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Abstract

With the Generative Pre-trained Transformer
3.5 (GPT-3.5) exhibiting remarkable reasoning
and comprehension abilities in Natural Lan-
guage Processing (NLP), most Question An-
swering (QA) research has primarily centered
around general QA tasks based on GPT, ne-
glecting the specific challenges posed by Com-
plex Table QA. In this paper, we propose to in-
corporate GPT-3.5 to address such challenges,
in which complex tables are reconstructed into
tuples and specific prompt designs are em-
ployed for dialogues. Specifically, we encode
each cell’s hierarchical structure, position in-
formation, and content as a tuple. By enhanc-
ing the prompt template with an explanatory
description of the meaning of each tuple and
the logical reasoning process of the task, we
effectively improve the hierarchical structure
awareness capability of GPT-3.5 to better parse
the complex tables. Extensive experiments and
results on Complex Table QA datasets, i.e.,
the open-domain dataset HiTAB and the avi-
ation domain dataset AIT-QA show that our
approach significantly outperforms previous
work on both datasets, leading to state-of-the-
art (SOTA) performance.

1 Introduction

Complex tables, characterized by multi-level struc-
ture headers and numerous merged cells, are a
prevalent data format that includes diverse data
types and intricate associations among cells (Lim
and Ng, 1999; Chen and Cafarella, 2014; Jin et al.,
2022). In this context, the Complex Table QA task
emerges as an important and challenging problem
within the field of NLP.

In traditional Table QA tasks, the majority of re-
search efforts focused on simple flat tables (i.e.,
tables with single-level column headers and no
merged cells). Earlier, a substantial number of
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Figure 1: The overall architecture of complex table pars-
ing. It achieves through table structure reconstruction
and prompt template designing based on GPT-3.5. Texts
in the pink background are prompts, where the bold text
can be replaced; texts in the yellow background mean
the format of the tables in the original dataset; and texts
in the orange background represent the tables after refac-
toring. GPT-3.5 indicates the model text-davinci-003.
OOL indicates that the number of tokens we requested
exceeds the length limit of GPT-3.5. Code represents a
piece of Python code we insert to assist multi-turn QA.

studies focused on improving the conversion of
questions into logical forms (e.g., SQLs and code)
that could be directly executed on tables to retrieve
answers (Jin et al., 2022; Dong et al., 2022). To
this end, a wide range of strategies has been in-
troduced, such as reinforcement learning, memory
enhancement, type awareness, relationship aware-
ness, etc. (Pasupat and Liang, 2015; Zhong et al.,
2017; Liang et al., 2018; Yu et al., 2018; Yin et al.,
2020). In recent years, there has been a notable
progress of Large Language Models (LLMs), such
as BERT (Devlin et al., 2019), GPT (Radford et al.,
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2018), GPT-2 (Radford et al., 2019), RoBERTa
(Liu et al., 2019), GPT-3 (Brown et al., 2020), and
T5 (Raffel et al., 2020) in the field of NLP. This
enable the Table QA tasks to generate answers di-
rectly without the need for intermediate logical
forms, which leverage the rich language representa-
tions and knowledge acquired through large-scale
text pre-training (Herzig et al., 2020; Chen et al.,
2020; Eisenschlos et al., 2021; Yang et al., 2022;
Chen, 2023).

While significant attainment has been made in
the studies above-mentioned, their primary empha-
sis has been on the development of simple flat ta-
bles, overlooking the ubiquitous complex tables.
Although (Katsis et al., 2021; Cheng et al., 2022)
endeavored to construct QA datasets, specifically
tailored for complex tables, and evaluated the per-
formance of the SOTA Table QA models, the out-
comes have not met expectations.

Most recently, with the advent of ChatGPT1, an
advanced NLP model derived from GPT-3, has
showcased remarkable capabilities in generation
(Maddigan and Susnjak, 2023; Dong et al., 2023;
Liu et al., 2023a), contextual understanding (Bang
et al., 2023; Gao et al., 2023b; Amin et al., 2023),
and reasoning (Liu et al., 2023b; Gao et al., 2023a),
has profoundly impacted on the field of NLP. A
multitude of research actively explores and lever-
ages the comprehension and generation abilities of
ChatGPT for QA tasks (Tan et al., 2023; Zuccon
and Koopman, 2023; Wang et al., 2023; Singhal
et al., 2023). However, we have not come across
any relevant work that harnesses the competencies
of GPT-3.5 for Complex Table QA task as yet.

