study investigates the step-by-step reasoning
ability of LLMs with a special focus on robustness
against (lexical) negation. Historically, negation
has been challenging for neural models (Socher
et al., 2013; Kassner and Schütze, 2020), and de-
termining whether the step-by-step reasoning of
LLMs overcomes this limitation is important in the
natural language processing (NLP) community.

Is the following 
sentence 
implausible?

Is the following 
sentence 
plausible? 

May is a 
turboglide
player.
Stepover
happens in 
turboglide.
The answer is

yes

yes

Think step-by-step

LLM

May did a stepover.

May did a stepover.

❌

Figure 1: Overview of our experiments conducted to
evaluate each model’s reasoning ability against lexical
negation. The model must answer no to the latter ques-
tion about the implausibility of the sentence based on the
valid logical flow. Here, to evaluate the robust logical
skill separately, the controlled reasoning chain is given,
and the model must derive the answer based solely on
the validity of the logical flow without commonsense
knowledge due to fictional entities, e.g., turboglide.

Our controlled experiments using dozens of
LLMs, including GPT-4 (OpenAI, 2023), demon-
strate that such models deteriorate in performance
substantially when processing questions involving
words with just a negative prefix, e.g., implausible,
unreasonable (Figure 1). In addition, the results
show that each LLM family has its unique biases
against lexical negation, which suggests that dif-
ferent LLM training settings produce substantial
differences under certain conditions, and the prob-
lems to be addressed are model-dependent. These
issues clarify the exact weakness of modern LLMs.

2 Reasoning Against Lexical Negation

Given a chain of the reasoning process, we ex-
pect the LLM to derive a logically valid conclusion
even when the problem involves lexical negation
(Figure 1). In Section 2.1, we introduce the task
format, and Section 2.2 elaborates on the controlled
task settings to elucidate the abilities of the mod-
els. Note that our task is similar to CoT reasoning;
however, we provide the models with predefined
reasoning chains to facilitate controlled analyses.
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Setting Few-shot exemplars Target example If fails at this setting

BASE
Is a sentence “A does B” plausible?
A is a C player. B happens in C/X.
So the answer is yes/no.

Is a sentence “D does E” plausible?
D is a F player. E happens in F/Y.
So the answer is __

CoT-style
reasoning fails.

FIC
Is a sentence “A does B” plausible?
A is a C player. B happens in C/X.
So the answer is yes/no.

Is a sentence “α does β” plausible?
α is a γ player. β happens in γ/χ.
So the answer is __

Reasoning cannot be
abstracted to fictional
texts.

FICNEG
Is a sentence “A does B” implausible?
A is a C player. B happens in C/X.
So the answer is yes/no.

Is a sentence “α does β” implausible?
α is a γ player. β happens in γ/χ.
So the answer is __

Abstract CoT-style
reasoning is only
achieved on the
affirmative domain.

FICNEG-O
Is a sentence “A does B” plausible?
A is a C player. B happens in C/X.
So the answer is yes/no.

Is a sentence “α does β” implausible?
α is a γ player. β happens in γ/χ.
So the answer is __

Model cannot handle
domain shift in terms
of negation.

Table 1: General task format in each setting. Few-shot exemplars are first shown to a model, and then the model
answers to the target example given its question and reasoning chain. Symbols, e.g., A and α, are replaced with
certain real or fictional entities in the actual input. The REAL setting indicates that the entity choices reflect the
factual reality, and FIC. indicates that the entity choices do not reflect factual reality, e.g., Is “Judy Tate was safe at
first.” plausible? Judy Tate is a turboglide player. Getting out at first happens in turboglide. So the answer is yes.
Refer to Appendix A for the exact input.

2.1 Format: Syllogism
We evaluated the LLMs’ ability to judge the va-
lidity of particular types of syllogisms. Here, we
utilized three settings to ensure the robustness of
the results (Section 3); however, we consider the
following SPORTS TASK (SP) format as an exam-
ple to explain the settings. The base format of the
syllogism is as follows:

Premise1: PERSON is a SPORT player.
Premise2: ACTION happens in the SPORT.
Conclusion: PERSON does ACTION.

The above syllogism is converted into instances,
as shown in Table 1, comprising a question about
the validity of a particular conclusion (Is a sen-
tence...plausible?), a chain of the reasoning pro-
cess (premises), and a yes/no answer part. In the
experiments, few-shot exemplars (Table 1, column
2) were first input to a model, and then the model
completes the answer for the target example (__ in
Table 1, column 3) with yes/no. Here, the correct
answer depends on whether the SPORTS entities
mentioned in the chain (premises 1 and 2) are the
same.1 The exact input to the models is described
in Appendix A.

2.2 Controlled Task Modification
To analyze how the models struggle with negation,
we introduce presumably challenging properties

1Strictly speaking, the answer should also be unknown
when the two sports differ. In our experiments, our prompts
explicate to answer no in such cases

into the task gradually (see the examples shown in
Table 1).

BASE setting: In this setting, premises and con-
clusions are aligned with the fact, e.g., Messi did a
stepoverr is plausible; however, Messi performed a
triple axel is implausible.

Fictional setting (FIC): We do not focus on de-
riving an answer directly based on the model’s
knowledge without considering the reasoning chain.
To eliminate such a solution from the BASE setting
and ablate the effect of factuality, we replace the
PERSON and SPORT entities with fictional entities
(see Appendix C.1 for details about fictional en-
tities), where the correct conclusion can only be
derived from the premise information in a given
reasoning chain. Note that these fictional entities
are also used in subsequent settings.

In-domain negation setting (FICNEG): With
this setting, we test the model’s robustness against
lexical negation. Here, we first design an in-domain
setting where both few-shot exemplars and a tar-
get example involve lexical negation. Specifically,
we turn the original question into one that in-
volves a word with a negative prefix, e.g., plau-
sible→implausible (see Appendix B for the word
list).2 Thus, the correct answer to the question

2Testing negation in syntax, e.g., not, is another direction;
however, this incurs additional difficulties, e.g., the scope
of negation. We adopted the lexical negation as an initial
investigation
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should be flipped from yes/no to no/yes.3

Out-domain negation setting (FICNEG-O):
We design an out-domain setting where few-shot
exemplars do not involve lexical negation, but the
target example has. If a model fails at only this
setting, this implies that the model overfits to the
domain of the few-shot exemplars in terms of lex-
ical negation. In addition, FIC and FICNEG-O
differ only in terms of the existence of the negation
in the target example (this point can also be isolated
by comparing these results).

3 Experimental Settings

Task: In addition to the SPORTS TASK (SP) de-
scribed in Section 2.1, we also introduce several
different task formats. One is the OCCUPATION

TASK (OC), where the underlying reasoning is sim-
ilar to the SP task, but the vocabulary and wordings
are different:

Premise1: PERSON is a TITLE.
Premise2: OCCUPATION is described as TITLE.
Conclusion: PERSON is a OCCUPATION.

We also introduce the WEIGHT TRANSITION

TASK (WT), where the transitivity between the two
propositions is targeted:

Premise1: ANIMAL1 is heavier than ANIMAL2.
Premise2: ANIMAL2 is heavier than ANIMAL3.
Conclusion: ANIMAL1 is heavier than ANIMAL3.

All of these syllogisms are extended to the four
different levels (BASE, FIC, FICNEG, and FICNEG-
O) described in Section 2.2. See Appendix C for
setting details.

Data: For the SP task, we collected 1,000 in-
stances from the sports-understanding task in the
BIG-Bench dataset (Srivastava et al., 2022) for the
BASE setting,4 we also manually created the OC
and WT instances to be similar to the SP instances.5

We then modified these instances to create more
challenging versions (FIC, FICNEG, and FICNEG-
O). To enhance the generality of our findings, we

3We also adopt a setting involving real entities and negation
(NEG) in Appendix D. The results are generally competitive
or slightly better than those in the FICNEG setting

4Note that the SP task was originally intended to evaluate
the commonsense knowledge about sports. In contrast, we
used them to assess a pure reasoning ability by providing the
necessary facts to derive a conclusion in a reasoning chain.

5While we created 1,000 instances for the OC task, 100
instances were created for the WT task since this task is re-
garded as a supplementary one; nevertheless, quite similar
results to the other tasks were obtained.

employed 10 variants of the base words and their
corresponding negated expressions, e.g., plausi-
ble/implausible, reasonable/unreasonable. Aver-
age and standard deviation scores across these runs
were reported.

Models: We tested 14 common LLMs, e.g., GPT-
4 and 3.5 (OpenAI, 2023), four LLaMA vari-
ants (Touvron et al., 2023) , Vicuna (Zheng et al.,
2023), five OPT varisnts (Zhang et al., 2022),
BLOOM (Scao et al., 2022), and BOOMZ (Muen-
nighoff et al., 2022). Additional LLMs are tested in
Appendices E and D, including the Alpaca (Taori
et al., 2023), OPT-IML (Iyer et al., 2022), GPT-
NeoXT (Together Computer, 2023), resulting in a
total of 31 LLMs (see Appendix E for more model
details).

Inference: Three exemplars are given to the
model along with general task instructions, e.g.,
Let’s think step by step (Appendix A). Note that
the exemplars have at least one yes and one no an-
swer. We also examined different exemplar orders,
yielding consistent results independent of the ex-
emplar orders (Appendix F). Here, the answer with
the higher probability between yes and no in the
model’s outputs for the target example is consid-
ered the answer. See Appendix E.1 for additional
technical details.

Metrics: To evaluate the LLMs, the accuracy of
each model’s binary answers was measured (see
Appendix G for the F1-score results). In addition,
to quantify the output bias, we also calculated a
no-ratio, i.e., how many out of 1,000 instances the
models answered no. Note that the chance rates
of the accuracy and the expected no-ratio are 0.5
because the dataset is balanced in terms of the gold
answer distribution Appendix C.3).

4 Results, Analyses, and Discussions

Tables 2 and 3 show the average and standard
deviation of accuracy and no-ratio of each model
in the SP, OC, and WT tasks.

Consistent degradation against negation: We
found that all models demonstrated performance
degradation with the FICNEG-O setting; however,
the GPT-4 model performed above chance (Ta-
ble 2). In other words, the considered LLMs failed
to address lexical negation in CoT-style reason-
ing. We also observed a notable trend whereby the
LLMs preferred to answer no regardless of the gold
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Model
SPORTS Task OCCUPATION Task WEIGHT TRANS. Task

BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O

GPT-4 99.0±0.4 56.7±4.6 92.3±3.3 66.6±15.9 98.2±0.2 76.5±8.1 90.2±4.1 75.7±12.0 100.0±0.0 88.6±13.6 98.1±5.3 77.8±12.1

GPT-3.5 99.7±0.1 59.8±1.5 72.8±4.7 36.6±3.5 97.1±0.7 58.8±1.3 58.4±2.5 39.9±2.1 73.5±4.5 68.1±10.0 63.6±8.5 35.3±10.2

LLaMA-65B 99.8±0.0 89.0±2.9 90.7±3.0 22.8±16.5 100.0±0.0 100.0±0.1 99.9±0.1 15.5±6.3 100.0±0.0 100.0±0.0 66.0±10.1 43.6±3.8

LLaMA-30B 99.8±0.2 84.9±3.9 99.0±0.5 4.9±6.1 100.0±0.0 99.9±0.1 87.9±2.8 18.5±13.2 99.3±0.8 89.3±5.3 88.0±8.2 44.3±1.5

LLaMA-13B 98.9±0.4 77.1±2.2 50.7±1.4 23.1±8.4 99.9±0.1 72.0±5.5 91.1±4.8 43.6±1.1 83.7±5.8 91.4±6.3 82.2±8.9 46.0±0.0

LLaMA-7B 93.7±1.4 63.6±4.8 58.6±5.0 49.5±0.0 68.0±1.8 59.7±2.0 53.2±2.0 46.2±0.0 68.2±5.8 60.2±4.1 57.2±11.6 46.0±0.0

Vicuna-13B 98.4±0.2 77.3±1.8 83.4±3.7 21.6±7.4 99.8±0.1 72.5±3.3 74.0±6.7 24.6±5.6 70.7±4.0 84.8±5.2 93.4±2.6 40.6±12.4

OPT-175B 96.5±1.5 59.7±5.2 62.9±12.8 44.5±10.6 92.8±1.6 92.3±4.7 30.2±14.8 46.0±0.2 80.4±15.2 58.0±11.6 53.2±7.6 41.6±12.9

OPT-66B 91.7±2.3 85.3±4.1 35.8±7.2 37.4±12.9 88.8±2.6 99.6±0.4 36.9±10.2 35.3±11.4 86.3±6.6 69.9±5.5 43.2±2.7 46.0±0.0

OPT-30B 72.5±3.6 51.4±0.7 47.8±1.8 49.2±0.0 59.5±1.3 54.1±0.3 38.6±3.7 46.2±0.0 54.0±0.0 54.0±0.0 44.7±3.7 46.0±0.0

OPT-13B 73.3±1.5 72.7±6.3 49.5±2.7 49.2±0.0 61.8±2.7 58.8±2.7 32.4±10.6 46.2±0.0 77.3±11.0 78.3±8.1 46.0±0.0 46.0±0.0

OPT-6.7B 85.9±0.8 76.5±8.0 46.7±3.4 45.8±6.6 71.4±1.3 86.3±2.7 26.3±5.1 46.2±0.0 55.1±1.1 54.2±0.4 46.0±0.0 46.0±0.0

BLOOM 99.2±0.1 89.2±2.7 50.5±0.0 49.4±0.2 100.0±0.1 94.1±1.7 53.8±0.0 46.0±0.3 87.6±6.8 83.7±8.1 50.9±6.8 45.4±1.6

BLOOMZ 91.4±2.0 50.5±0.0 49.4±0.2 48.9±1.3 92.0±1.8 55.7±0.6 45.0±0.6 46.2±0.1 54.1±0.3 54.0±0.0 46.0±0.0 46.4±1.0

Table 2: Average and standard deviation of models’ accuracies for each setting in the SPORTS TASK, OCCUPATION
TASK and WEIGHT TRANS. TASK (scores are multiplied by 100).

Model
SPORTS Task OCCUPATION Task WEIGHT TRANS. Task

BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O

GPT-4 50.9±0.5 93.8±4.7 41.9±3.4 77.6±8.0 53.2±0.7 77.2±8.1 36.5±4.2 50.1±6.4 54.0±0.0 65.0±1.4 44.1±0.5 32.8±1.9

GPT-3.5 50.7±0.1 90.7±1.5 22.3±4.7 87.1±3.5 55.8±0.8 95.0±1.3 4.6±2.5 93.7±2.1 80.3±0.5 70.9±1.2 73.2±0.9 70.9±2.0

LLaMA-65B 50.2±0.0 39.5±2.9 58.7±3.1 73.2±16.6 53.0±0.0 53.9±0.1 46.2±0.1 69.3±6.3 54.0±0.0 54.0±0.0 80.0±1.0 97.6±0.4

LLaMA-30B 50.6±0.2 35.4±3.9 50.1±0.7 50.2±3.3 53.0±0.0 53.9±0.1 34.1±2.8 67.4±11.3 53.3±0.1 43.3±0.5 58.0±0.8 98.3±0.1

LLaMA-13B 50.7±0.4 48.4±6.2 95.2±2.6 68.8±12.2 53.1±0.1 81.8±5.5 43.8±9.3 97.4±1.1 70.3±0.6 62.4±0.6 62.8±1.0 100.0±0.0

LLaMA-7B 56.6±1.5 86.9±4.8 10.7±5.5 100.0±0.0 85.0±1.8 94.1±2.0 3.1±3.7 100.0±0.0 85.8±0.6 93.8±0.4 88.6±1.2 100.0±0.0

Vicuna-13B 50.6±0.4 37.0±3.1 50.1±9.3 37.7±12.6 53.2±0.1 81.3±3.3 20.2±6.7 76.5±6.8 83.3±0.4 69.2±0.5 42.0±0.4 88.6±0.9

OPT-175B 46.9±1.5 10.2±5.2 14.3±12.4 95.0±10.8 52.1±3.6 47.2±5.4 41.6±13.2 99.8±0.2 34.4±1.5 12.0±1.2 33.2±4.2 95.6±1.3

OPT-66B 47.2±4.8 38.4±6.1 36.4±22.8 88.3±12.8 63.9±2.7 54.3±0.4 17.0±10.4 89.1±11.4 64.3±0.9 83.7±0.6 91.8±1.4 100.0±0.0

OPT-30B 77.5±3.6 99.4±0.7 93.7±4.4 100.0±0.0 93.0±1.3 99.7±0.3 90.5±6.8 100.0±0.0 100.0±0.0 100.0±0.0 44.3±2.6 100.0±0.0

OPT-13B 55.0±3.0 30.4±9.8 74.5±13.6 100.0±0.0 91.2±2.7 95.0±2.7 75.4±18.4 100.0±0.0 34.1±1.4 45.1±1.9 100.0±0.0 100.0±0.0

OPT-6.7B 53.4±2.4 31.0±9.4 97.3±3.5 96.6±6.7 77.5±2.7 64.6±4.0 60.3±17.9 100.0±0.0 98.9±0.1 99.8±0.0 100.0±0.0 100.0±0.0

BLOOM 50.1±0.2 61.3±2.7 0.0±0.0 99.9±0.2 53.0±0.1 59.3±1.9 0.0±0.0 99.8±0.3 64.2±0.9 41.7±1.1 93.9±1.0 98.2±0.5

BLOOMZ 58.3±2.4 100.0±0.0 99.9±0.2 99.4±1.3 60.6±2.0 98.1±0.6 98.8±0.6 99.9±0.2 99.9±0.0 100.0±0.0 100.0±0.0 92.4±1.7

Table 3: Average and standard deviation of models’ no-ratio in the model outputs for each setting in the SPORTS
TASK OCCUPATION TASK and WEIGHT TRANS. TASK (scores are multiplied by 100).

answer in the FICNEG-O setting (Table 3). Note
that LLMs with accuracy rates of approximately
50% tended to continuously respond with no (or
yes). This finding was particularly noticeable with
the FICNEG-O setting where the LLMs that exhib-
ited higher accuracy were those that constantly an-
swered no (with the exception of the GPT-4 model).
These indicate that models do not randomly behave
but exhibit some systematic error patterns. Such
consistent degradation was also observed in case of
BASE→FIC, which suggests that CoT-style prompt-
ing is supported by factors aligning with factuality
along with the (insufficient) pure reasoning ability
of the model.

Differences across model families: Interest-
ingly, we also found that different LLM families
struggled under different settings (the green to pur-
ple patterns in Table 2). For example, the LLaMA
models performed well with the FICNEG task but
not the OPT models (Table 2). In particular, al-
though the GPT-3.5, OPT-175B, and BLOOM(Z)
models have approximately the same scale of pa-
rameters, they exhibited contrastive trends. Similar
trends were also observed for the no-ratio case.
For example, with the FICNEG and FICNEG-O,
the GPT 3.5, LLaMA-7B, and BLOOM models
demonstrated extreme statistics approaching 0 or
100, and their behavior flipped completely due to
the different types of prompting between the FIC-
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Figure 2: Relationship between model size (x-axis) and
performance (y-axis) of LLaMA models for each task.
Each point indicates the average accuracy of the corre-
sponding model and setting. The colored area indicates
the standard deviation.

NEG and FICNEG-O tasks. The performance dif-
ference between, for example, LLaMA-65B and
OPT-66B also demonstrates that some factors other
than parameter size induce a substantial gap in per-
formance toward certain linguistic phenomena.

Scaling law breaks: Scaling law in LLMs has
generally been reported (Gordon et al., 2021; Ivgi
et al., 2022); however, the improvement over the
model scale broke, specifically in the FICNEG-O
setting, which confirms that our introduced task is
challenging. Figure 2 shows this tendency for the
LLaMA models.

In summary, generally, we found that including
lexical negation in the tasks caused a drastic perfor-
mance reduction for the compared LLMs. The re-
sults of the controlled experiments further revealed
that different LLMs exhibited substantially differ-
ent limitations and biases. Notably, we further
tested the robustness of our findings with differ-
ent prompt configurations and obtained consistent
results (Appendix F).

5 Related Work

Negation and neural models: Negation is a core
operation in natural language and logic, and pre-
vious studies have investigated and attempted to
improve neural models in terms of addressing nega-
tion (Socher et al., 2013; Warstadt et al., 2019; Kim
et al., 2019; Kassner and Schütze, 2020; Ettinger,
2020; Hossain et al., 2020; Hosseini et al., 2021;
Truong et al., 2023). We align such challenges in
the context of CoT-style prompting and the scaling

of LLMs. The closest work to ours reported an
inverse scaling law of LLMs’ performance against
negated prompts (Joel et al., 2023). In addition, we
further elucidated the exact limitations and inter-
model differences under controlled task settings.

Step-by-step reasoning: Generating an infer-
ence process with neural models has received in-
creasing attention in terms of both performance
improvement and model explainability (Ling et al.,
2017; Sun et al., 2019; Rajani et al., 2019; Shwartz
et al., 2020; Madaan et al., 2021; Gu et al., 2022;
Aoki et al., 2023). Recently, the instruction to
make LLMs generate intermediate reasoning steps
(i.e., CoT prompting) has led to improvements in
model performance (Wei et al., 2022). In this study,
we attempted to elucidate the LLM’s reasoning
ability implicitly assumed in the CoT-style prompt-
ing and clarify that this success does not entail
the LLMs’ robust logical reasoning abilities (par-
ticularly against lexical negation). Note that the
deterioration in the fictional settings also elcidate
that LLMs work well only in the frequent domain
in the training data (McCoy et al., 2023).

Logical reasoning with LLMs and artificially
controlled experiments: Integrating logical rea-
soning ability into neural models is a pivotal goal in
the artificial intelligence field (Marcus, 2003). With
this aim, enclosing the models’ exact weakness
with artificially controlled data has been actively
conducted in our field (Betz et al., 2021; Clark
et al., 2020; Lu et al., 2021; Kudo et al., 2023); we
show the peculiar case that just the flip of one word
(adding a nation prefix) causes drastic effects for
modern LLMs.

6 Conclusions

In this study, we have investigated the ability of
LLMs to derive valid conclusions given a reason-
ing chain with a (lexical) negation, a historically
tough phenomenon for neural models. The results
of multi-difficulty controlled experiments revealed
that LLMs with CoT-style prompting struggled to
address negation; a simple flip of one word (e.g.,
plausible→implausible) has significantly hurted
their performance. In addition, we have found con-
sistent, systematic failure patterns unique in each
LLM family. For example, some models always
answered no to different question settings. In the
future, we plan to analyze the model’s internal and
explore the source of this weakness.
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Limitations

First, although we considered up to 31 LLMs, sev-
eral other LLMs cannot be evaluated due to com-
putational limitations, e.g., PaLM-540B (Chowd-
hery et al., 2022) and PaLM2 (Anil et al., 2023).
Thus, evaluating the performance of these mod-
els is left to future work. Second, in terms of
the generality of the obtained results, the exam-
ined prompt variations were limited, although we
did examine prompts with different formats and
orders (Appendix F). Third, in the current study,
we adopted a somewhat peculiar setting where the
chain-of-reasoning process is given from the per-
spective of the original CoT setting. Therefore,
exploring the limitations in the inference based on
the reasoning chain generated by the model will be
an interesting direction from a practical perspective.
Fourth, our analysis was limited to behavior-based
probing; however, there are other paradigms to
investigate (Lasri et al., 2022). In particularly, in-
specting the inner workings of the models would
be important to understand the mechanism of the
model’s failure. However, this was difficult because
some model parameters were not open, and the vast
number of layers/heads/parameters in large models
made it difficult to track the precise patterns of the
inner workings of the model. Finally, this study
only considered lexical negation in English and
was further confined to specific task formats and a
certain type of syllogism. Therefore, extending the
experimental scope will help further elucidate the
exact limitations of the models.

Ethics Statement

Our findings demonstrate that LLMs struggle to
address lexical negation under step-by-step CoT-
style reasoning settings. This problem is generally
related to the problem of hallucinations in LLMs.
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A Prompt Examples

Tables 16, 17, 18, and 19 show examples of the ex-
act model input at each setting of our experiments.6

B Lexical Negation

We created instances involving lexical negation by
replacing an adjective in a question with one with
a negative prefix. For example, the question Is
the proposition “Messi did a stepover” plausible?
is converted to Is the proposition “Messi did a
stepover” implausible? Specifically, we used the
terms listed in Table 4 to achieve this conversion.
Note that the original SP task only adopts the word
plausible. Here, we enhanced the diversity of the
prompts to ensure the generality of our findings.
The lexical negation list was created as follows: (i)
GPT-4 was employed to generate nine synonyms
of the word plausible, and then (ii) we manually
added proper negation prefixes to each synonym to
form the lexically negated term.

C Task Details

Here, we describe the task settings in detail. To
ensure the robustness of our findings, we conduct
additional experiments on two tasks (in addition
to the SP task), i.e., the OCCUPATION (OC) and
weight transitivity (WEIGHTTRANS.; WT) tasks.
The results across the tasks support the overall con-
clusion derived in the main part of this paper (See
Appendix D for additional information).

C.1 Fictional Names/Information
In the fictional settings, we used fictional enti-
ties in all tasks. Here, we used GPT-4 to gener-
ate the names of the fictional sports, occupations,
and animals. We used five fictional sports (i.e.,
(hydrosprint, aeropaddleball, gravitydodge, tur-
boglide and titantumble)), five fictional occupa-
tions (i.e., hydropurator, sonotextilist, chronoar-
chaeor, quantumbotanialist, and psycostylist) and

6In consideration of readability, this is presented on the
last page of the paper.

Base words Negated words

plausible implausible
believable unbelievable
reasonable unreasonable
thinkable unthinkable
probable improbable
imaginable unimaginable
convincing unconvincing
conceivable inconceivable
feasible unfeasible
credible uncredible

Table 4: Full list of base words and lexically negated
words used in the experiments.

1,217 fictional animals (see Table 5 for specific ex-
amples). In terms of people’s names, we initially
collected 50 typical male and female first names
from the“Name Corpus: List of Male, Female, and
Pet names” 7, which is available in the CMU Arti-
ficial Intelligence Repository. We then randomly
collected 100 family names from the “Telligent-
CommunitySample 0.1.1” dataset, 8 which is ac-
cessible via the PowerShell Gallery. Finally, we
created a list of 100 fictional names for each sport
by randomly combining the first and last names (ex-
amples for the SPORTS task are shown in Table 6).
We also used the weight data of Mammals 9 to
generate the gold label in theBASE (non-fictional)
setting of the WEIGHT TRANS. task.

C.2 Task Formats
SPORTS Task: See Section 2 and Table 1.

OCCUPATION Task: The task format in the
FICNEG-O setting is described as follows:

Few-shot exemplar:
Q: Is a sentence “PERSON is a TITLE” plausible?
A: PERSON is a OCCUPATION1. Only
OCCUPATION1/2 are TITLE. So the answer
is yes/no.

Target example:
Q: Is a sentence “PERSON is a TITLE” implausi-

7https://www.cs.cmu.edu/Groups/AI/util/areas/
nlp/corpora/names/0.html

8https://www.powershellgallery.com/packages/
TelligentCommunitySample/0.1.1

9Mammals ordered by their weight: https:
//thewebsiteofeverything.com/animals/mammals/
adult-weight.html
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Fictional Sports Fictional Occupations Fictional Animals

Hydrosprint Hydropurator Flickerbeast Striped Quillaphant Whiskerfluff
Aeropaddleball Sonotextilist Quokkalinga Pinnapartholanka Glidefin Skyweasel
Gravitydodge Chronoarchaeor Prismazebra Pangolirex Fawnimouse
Turboglide Quantumbotanialist WaveSkitterer Shadow Glidehopper Nimbuswolftail
Titantumble Psycostylist Fluffentinger Glimmerhorn Crestail Grizmalian Whiskerlop

Table 5: Examples of fictional sports, occupations and animals we used.

Hydrosprint Aeropaddleball Gravitydodge Turboglide Titantumble

Tilda Pruitt Phoebe Richardson Hussein Whitfield Rob Hancock Vita Elmore
Sansone Brady Michel Allen Larisa Keller Chas Morrow Jay Fowler
Judy Tate Alyssa McIntyre Wilburn Anderson Sonja Fletcher Stefan Camp
Petrina Norman Dosi Sykes Ernesto Hall textitKaleb Graham Malcolm Pearson
Rutherford Lucas Francisco McCoy Douggie Barbour Garwin Shields Cassi Cooke
Way Franklin Lorain Reid Celia Jain Gunter Payne Linnet Page
Jannel Stanton Neda Rose Raynard Kemp Elliott Blum Myrilla Anderson
Ora Law Sonni Burnett Gregor O’Neill Hailey Hatcher Tobye Washington
Owen McGee Agathe Frederick Carlton Morris Cornelius McCarthy Granville White
Kalvin Barr Darrick Rogers Katti Davies Parker Baxter Corny Reid

Table 6: Examples of fiction person names we used for each fictional sport.

ble?
A: PERSON is a OCCUPATION1. Only
OCCUPATION1/2 are TITLE. So the answer
is __

Put simply, the underlying reasoning flow is sim-
ilar to that of the SP task; however, here, the entities
(i.e., the occupation and property names) differ.

WEIGHT TRANS. Task: The task format in the
FICNEG-O setting is as follows:

Few-shot exemplar:
Is a sentence “ANIMAL1 is heavier than ANIMAL2”
plausible?
ANIMAL1/2 is heavier than ANIMAL3. ANIMAL3
is heavier than ANIMAL2/1. So the answer is
yes/no.

Target example:
Is a sentence “ANIMAL1 is heavier than ANIMAL2”
implausible?
ANIMAL1/2 is heavier than ANIMAL3. ANIMAL3 is
heavier than ANIMAL2/1. So the answer is __

Here, the transitivity of reasoning (A>B, B>C, then
A>C) is targeted.

C.3 Answer Distribution
Essentially, the yes:no ratio of the gold labels was
approximately 1:1. Strictly speaking, the distribu-
tion differed slightly from 1:1 due to the random
seed used in the dataset creation process. For ex-
ample, for the SPORTS task, the BASE dataset in-

cluded 496 yes labels and 504 no labels, and the
FIC dataset included 495 yes labels and 505 no
labels. The FICNEG dataset included 504 yes la-
bels and 496 no labels, and the FICNEG-O dataset
included 505 yes labels and 495 no labels.

D Full Results

All results for the SP, OC, and WT tasks are shown
in Table 9, 10, and 11, respectively10. Note that
the WT experiment was conducted at a 1/10 scale
(1,000 instances=100 seed instances×10 negated
words) as a supplementary experiment.

We also examined the textscNeg setting, where
real (not fictional) entities were used; however, the
question involved negation as an intermediate set-
ting between the BASE and FICNEG settings. The
performance of all models is shown in Table 8. As
can be seen, the results are generally competitive or
slightly better than those obtained with the FICNEG

setting. In other words, the model cannot handle
negation in natural text, and abstract reasoning over
negation is even more difficult.

E Models

In this study, we evaluated the 31 models listed in
Table 15.11 For the GPT-4 (gpt-4-0314) (OpenAI,
2023), and GPT-3.5 models (i.e., text-davinci-002,

10In consideration of readability, these tables are presented
after several tables

11Presented after several tables demonstrating supplemental
results.
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text-davinci-003 (Ouyang et al., 2022), and gpt-
3.5-turbo-0301), the experiments were conducted
on June 2023 utilizing OpenAI’s API. Note that
gpt-4-0314 and gpt-3.5-turbo-0301 will be phased
out in the near future.

The experiments for the other (non-OpenAI)
models were conducted using Huggingface Trans-
formers (Wolf et al., 2020) with the 8-bit op-
tion (Dettmers et al., 2022). For the LLaMA (Tou-
vron et al., 2023) models, we received the model
weights from the LLAMA Release Team on May
25, 2023. In addition, we recovered the Vicuna
and Alpaca (Taori et al., 2023) models based
on the provided LLaMA weights. For the OPT
models ranging from 1.3 B to 66B, OPT-IML
models, and OPT-IML-Max models (Iyer et al.,
2022), we employed the models available from the
Huggingface Community Model Hub12. We re-
ceived the model weight for the OPT-175B (Zhang
et al., 2022) model from Meta on May 28, 2022.
We also used the BLOOM (Scao et al., 2022),
BLOOMZ (Muennighoff et al., 2022), and NeoXT-
Chat-Base-20B (Together Computer, 2023) models
available from the Huggingface Community Model
Hub.

E.1 Model Settings During Generation
To ensure that the models only output yes or no,
we applied some changes during the answer gener-
ation process. Specifically, for the OpenAI models,
we introduced an equal logit bias to yes and no
using the provided logit_bias option, while set-
ting tempreture = 0.0,max_tokens = 1. For
the other non-OpenAI models, we manually ascer-
tained the logit of yes and no, ultimately using the
greater of the two as the model’s final response
under the same settings as the OpenAI models, in
which temperature = 0.0,max_new_tokens =
1.

F Robustness over Different Prompts

To ensure the robustness of our results across dif-
ferent settings, we conducted supplementary ex-
periments to investigate both prompt order and for-
mat. These experiments were conducted using the
SP and OC tasks. Note that these supplementary
experiments were conducted at 1/10 scale (1,000
instances=100 seed instances×10 negated words).

Fictional prompt: The few-shot exemplars in
the main experiments consistently involved real

12https://huggingface.co/models

Model Accuracy No-ratio

GPT-4 99.8 ±0.3 52.1 ±1.8
GPT-3.5-turbo 90.5 ±2.4 61.6 ±1.7
text-davinci-003 99.5 ±0.4 52.0 ±1.6
text-davinci-002 99.3 ±0.3 52.9 ±1.8

LLaMA-65B 100.0 ±0.0 52.1 ±1.7
LLaMA-30B 99.5 ±0.5 51.6 ±1.5
LLaMA-13B 95.3 ±3.3 50.0 ±6.1
LLaMA-7B 85.1 ±3.1 62.3 ±8.3

Vicuna-13B 93.7 ±5.3 47.2 ±8.3
Vicuna-7B 93.4 ±3.7 48.5 ±7.8

Alpaca-7B 89.5 ±3.2 52.5 ±3.6

OPT-175B 65.6 ±14.4 17.7 ±12.7
OPT-66B 93.0 ±3.5 52.0 ±3.0
OPT-30B 58.0 ±3.2 87.8 ±10.6
OPT-13B 64.1 ±4.9 71.8 ±7.6
OPT-6.7B 71.8 ±4.1 47.1 ±5.5
OPT-2.7B 55.7 ±2.5 83.3 ±18.6
OPT-1.3B 67.2 ±5.5 55.6 ±21.3

OPT-IML-Max-30B 84.7 ±2.3 46.6 ±12.3
OPT-IML-Max-1.3B 62.1 ±6.2 76.6 ±12.3

OPT-IML-30B 80.4 ±4.4 39.0 ±11.9
OPT-IML-1.3B 65.3 ±5.4 67.4 ±12.2

BLOOM 94.5 ±2.1 46.7 ±3.7
BLOOM-7.1B 58.7 ±1.9 35.0 ±8.3
BLOOM-3B 56.4 ±0.7 93.8 ±3.9
BLOOM-1.7B 50.2 ±3.1 2.9 ±2.6

BLOOMZ 76.0 ±4.4 70.5 ±9.9
BLOOMZ-7.1B 54.0 ±2.8 98.1 ±1.4
BLOOMZ-3B 52.7 ±2.3 99.4 ±0.6
BLOOMZ-1.7B 52.3 ±1.8 99.8 ±0.3

NeoXT-Chat-Base-20B 73.4 ±9.7 78.5 ±9.3

Table 7: Average and standard deviation of models’
accuracies and the no-ratio of the model outputs in Fic-
tional Prompt.

entities. Thus, we conducted supplementary exper-
iments in which the few-shot exemplars pertained
to fictional entities. These experiments were im-
plemented under the FIC setting, and the results
are presented in Table 7, where the values are the
averages from the SP and OC tasks.

Prompt format: We explored the influence of
the prompt format in both few-shot exemplars and
target examples. Here, we used the following for-
mat on questions with the gold labels designated as
no. (Note, the format with gold labels of yes were
unaltered.) A corresponding example is shown as
follows:

Is a sentence “PERSON does ACTION” plausible?
PERSON is a SPORTS palyer.
ACTION happens/does not happen in SPORTS.
So the answer is yes/no.
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Model Accuracy No-ratio

GPT-4 91.1 ±8.8 56.1 ±7.8
GPT-3.5-turbo 86.1 ±13.4 40.2 ±9.1
text-davinci-003 99.6 ±0.5 48.6 ±1.1
text-davinci-002 100.0 ±0.0 48.3 ±1.3

LLaMA-65B 99.8 ±0.2 48.2 ±1.3
LLaMA-30B 96.6 ±2.0 44.9 ±3.0
LLaMA-13B 83.3 ±9.7 62.2 ±10.8
LLaMA-7B 70.0 ±8.5 30.0 ±9.2

Vicuna-13B 97.4 ±1.7 49.1 ±1.7
Vicuna-7B 82.3 ±14.6 31.1 ±16.4

Alpaca-7B 55.4 ±15.3 71.0 ±9.4

OPT-175B 61.7 ±11.2 31.1 ±10.7
OPT-66B 31.8 ±5.7 38.9 ±14.4
OPT-30B 42.3 ±4.4 93.2 ±5.0
OPT-13B 47.2 ±3.7 63.5 ±13.0
OPT-6.7B 45.2 ±5.8 71.4 ±20.0
OPT-2.7B 45.8 ±4.4 35.3 ±20.6
OPT-1.3B 48.4 ±1.3 99.2 ±1.2

OPT-IML-Max-30B 42.3 ±10.5 14.2 ±12.6
OPT-IML-Max-1.3B 48.3 ±1.4 100.0 ±0.2

OPT-IML-30B 20.8 ±11.8 44.7 ±9.2
OPT-IML-1.3B 48.2 ±1.5 99.7 ±0.4

BLOOM 63.7 ±6.0 16.1 ±7.7
BLOOM-7.1B 55.1 ±2.2 11.7 ±8.0
BLOOM-3B 52.0 ±1.7 0.5 ±0.4
BLOOM-1.7B 48.4 ±1.3 99.9 ±0.1

BLOOMZ 17.5 ±6.5 65.3 ±10.0
BLOOMZ-7.1B 48.1 ±1.1 99.8 ±0.2
BLOOMZ-3B 48.0 ±1.5 99.5 ±0.4
BLOOMZ-1.7B 48.3 ±1.3 100.0 ±0.0

NeoXT-Chat-Base-20B 49.3 ±1.9 96.0 ±3.4

Table 8: Average and standard deviation of model accu-
racies and no-ratio for the NEG setting (i.e., real entities
and questions with negation).

Is a sentence “PERSON does ACTION” im-
plausible?
PERSON is a SPORTS palyer.
ACTION happens/does not happen in SPORTS.
So the answer is no/yes.

Compared to the original format (Section 2),
premise 2 changes. Here, the task is not to identify
the consistency of sports/occupation name; how-
ever, the conclusion depends on the existence of
does not.

The results are shown in Table 12. Note that both
the accuracy and no ratio values are the averages
obtained from the SP and OC tasks.

Prompt order: We investigated the impact of the
prompt order with a specific focus on the position
of the no label in the three exemplars. The order
of the three exemplars in the main experiments

was yes, no, yes; thus, we conducted supplemental
experiments where the gold label sequences were
altered to yes, yes, no and no, yes, yes. The results
of the prompt order experiments are shown in Ta-
ble 13, which shows the averages from the SP and
OC tasks.

G F1 Score

Certain models (e.g., BLOOMZ family and OPT
family in Table 9) predominantly registered an ac-
curacy of approximately 50% by consistently re-
sponding with no (or yes). Note that this pattern
was particularly evident for the FICNEG-O setting,
with the GPT-4 model being a significant outlier.
To highlight these models, we provided the macro-
averaged F1-scores in Table 14.

14764



Model Accuracy No-ratio

BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O

GPT-4 99.0±0.4 56.7±4.6 92.3±3.3 66.6±15.9 50.9±0.5 93.8±4.7 41.9±3.4 77.6±8.0
GPT-3.5-turbo 99.7±0.1 59.8±1.5 72.8±4.7 36.6±3.5 50.7±0.1 90.7±1.5 22.3±4.7 87.1±3.5
text-davinci-003 99.9±0.1 81.6±1.8 87.2±3.2 28.0±9.6 50.4±0.1 40.4±3.3 51.2±6.7 64.8±8.2
text-davinci-002 100.0±0.0 74.4±2.8 91.1±2.3 49.1±0.3 50.4±0.0 76.0±2.7 40.6±2.2 99.8±0.3

LLaMA-65B 99.8±0.0 89.0±2.9 90.7±3.0 22.8±16.5 50.2±0.0 39.5±2.9 58.7±3.1 73.2±16.6
LLaMA-30B 99.8±0.2 84.9±3.9 99.0±0.5 4.9±6.1 50.6±0.2 35.4±3.9 50.1±0.7 50.2±3.3
LLaMA-13B 98.9±0.4 77.1±2.2 50.7±1.4 23.1±8.4 50.7±0.4 48.4±6.2 95.2±2.6 68.8±12.2
LLaMA-7B 93.7±1.4 63.6±4.8 58.6±5.0 49.5±0.0 56.6±1.5 86.9±4.8 10.7±5.5 100.0±0.0

Vicuna-13B 98.4±0.2 77.3±1.8 83.4±3.7 21.6±7.4 50.6±0.4 37.0±3.1 50.1±9.3 37.7±12.6
Vicuna-7B 98.3±0.3 93.0±2.6 58.5±6.8 29.7±20.2 50.3±0.8 57.4±2.6 8.1±6.9 52.0±25.9

Alpaca-7B 91.4±1.7 83.3±4.9 48.6±3.4 49.5±1.7 43.8±2.6 67.0±5.0 85.6±8.2 98.2±3.0

OPT-175B 96.5±1.5 59.7±5.2 62.9±12.8 44.5±10.6 46.9±1.5 10.2±5.2 14.3±12.4 95.0±10.8
OPT-66B 91.7±2.3 85.3±4.1 35.8±7.2 37.4±12.9 47.2±4.8 38.4±6.1 36.4±22.8 88.3±12.8
OPT-30B 72.5±3.6 51.4±0.7 47.8±1.8 49.2±0.0 77.5±3.6 99.4±0.7 93.7±4.4 100.0±0.0
OPT-13B 73.3±1.5 72.7±6.3 49.5±2.7 49.2±0.0 55.0±3.0 30.4±9.8 74.5±13.6 100.0±0.0
OPT-6.7B 85.9±0.8 76.5±8.0 46.7±3.4 45.8±6.6 53.4±2.4 31.0±9.4 97.3±3.5 96.6±6.7
OPT-2.7B 75.2±5.4 54.4±5.4 35.5±6.0 39.9±9.5 42.2±11.8 7.9±7.4 36.2±22.0 80.5±24.4
OPT-1.3B 70.7±4.8 56.6±4.6 49.2±0.0 47.7±4.7 72.0±8.8 20.1±15.2 100.0±0.0 96.4±11.4

OPT-IML-Max-30B 96.1±0.4 80.8±4.5 51.8±4.6 46.5±5.5 51.4±1.6 69.5±4.8 10.3±14.7 73.2±12.9
OPT-IML-Max-1.3B 57.7±1.5 51.7±1.4 49.5±0.0 49.5±0.0 92.3±1.9 98.8±1.4 100.0±0.0 100.0±0.0

OPT-IML-30B 94.8±0.7 83.3±5.8 52.2±8.9 46.3±2.8 49.1±1.9 66.1±7.0 50.2±15.2 91.7±3.7
OPT-IML-1.3B 58.1±0.8 52.9±1.4 49.5±0.0 49.5±0.0 89.4±2.0 97.6±1.4 100.0±0.0 100.0±0.0

BLOOM 99.2±0.1 89.2±2.7 50.5±0.0 49.4±0.2 50.1±0.2 61.3±2.7 0.0±0.0 99.9±0.2
BLOOM-7.1B 68.3±0.9 50.9±1.0 50.5±0.0 43.6±9.8 55.4±6.9 2.4±1.4 0.0±0.0 73.4±39.4
BLOOM-3B 51.4±0.6 50.5±0.0 51.5±0.7 49.5±0.0 99.0±0.6 100.0±0.0 2.4±2.1 100.0±0.0
BLOOM-1.7B 50.7±0.9 49.5±0.0 49.5±0.0 49.5±0.0 2.3±2.4 0.0±0.0 100.0±0.0 100.0±0.0

BLOOMZ 91.4±2.0 50.5±0.0 49.4±0.2 48.9±1.3 58.3±2.4 100.0±0.0 99.9±0.2 99.4±1.3
BLOOMZ-7.1B 52.8±1.0 50.5±0.0 49.5±0.0 49.5±0.0 97.5±1.1 100.0±0.0 100.0±0.0 100.0±0.0
BLOOMZ-3B 50.7±0.2 50.5±0.0 49.5±0.0 49.5±0.0 99.6±0.2 100.0±0.0 100.0±0.0 100.0±0.0
BLOOMZ-1.7B 50.6±0.3 50.5±0.0 49.5±0.0 49.5±0.0 99.8±0.3 100.0±0.0 100.0±0.0 100.0±0.0

NeoXT-Chat-Base-20B 77.5±3.8 52.4±1.8 49.5±0.1 49.5±0.0 72.9±3.8 98.1±1.8 100.0±0.1 100.0±0.0

Table 9: Average and standard deviation of model accuracies and the no-ratio of the model outputs at each setting
for the SPORTS TASK.
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Model Accuracy No-ratio

BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O

GPT-4 98.2±0.2 76.5±8.1 90.2±4.1 75.7±12.0 53.2±0.7 77.2±8.1 36.5±4.2 50.1±6.4
GPT-3.5-turbo 97.1±0.7 58.8±1.3 58.4±2.5 39.9±2.1 55.8±0.8 95.0±1.3 4.6±2.5 93.7±2.1
text-davinci-003 99.9±0.0 73.3±2.4 60.6±2.6 25.9±4.3 53.1±0.0 80.5±2.4 6.9±2.7 77.9±1.7
text-davinci-002 100.0±0.0 63.7±3.0 62.9±4.2 49.3±6.3 53.0±0.0 90.1±3.0 9.1±4.2 95.7±6.0

LLaMA-65B 100.0±0.0 100.0±0.1 99.9±0.1 15.5±6.3 53.0±0.0 53.9±0.1 46.2±0.1 69.3±6.3
LLaMA-30B 100.0±0.0 99.9±0.1 87.9±2.8 18.5±13.2 53.0±0.0 53.9±0.1 34.1±2.8 67.4±11.3
LLaMA-13B 99.9±0.1 72.0±5.5 91.1±4.8 43.6±1.1 53.1±0.1 81.8±5.5 43.8±9.3 97.4±1.1
LLaMA-7B 68.0±1.8 59.7±2.0 53.2±2.0 46.2±0.0 85.0±1.8 94.1±2.0 3.1±3.7 100.0±0.0

Vicuna-13B 99.8±0.1 72.5±3.3 74.0±6.7 24.6±5.6 53.2±0.1 81.3±3.3 20.2±6.7 76.5±6.8
Vicuna-7B 93.5±2.5 64.4±2.5 53.8±0.0 38.3±5.2 59.5±2.5 89.4±2.5 0.0±0.0 82.2±26.1

Alpaca-7B 83.4±2.9 83.4±4.5 39.2±6.0 43.5±1.7 69.6±2.9 70.0±4.7 78.0±9.7 97.2±1.7

OPT-175B 92.8±1.6 92.3±4.7 30.2±14.8 46.0±0.2 52.1±3.6 47.2±5.4 41.6±13.2 99.8±0.2
OPT-66B 88.8±2.6 99.6±0.4 36.9±10.2 35.3±11.4 63.9±2.7 54.3±0.4 17.0±10.4 89.1±11.4
OPT-30B 59.5±1.3 54.1±0.3 38.6±3.7 46.2±0.0 93.0±1.3 99.7±0.3 90.5±6.8 100.0±0.0
OPT-13B 61.8±2.7 58.8±2.7 32.4±10.6 46.2±0.0 91.2±2.7 95.0±2.7 75.4±18.4 100.0±0.0
OPT-6.7B 71.4±1.3 86.3±2.7 26.3±5.1 46.2±0.0 77.5±2.7 64.6±4.0 60.3±17.9 100.0±0.0
OPT-2.7B 53.4±0.3 55.0±0.9 45.1±7.3 46.2±0.0 99.6±0.4 98.8±1.0 10.7±9.4 100.0±0.0
OPT-1.3B 57.2±1.2 66.9±6.2 46.1±0.1 46.2±0.0 95.6±1.5 86.8±6.3 99.9±0.1 100.0±0.0

OPT-IML-Max-30B 87.2±1.5 74.2±1.7 43.5±13.1 37.5±9.7 64.1±1.8 79.6±1.7 11.3±14.8 42.8±30.4
OPT-IML-Max-1.3B 73.9±3.4 71.2±6.1 46.2±0.0 46.2±0.0 67.9±5.5 82.6±6.1 100.0±0.0 100.0±0.0

OPT-IML-30B 89.3±1.0 75.1±3.8 20.4±15.4 42.0±3.3 53.7±2.3 77.6±4.4 39.1±20.0 95.8±3.3
OPT-IML-1.3B 77.1±4.7 78.5±6.7 46.2±0.0 46.0±0.3 64.2±6.7 74.8±6.9 100.0±0.0 99.8±0.3

BLOOM 100.0±0.1 94.1±1.7 53.8±0.0 46.0±0.3 53.0±0.1 59.3±1.9 0.0±0.0 99.8±0.3
BLOOM-7.1B 72.3±0.8 75.5±3.3 53.8±0.2 47.0±2.4 61.3±4.1 61.9±10.0 0.2±0.4 90.0±31.6
BLOOM-3B 53.2±0.1 53.8±0.0 53.8±0.0 46.2±0.0 99.8±0.1 100.0±0.0 0.0±0.0 100.0±0.0
BLOOM-1.7B 52.7±3.3 46.3±0.2 46.2±0.0 46.2±0.0 9.8±7.1 0.1±0.4 100.0±0.0 100.0±0.0

BLOOMZ 92.0±1.8 55.7±0.6 45.0±0.6 46.2±0.1 60.6±2.0 98.1±0.6 98.8±0.6 99.9±0.2
BLOOMZ-7.1B 57.3±1.2 54.4±0.5 46.2±0.0 46.2±0.0 95.6±1.3 99.4±0.5 100.0±0.0 100.0±0.0
BLOOMZ-3B 54.4±0.3 54.1±0.3 46.2±0.0 46.2±0.0 98.4±0.4 98.8±0.4 100.0±0.0 100.0±0.0
BLOOMZ-1.7B 57.6±2.1 53.8±0.0 46.2±0.0 46.2±0.0 94.4±2.7 100.0±0.0 100.0±0.0 100.0±0.0

NeoXT-Chat-Base-20B 66.9±6.2 55.8±2.2 46.2±0.0 46.2±0.0 86.1±6.2 98.0±2.2 100.0±0.0 100.0±0.0

Table 10: Average and standard deviation of model accuracies and the no-ratio of the model outputs at each setting
for the OCCUPATION TASK.
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Model Accuracy No-ratio

BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O

GPT-4 100.0±0.0 88.6±13.6 98.1±5.3 77.8±12.1 54.0±0.0 65.0±1.4 44.1±0.5 32.8±1.9
GPT-3.5-turbo 73.5±4.5 68.1±10.0 63.6±8.5 35.3±10.2 80.3±0.5 70.9±1.2 73.2±0.9 70.9±2.0
text-davinci-003 99.3±2.2 95.8±4.5 94.2±5.4 16.2±12.7 53.3±0.2 49.8±0.4 44.8±0.6 47.4±1.9
text-davinci-002 96.3±2.9 88.8±8.7 99.3±0.5 46.0±0.0 57.7±0.3 65.2±0.9 45.3±0.0 100.0±0.0

LLaMA-65B 100.0±0.0 100.0±0.0 66.0±10.1 43.6±3.8 54.0±0.0 54.0±0.0 80.0±1.0 97.6±0.4
LLaMA-30B 99.3±0.8 89.3±5.3 88.0±8.2 44.3±1.5 53.3±0.1 43.3±0.5 58.0±0.8 98.3±0.1
LLaMA-13B 83.7±5.8 91.4±6.3 82.2±8.9 46.0±0.0 70.3±0.6 62.4±0.6 62.8±1.0 100.0±0.0
LLaMA-7B 68.2±5.8 60.2±4.1 57.2±11.6 46.0±0.0 85.8±0.6 93.8±0.4 88.6±1.2 100.0±0.0

Vicuna-13B 70.7±4.0 84.8±5.2 93.4±2.6 40.6±12.4 83.3±0.4 69.2±0.5 42.0±0.4 88.6±0.9
Vicuna-7B 90.1±3.4 89.0±4.4 79.9±3.9 43.6±5.7 62.7±0.4 45.8±0.5 44.3±0.7 97.6±0.6

Alpaca-7B 72.1±7.6 62.9±4.9 46.0±0.0 46.0±0.0 81.9±0.8 90.7±0.5 100.0±0.0 100.0±0.0

OPT-175B 80.4±15.2 58.0±11.6 53.2±7.6 41.6±12.9 34.4±1.5 12.0±1.2 33.2±4.2 95.6±1.3
OPT-66B 86.3±6.6 69.9±5.5 43.2±2.7 46.0±0.0 64.3±0.9 83.7±0.6 91.8±1.4 100.0±0.0
OPT-30B 54.0±0.0 54.0±0.0 44.7±3.7 46.0±0.0 100.0±0.0 100.0±0.0 44.3±2.6 100.0±0.0
OPT-13B 77.3±11.0 78.3±8.1 46.0±0.0 46.0±0.0 34.1±1.4 45.1±1.9 100.0±0.0 100.0±0.0
OPT-6.7B 55.1±1.1 54.2±0.4 46.0±0.0 46.0±0.0 98.9±0.1 99.8±0.0 100.0±0.0 100.0±0.0
OPT-2.7B 65.8±6.7 71.5±7.9 53.8±5.1 46.0±0.0 26.8±1.4 52.9±2.0 63.0±3.5 100.0±0.0
OPT-1.3B 62.0±6.4 59.1±6.0 46.0±0.0 46.0±0.0 26.0±2.1 26.5±1.9 100.0±0.0 100.0±0.0

OPT-IML-Max-30B 97.7±0.7 93.3±3.2 25.2±18.3 33.2±10.3 56.1±0.1 60.7±0.3 31.2±1.8 71.2±1.8
OPT-IML-Max-1.3B 85.2±8.0 80.0±10.4 46.0±0.0 46.0±0.0 53.8±1.5 71.2±1.3 100.0±0.0 100.0±0.0

OPT-IML-30B 92.5±3.5 99.2±1.0 28.1±10.4 38.0±10.9 46.5±0.4 53.6±0.1 30.5±1.4 90.0±1.1
OPT-IML-1.3B 46.4±1.3 48.3±7.3 39.8±10.3 40.7±10.3 0.6±0.2 2.3±0.7 93.2±1.2 90.9±2.0

BLOOM 87.6±6.8 83.7±8.1 50.9±6.8 45.4±1.6 64.2±0.9 41.7±1.1 93.9±1.0 98.2±0.5
BLOOM-7.1B 46.0±0.0 46.0±0.0 54.0±0.0 47.4±3.6 0.0±0.0 0.0±0.0 0.6±0.2 69.8±4.6
BLOOM-3B 54.0±0.0 54.0±0.0 54.0±0.0 46.0±0.0 100.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0
BLOOM-1.7B 46.0±0.0 46.0±0.0 46.0±0.0 46.0±0.0 0.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0

BLOOMZ 54.1±0.3 54.0±0.0 46.0±0.0 46.4±1.0 99.9±0.0 100.0±0.0 100.0±0.0 92.4±1.7
BLOOMZ-7.1B 54.0±0.0 54.0±0.0 46.0±0.0 46.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
BLOOMZ-3B 59.8±3.0 54.5±0.5 46.0±0.0 46.0±0.0 94.2±0.3 99.5±0.1 100.0±0.0 100.0±0.0
BLOOMZ-1.7B 54.0±0.0 54.0±0.0 46.0±0.0 46.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

NeoXT-Chat-Base-20B 89.1±8.3 68.0±11.4 46.0±0.0 46.2±0.6 64.5±0.9 84.6±1.4 100.0±0.0 99.8±0.1

Table 11: Average and standard deviation of model accuracies and the no-ratio of the model outputs at each setting
for the WEIGHT TRANS. TASK.
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Model Accuracy No-ratio

BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O

GPT-4 92.8±7.0 66.9±15.6 94.1±2.1 82.8±18.1 48.7±0.3 80.0±1.7 47.6±0.3 46.9±0.9
GPT-3.5-turbo 99.5±0.7 59.9±3.6 71.4±10.8 40.0±5.3 54.0±0.5 88.6±0.5 22.9±1.2 87.5±0.6

LLaMA-65B 100.0±0.0 100.0±0.0 100.0±0.0 6.6±6.5 53.5±0.5 48.5±0.2 51.5±0.2 55.1±0.8
LLaMA-30B 100.0±0.0 100.0±0.0 97.2±3.5 23.5±16.8 53.5±0.5 48.5±0.2 48.7±0.5 36.7±1.4
LLaMA-13B 100.0±0.0 98.0±2.6 99.2±1.3 16.1±15.1 53.5±0.5 50.5±0.4 50.8±0.1 64.5±1.6
LLaMA-7B 91.5±8.9 88.3±11.7 84.6±8.1 46.5±5.5 62.0±1.3 60.2±1.3 36.2±0.9 95.0±0.7

Vicuna-13B 100.0±0.0 90.7±7.1 95.2±4.2 19.6±10.6 53.5±0.5 57.8±0.9 46.7±0.5 53.0±1.6

OPT-175B 98.5±1.8 100.0±0.0 91.8±6.9 34.2±17.8 55.1±0.6 48.5±0.2 48.8±0.6 82.7±1.9
OPT-66B 96.5±3.9 100.0±0.0 25.8±11.8 13.9±16.4 57.0±0.8 48.5±0.2 28.9±1.4 62.4±1.7
OPT-30B 89.5±7.2 74.5±13.9 49.9±2.8 51.5±1.5 64.0±1.2 74.0±1.5 97.1±0.1 100.0±0.0
OPT-13B 83.5±10.6 83.9±15.2 63.4±20.0 51.5±1.5 70.0±1.5 64.5±1.7 67.3±1.8 100.0±0.0
OPT-6.7B 93.7±6.5 99.0±1.0 50.1±3.4 41.6±14.4 59.8±1.1 49.5±0.3 98.6±0.2 90.2±1.5

BLOOM 100.0±0.0 99.4±0.9 51.7±5.1 43.6±8.1 53.5±0.5 49.1±0.1 3.3±0.4 92.1±0.8

BLOOMZ 96.0±1.3 50.3±2.3 51.2±3.2 64.0±12.6 57.5±0.5 98.2±0.1 95.9±0.4 86.9±1.4

Table 12: Average and standard deviation of model accuracies and the no-ratio at each setting for different Prompt
format.
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Model Accuracy No-ratio

BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O

GPT-4 (yes-no-yes) 98.1±1.3 64.2±13.8 90.9±5.0 69.8±15.5 54.3±0.5 84.2±1.3 42.4±0.5 63.0±1.6
GPT-4 (no-yes-yes) 98.0±1.0 70.0±15.6 87.9±5.2 66.6±19.2 54.5±0.4 78.4±1.4 39.4±0.5 68.4±1.6
GPT-4 (yes-yes-no) 98.0±1.2 71.0±14.1 96.4±2.2 72.0±17.6 54.2±0.4 77.5±1.3 49.6±0.4 51.1±1.7

GPT-3.5-turbo (yes-no-yes) 98.6±1.7 55.1±2.8 66.4±8.4 41.9±4.4 54.6±0.6 93.4±0.4 17.9±1.0 90.4±0.6
GPT-3.5-turbo (no-yes-yes) 98.0±2.2 54.9±3.5 71.0±7.1 41.4±4.3 55.5±0.7 93.5±0.5 22.8±0.9 90.0±0.6
GPT-3.5-turbo (yes-yes-no) 99.2±0.8 60.4±5.1 75.1±7.5 34.7±8.2 53.1±0.4 88.1±0.6 34.9±0.9 83.2±0.9

LLaMA-65B (yes-no-yes) 100.0±0.0 95.3±5.4 96.1±4.7 21.7±13.7 53.5±0.5 43.8±0.7 55.3±0.6 70.2±1.3
LLaMA-65B (no-yes-yes) 100.0±0.0 91.1±4.0 91.2±4.1 39.3±9.4 53.5±0.5 51.9±1.1 52.0±1.1 87.8±1.0
LLaMA-65B (yes-yes-no) 99.7±0.5 90.1±10.8 90.1±9.8 9.2±12.1 53.2±0.5 38.6±1.2 61.4±1.1 56.2±1.2

LLaMA-30B (yes-no-yes) 100.0±0.0 94.5±6.0 93.7±6.0 14.3±14.0 53.5±0.5 43.0±0.7 45.7±0.8 56.8±1.4
LLaMA-30B (no-yes-yes) 97.2±2.0 93.7±5.2 89.1±5.1 14.1±15.2 56.2±0.5 44.7±0.7 42.9±0.9 47.3±1.6
LLaMA-30B (yes-yes-no) 98.6±0.5 83.7±16.8 87.8±11.6 21.9±17.2 52.1±0.5 32.2±1.8 61.3±1.5 29.6±1.7

LLaMA-13B (yes-no-yes) 99.0±1.3 74.3±7.2 70.7±19.2 36.8±13.5 53.3±0.5 66.4±1.6 63.6±2.3 83.7±1.7
LLaMA-13B (no-yes-yes) 91.2±3.2 54.0±3.9 51.9±3.4 48.4±4.6 62.3±0.5 93.2±0.6 95.0±0.8 96.8±0.5
LLaMA-13B (yes-yes-no) 98.5±1.5 86.6±7.2 71.2±17.3 27.9±17.3 52.0±0.6 54.3±1.5 73.4±2.2 69.0±2.7

LLaMA-7B (yes-no-yes) 82.3±12.9 58.0±5.4 54.8±6.4 51.5±1.5 71.2±1.8 90.5±0.7 7.5±0.8 100.0±0.0
LLaMA-7B (no-yes-yes) 74.9±6.9 50.5±2.7 39.0±9.4 51.5±1.5 78.6±1.1 98.0±0.2 77.9±2.1 100.0±0.0
LLaMA-7B (yes-yes-no) 96.3±2.2 82.6±7.2 40.2±9.5 50.9±2.2 54.9±0.9 65.9±0.8 79.2±1.6 99.4±0.2

Vicuna-13B (yes-no-yes) 98.7±0.9 75.1±8.0 78.5±10.1 24.0±8.2 52.8±0.6 62.2±2.1 36.4±1.8 57.7±2.2
Vicuna-13B (no-yes-yes) 96.0±2.2 68.2±13.9 66.3±12.0 29.7±10.2 56.6±0.7 78.5±1.7 32.3±2.8 68.3±2.1
Vicuna-13B (yes-yes-no) 98.8±1.3 79.9±6.3 79.7±8.3 27.8±8.3 52.2±0.6 58.4±1.8 33.9±1.3 59.5±2.2

OPT-175B (yes-no-yes) 95.5±2.9 80.0±15.6 41.2±14.0 49.0±8.0 52.6±0.7 30.2±1.9 20.5±1.9 97.5±0.8
OPT-175B (no-yes-yes) 91.2±8.1 90.6±4.1 41.4±11.0 49.2±7.6 56.6±0.9 50.5±1.1 10.7±1.5 97.8±0.8
OPT-175B (yes-yes-no) 93.3±1.7 87.7±13.4 37.1±15.1 44.4±12.8 47.4±0.6 36.2±1.5 29.5±3.1 92.9±1.3

OPT-66B (yes-no-yes) 90.8±3.2 93.3±6.6 33.7±8.2 40.2±11.8 59.9±1.1 44.9±0.7 19.0±1.2 88.7±1.2
OPT-66B (no-yes-yes) 83.3±8.1 84.8±10.7 20.2±10.6 50.7±1.8 67.4±1.6 61.7±1.5 54.1±1.8 99.2±0.2
OPT-66B (yes-yes-no) 86.8±5.6 89.9±6.0 18.9±14.8 47.9±6.6 65.7±1.1 58.4±0.7 58.8±1.7 96.4±0.7

OPT-30B (yes-no-yes) 68.9±6.8 48.9±1.3 46.0±5.4 51.5±1.5 84.6±1.1 99.6±0.1 93.1±0.7 100.0±0.0
OPT-30B (no-yes-yes) 61.1±5.5 48.8±1.9 50.9±2.2 51.5±1.5 92.5±0.1 99.7±0.1 99.5±0.1 100.0±0.0
OPT-30B (yes-yes-no) 57.1±2.6 48.5±1.5 38.6±14.6 51.5±1.5 96.4±0.3 100.0±0.0 85.0±1.6 100.0±0.0

OPT-13B (yes-no-yes) 70.0±6.7 66.2±12.8 44.2±12.6 51.5±1.5 75.0±2.0 65.8±3.1 56.3±2.4 100.0±0.0
OPT-13B (no-yes-yes) 73.8±3.4 77.0±5.1 51.2±1.4 48.7±7.3 70.0±1.7 47.6±1.8 99.7±0.1 97.0±0.8
OPT-13B (yes-yes-no) 71.2±7.7 63.8±14.1 29.3±11.0 51.5±1.5 74.2±2.0 82.8±1.8 68.5±1.5 100.0±0.0

OPT-6.7B (yes-no-yes) 81.0±6.3 80.9±4.4 40.2±12.7 49.5±4.9 66.8±1.4 49.6±2.0 78.9±2.4 98.0±0.5
OPT-6.7B (no-yes-yes) 79.2±8.5 67.7±12.2 50.9±2.4 46.1±10.7 50.6±0.8 18.2±1.6 99.4±0.1 93.8±1.4
OPT-6.7B (yes-yes-no) 68.2±6.2 62.3±7.6 32.1±7.5 51.5±1.5 84.2±0.3 86.2±0.9 45.2±2.6 100.0±0.0

BLOOM (yes-no-yes) 99.2±0.9 87.8±3.1 48.5±1.5 51.5±1.5 54.2±0.4 60.7±0.3 0.0±0.0 100.0±0.0
BLOOM (no-yes-yes) 96.9±1.8 75.8±4.0 46.5±2.6 47.6±5.5 56.6±0.6 72.8±0.5 2.0±0.3 89.9±1.7
BLOOM (yes-yes-no) 99.1±1.0 91.0±5.1 48.3±1.4 49.1±3.4 52.6±0.6 57.6±0.4 0.6±0.1 96.2±0.7

BLOOMZ (yes-no-yes) 90.1±3.2 49.1±2.2 50.8±1.9 51.2±1.5 62.6±0.3 99.4±0.1 99.4±0.0 99.6±0.1
BLOOMZ (no-yes-yes) 86.9±2.5 49.0±2.1 50.8±1.8 51.4±1.5 66.2±0.3 99.5±0.1 99.2±0.0 99.9±0.0
BLOOMZ (yes-yes-no) 87.3±1.9 49.1±2.1 49.1±1.3 48.8±3.4 65.6±0.6 99.5±0.1 97.6±0.2 94.2±0.8

Table 13: Average and standard deviation of model accuracies and the no-ratio of the model outputs at each setting
for different Prompt orders.
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Model
SPORTS Task OCCUPATION Task WEIGHT TRANS. Task

BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O BASE FIC FICNEG FICNEG-O

GPT-4 0.99±0.0 0.46±0.1 0.92±0.0 0.63±0.2 0.98±0.0 0.73±0.1 0.38±0.4 0.76±0.1 1.0±0.0 0.87±0.2 0.98±0.1 0.75±0.2

GPT-3.5-turbo 1.0±0.0 0.52±0.0 0.7±0.1 0.27±0.0 0.97±0.0 0.46±0.0 0.52±0.2 0.29±0.0 0.7±0.1 0.65±0.1 0.62±0.1 0.31±0.1

text-davinci-003 1.0±0.0 0.81±0.0 0.87±0.0 0.26±0.1 1.0±0.0 0.7±0.0 0.49±0.1 0.21±0.0 0.99±0.0 0.96±0.0 0.94±0.1 0.13±0.1

text-davinci-002 1.0±0.0 0.73±0.0 0.91±0.0 0.33±0.0 1.0±0.0 0.55±0.1 0.53±0.1 0.38±0.1 0.96±0.0 0.88±0.1 0.99±0.0 0.32±0.0

LLaMA-65B 1.0±0.0 0.89±0.0 0.91±0.0 0.17±0.1 1.0±0.0 1.0±0.0 1.0±0.0 0.13±0.0 1.0±0.0 1.0±0.0 0.63±0.1 0.31±0.0

LLaMA-30B 1.0±0.0 0.85±0.0 0.99±0.0 0.05±0.1 1.0±0.0 1.0±0.0 0.87±0.0 0.16±0.1 0.99±0.0 0.89±0.1 0.88±0.1 0.31±0.0

LLaMA-13B 0.99±0.0 0.77±0.0 0.38±0.0 0.2±0.1 1.0±0.0 0.67±0.1 0.91±0.0 0.3±0.0 0.82±0.1 0.91±0.1 0.82±0.1 0.32±0.0

LLaMA-7B 0.94±0.0 0.57±0.1 0.5±0.1 0.33±0.0 0.63±0.0 0.48±0.0 0.37±0.0 0.32±0.0 0.62±0.1 0.48±0.1 0.49±0.2 0.32±0.0

Vicuna-13B 0.98±0.0 0.77±0.0 0.83±0.0 0.19±0.0 1.0±0.0 0.68±0.0 0.7±0.1 0.2±0.0 0.66±0.1 0.84±0.1 0.93±0.0 0.32±0.1

Vicuna-7B 0.98±0.0 0.93±0.0 0.49±0.1 0.26±0.2 0.93±0.0 0.56±0.0 0.35±0.0 0.28±0.0 0.9±0.0 0.89±0.0 0.8±0.0 0.3±0.0

Alpaca-7B 0.91±0.0 0.83±0.1 0.41±0.0 0.34±0.0 0.82±0.0 0.82±0.1 0.35±0.1 0.3±0.0 0.67±0.1 0.53±0.1 0.32±0.0 0.32±0.0

OPT-175B 0.96±0.0 0.52±0.1 0.55±0.2 0.3±0.1 0.93±0.0 0.92±0.0 0.28±0.2 0.31±0.0 0.79±0.2 0.51±0.2 0.4±0.1 0.29±0.1

OPT-66B 0.91±0.0 0.85±0.0 0.31±0.0 0.27±0.1 0.88±0.0 1.0±0.0 0.27±0.1 0.26±0.1 0.85±0.1 0.64±0.1 0.32±0.0 0.32±0.0

OPT-30B 0.71±0.0 0.35±0.0 0.36±0.0 0.33±0.0 0.49±0.0 0.36±0.0 0.29±0.0 0.32±0.0 0.35±0.0 0.35±0.0 0.41±0.0 0.32±0.0

OPT-13B 0.73±0.0 0.71±0.1 0.45±0.0 0.33±0.0 0.52±0.0 0.46±0.1 0.27±0.1 0.32±0.0 0.76±0.1 0.77±0.1 0.32±0.0 0.32±0.0

OPT-6.7B 0.86±0.0 0.75±0.1 0.32±0.0 0.31±0.0 0.68±0.0 0.86±0.0 0.24±0.0 0.32±0.0 0.37±0.0 0.35±0.0 0.32±0.0 0.32±0.0

OPT-2.7B 0.75±0.1 0.44±0.1 0.31±0.0 0.3±0.0 0.36±0.0 0.38±0.0 0.32±0.0 0.32±0.0 0.64±0.1 0.69±0.1 0.47±0.1 0.32±0.0

OPT-1.3B 0.68±0.1 0.51±0.1 0.33±0.0 0.33±0.0 0.44±0.0 0.6±0.1 0.32±0.0 0.32±0.0 0.58±0.1 0.56±0.1 0.32±0.0 0.32±0.0

OPT-IML-Max-30B 0.96±0.0 0.8±0.1 0.41±0.1 0.42±0.1 0.87±0.0 0.71±0.0 0.3±0.1 0.31±0.1 0.98±0.0 0.93±0.0 0.2±0.1 0.29±0.1

OPT-IML-Max-1.3B 0.48±0.0 0.36±0.0 0.33±0.0 0.33±0.0 0.73±0.0 0.66±0.1 0.32±0.0 0.32±0.0 0.84±0.1 0.77±0.2 0.32±0.0 0.32±0.0

OPT-IML-30B 0.95±0.0 0.83±0.1 0.51±0.1 0.35±0.0 0.89±0.0 0.72±0.0 0.16±0.1 0.3±0.0 0.92±0.0 0.99±0.0 0.23±0.1 0.29±0.1

OPT-IML-1.3B 0.5±0.0 0.39±0.0 0.33±0.0 0.33±0.0 0.76±0.1 0.76±0.1 0.32±0.0 0.32±0.0 0.33±0.0 0.35±0.1 0.28±0.1 0.29±0.1

BLOOM 0.99±0.0 0.89±0.0 0.34±0.0 0.33±0.0 1.0±0.0 0.94±0.0 0.35±0.0 0.32±0.0 0.87±0.1 0.83±0.1 0.41±0.1 0.32±0.0

BLOOM-7.1B 0.68±0.0 0.37±0.0 0.34±0.0 0.31±0.0 0.72±0.0 0.75±0.0 0.35±0.0 0.32±0.0 0.32±0.0 0.32±0.0 0.35±0.0 0.33±0.0

BLOOM-3B 0.36±0.0 0.34±0.0 0.37±0.0 0.33±0.0 0.35±0.0 0.35±0.0 0.35±0.0 0.32±0.0 0.35±0.0 0.35±0.0 0.35±0.0 0.32±0.0

BLOOM-1.7B 0.36±0.0 0.33±0.0 0.33±0.0 0.33±0.0 0.45±0.1 0.32±0.0 0.32±0.0 0.32±0.0 0.32±0.0 0.32±0.0 0.32±0.0 0.32±0.0

BLOOMZ 0.91±0.0 0.34±0.0 0.33±0.0 0.33±0.0 0.92±0.0 0.39±0.0 0.31±0.0 0.32±0.0 0.35±0.0 0.35±0.0 0.32±0.0 0.35±0.0

BLOOMZ-7.1B 0.39±0.0 0.34±0.0 0.33±0.0 0.33±0.0 0.44±0.0 0.36±0.0 0.32±0.0 0.32±0.0 0.35±0.0 0.35±0.0 0.32±0.0 0.32±0.0

BLOOMZ-3B 0.34±0.0 0.34±0.0 0.33±0.0 0.33±0.0 0.38±0.0 0.37±0.0 0.32±0.0 0.32±0.0 0.47±0.1 0.36±0.0 0.32±0.0 0.32±0.0

BLOOMZ-1.7B 0.34±0.0 0.34±0.0 0.33±0.0 0.33±0.0 0.45±0.0 0.35±0.0 0.32±0.0 0.32±0.0 0.35±0.0 0.35±0.0 0.32±0.0 0.32±0.0

NeoXT-Chat-Base-20B 0.76±0.0 0.38±0.0 0.33±0.0 0.33±0.0 0.6±0.1 0.39±0.0 0.32±0.0 0.32±0.0 0.88±0.1 0.6±0.2 0.32±0.0 0.32±0.0

Table 14: Models’ average-macro F1 score at each settings.
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Model Name Details URL

GPT-4 OpenAI’s API call, specifically gpt-4-0314 https://platform.openai.com/docs/
api-reference/chat

GPT-3.5-turbo OpenAI’s API call, specifically gpt-3.5-turbo-0301 https://platform.openai.com/docs/
api-reference/chat

text-davinci-003 OpenAI’s API call, specifically text-davinci-003 https://platform.openai.com/docs/
api-reference/completions

text-davinci-002 OpenAI’s API call, specifically text-davinci-002 https://platform.openai.com/docs/
api-reference/completions

LLaMA-65B Original model weight provided by LLAMA Release Team https://github.com/facebookresearch/llama

LLaMA-30B Original model weight provided by LLAMA Release Team https://github.com/facebookresearch/llama

LLaMA-13B Original model weight provided by LLAMA Release Team https://github.com/facebookresearch/llama

LLaMA-7B Original model weight provided by LLAMA Release Team https://github.com/facebookresearch/llama

Vicuna-13B Recovered model weight based on LLaMA https://huggingface.co/lmsys/
vicuna-13b-delta-v1.1

Vicuna-7B Recovered model weight based on LLaMA https://huggingface.co/lmsys/
vicuna-7b-delta-v1.1

Alpaca-7B Recovered model weight based on LLaMA https://huggingface.co/tatsu-lab/
alpaca-7b-wdiff

OPT-175B Original model weights provided by Meta https://github.com/facebookresearch/
metaseq/blob/main/projects/OPT/download_
opt175b.md

OPT-66B Available on Huggingface https://huggingface.co/facebook/opt-66b

OPT-30B Available on Huggingface https://huggingface.co/facebook/opt-30b

OPT-13B Available on Huggingface https://huggingface.co/facebook/opt-13b

OPT-6.7B Available on Huggingface https://huggingface.co/facebook/opt-6.7b

OPT-2.7B Available on Huggingface https://huggingface.co/facebook/opt-2.7b

OPT-1.3B Available on Huggingface https://huggingface.co/facebook/opt-1.3b

OPT-IML-Max-30B Available on Huggingface https://huggingface.co/facebook/
opt-iml-max-30b

OPT-IML-Max-30B Available on Huggingface https://huggingface.co/facebook/
opt-iml-max-1.3b

OPT-IML-30B Available on Huggingface https://huggingface.co/facebook/
opt-iml-30b

OPT-IML-30B Available on Huggingface https://huggingface.co/facebook/opt-iml-1.
3b

BLOOM Available on Huggingface https://huggingface.co/bigscience/bloom

BLOOM-7.1B Available on Huggingface https://huggingface.co/bigscience/
bloom-7b1

BLOOM-3B Available on Huggingface https://huggingface.co/bigscience/bloom-3b

BLOOM-1.7B Available on Huggingface https://huggingface.co/bigscience/
bloom-1b7

BLOOMZ Available on Huggingface https://huggingface.co/bigscience/bloomz

BLOOMZ-7.1B Available on Huggingface https://huggingface.co/bigscience/
bloomz-7b1

BLOOMZ-3B Available on Huggingface https://huggingface.co/bigscience/
bloomz-3b

BLOOMZ-1.7B Available on Huggingface https://huggingface.co/bigscience/
bloomz-1b7

NeoXT-Chat-Base-20B Available on Huggingface https://huggingface.co/togethercomputer/
GPT-NeoXT-Chat-Base-20B

Table 15: Full model list and details.
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Few-shot exemplars

Determine whether an artificially constructed sentence relating to sports is plausible or not.

Q: Is the following sentence plausible? “Bam Adebayo scored a reverse layup in the Western Conference Finals.”
A: Let’s think step by step.
Bam Adebayo is an American basketball player. Scoring a reverse layup happens in basketball. So the answer is yes.

Q: Is the following sentence plausible? “Santi Cazorla scored a touchdown.”
A: Let’s think step by step.
Santi Cazorla is a soccer player. Touchdown happens in football. So the answer is no.

Q: Is the following sentence plausible? “DeMar DeRozan was called for the goaltend.”
A: Let’s think step by step.
DeMar DeRozan is an American basketball player. Goaltending happens in basketball. So the answer is yes.

Target example

Q: Is the following sentence plausible? “Raisel Iglesias was safe at first.”
A: Let’s think step by step.
Raisel Iglesias is a baseball player. Getting out at first happens in baseball. So the answer is __

Table 16: Example of model input for BASE setting, i.e., entity choices are realistic, neither few-shot exemplars nor
the target example has lexical negation.

Few-shot exemplars

Determine whether an artificially constructed sentence relating to fiction sports is plausible or not.

Q: Is the following sentence plausible? “Bam Adebayo scored a reverse layup in the Western Conference Finals.”
A: Let’s think step by step.
Bam Adebayo is an American basketball player. Scoring a reverse layup happens in basketball. So the answer is yes.

Q: Is the following sentence plausible? “Santi Cazorla scored a touchdown.”
A: Let’s think step by step.
Santi Cazorla is a soccer player. Touchdown happens in football. So the answer is no.

Q: Is the following sentence plausible? “DeMar DeRozan was called for the goaltend.”
A: Let’s think step by step.
DeMar DeRozan is an American basketball player. Goaltending happens in basketball. So the answer is yes.

Target example

Q: Is the following sentence plausible? “Harrison Bullock was safe at first.”
A: Let’s think step by step.
Harrison Bullock is a turboglide player. Getting out at first happens in turboglide. So the answer is __

Table 17: Example of model input for fictional setting (FIC), i.e., entity choices are fictional, neither few-shot
exemplars nor the target example has lexical negation.
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Few-shot exemplars

Determine whether an artificially constructed sentence relating to fiction sports is implausible or not.

Q: Is the following sentence implausible? “Bam Adebayo scored a reverse layup in the Western Conference Finals.”
A: Let’s think step by step.
Bam Adebayo is an American basketball player. Scoring a reverse layup happens in basketball. So the answer is no.

Q: Is the following sentence implausible? “Santi Cazorla scored a touchdown.”
A: Let’s think step by step.
Santi Cazorla is a soccer player. Touchdown happens in football. So the answer is yes.

Q: Is the following sentence implausible? “DeMar DeRozan was called for the goaltend.”
A: Let’s think step by step.
DeMar DeRozan is an American basketball player. Goaltending happens in basketball. So the answer is no.

Target example

Q: Is the following sentence implausible? “Harrison Bullock was safe at first.”
A: Let’s think step by step.
Harrison Bullock is a turboglide player. Getting out at first happens in turboglide. So the answer is __

Table 18: Example of model input for in-domain negation setting (FICNEG), i.e., entity choices are fictional, both
few-shot exemplars and the target example have lexical negation.

Few-shot exemplars

Determine whether an artificially constructed sentence relating to fiction sports is plausible or not.

Q: Is the following sentence plausible? “Bam Adebayo scored a reverse layup in the Western Conference Finals.”
A: Let’s think step by step.
Bam Adebayo is an American basketball player. Scoring a reverse layup happens in basketball. So the answer is yes.

Q: Is the following sentence plausible? “Santi Cazorla scored a touchdown.”
A: Let’s think step by step.
Santi Cazorla is a soccer player. Touchdown happens in football. So the answer is no.

Q: Is the following sentence plausible? “DeMar DeRozan was called for the goaltend.”
A: Let’s think step by step.
DeMar DeRozan is an American basketball player. Goaltending happens in basketball. So the answer is yes.

Target example

Q: Is the following sentence implausible? “Harrison Bullock was safe at first.”
A: Let’s think step by step.
Harrison Bullock is a turboglide player. Getting out at first happens in turboglide. So the answer is __

Table 19: Example of model input for out-domain negation setting (FICNEG-O), i.e., entity choices are fictional,
only the target example has lexical negation.
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