In this paper we first attempt to incorporate GPT-
3.5 to achieve complex table parsing, in which com-
plex tables are reconstructed into tuples and spe-
cific prompt designs are employed for dialogues.
As illustrated in Figure 1, we reconstruct the table
stored in JSON format into tuples, incorporating
the hierarchical information, position information,
and the value of each cell into different elements
of the tuple. Subsequently, we fill in and calculate
the length using the designed single-turn dialogue
prompt templates. If the token count does not ex-
ceed the limit of GPT-3.5, we adopt a single-turn
dialogue scheme for QA task. Otherwise, we uti-
lize multi-turn dialogue scheme, in which we break
down the question into sub-questions based on the
logic of the single-turn prompt and introduce a

1https://openai.com/blog/chatgpt

code snippet to facilitate the answering process.
Through careful study and meticulous experimen-
tal analysis, we conclude that GPT-3.5 can be a
great parser for complex tables.

To sum up, the contributions of this paper are:

• We present a novel approach that leverages
GPT-3.5 as a parser to address Complex Table
QA tasks, which enhances the ability of the
model to perceive the hierarchical structure
of complex tables by restructuring the data
format and devising prompt templates.

• We resolve the constraint on the input token
limitation for GPT-3.5 by crafting single-turn
and multi-turn dialogue prompts tailored to
complex tables of different lengths, as well as
incorporating code snippets for assistance in
multi-turn dialogue.

• Extensive experiments are conducted on both
pubic benchmark datasets (i.e., HiTAB and
AIT-QA), and the results show that our
method outperforms the SOTA methods.

2 Related Works

2.1 Complex Table Question Answering
Complex table QA tasks refer to information re-
trieval and answer generation on complex tables
containing multi-level headers and a large num-
ber of merged cells. In previous work, most re-
search has focused on the simple flat table dataset,
such as SQA (Pasupat and Liang, 2015), Spider
(Yu et al., 2019), Hybridq (Chen et al., 2020), Fe-
TaQA (Nan et al., 2021), etc. Recently, (Katsis
et al., 2021) introduced the domain-specific Ta-
ble QA dataset AIT-QA, which consists of 515
QA pairs authored by human annotators on 116
tables, and experimented with the most popular
Table QA models, such as TaPAS (Herzig et al.,
2020), TaBERT (Yin et al., 2020), and RCI (Glass
et al., 2021), but the results were not satisfactory.
(Cheng et al., 2022) also proposed a new dataset
HiTab, which contains 10,672 QA pairs based on
3,597 complex tables from open-domain, and ex-
amined with Table QA models, but the results fell
short of expectations. Furthermore, they proposed
a hierarchy-aware-based method, which improved
the performance on complex tables with the models
trained on simple flat tables. However, the perfor-
mance of these models on simple flat tables still
outperformed the hierarchy-aware-based method.
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Figure 2: The illustration of table reconstruction. First, we rewrite the rows and column headers of the input
JSON-formatted table into a tree structure, where, except for the root node, all nodes have a unique precursor node.
Moreover, we encode the "Hierarchical-Index" of row and column headers according to the hierarchy sequence
number of the tree. For example, "Col 1" indicates that 2018, 2017, 2016, the three headers are all located at the
first layer of column header, and the encoding is 1. In addition, we encode the row and column position information
of the header, for example, the "Column Position Index" of 2018 is 0, the "Column Position Index" of 2017 is 1,
etc. Finally, we encode each cell in the table based on "Hierarchical-Index", "Row Position Index", and "Column
Position Index". In the refactored table, the "Non-header" represents the cell other than the "Column Header" and
"Row Header", and the "Title" represents the table title.

Different from them, we propose to reconstruct the
table format and design suitable prompt templates
to fully unleash the comprehension and reasoning
power of GPT-3.5, which exhibits outstanding per-
formance on both complex table datasets.

2.2 Prompt Engineering

Prompt Engineering refers to making better use
of the knowledge from the pre-training model by
adding additional texts to the input. In the era of
LLM, (Wei et al., 2023) proposed a new method
called chain-of-thought (CoT), a series of inter-
mediate reasoning steps to unleash the power of
LLMs to perform complex reasoning. Soon, (Ko-
jima et al., 2023) proved LLMs to be an effec-
tive zero-shot reasoners by incorporating "Let’s
think step by step" before each answer. (Zhang
et al., 2022) also proposed Auto-CoT (automatic
chain-of-thought), which could generate prompts
automatically. However, the power of LLMs as
good reasoners has not been applied to implement
complex table parsing. In this paper, we specifi-
cally focus on designing the appropriate prompts
to make full use of the remarkable understanding
and reasoning capabilities of GPT-3.5 to realize the
structure-awareness of complex tables.

3 Method

In this section, we reconstruct the table from JSON-
formatted to tuples (Section 3.1). To better leverage
the reasoning and generation capabilities of GPT-
3.5, we introduce the single-turn prompts designed
for tables that do not exceed the API input limit on
tokens (Section 3.2) and the multi-turn prompts for
tables that exceed the limit. Moreover, we add a
piece of code to assist question answering in multi-
turn QA (Section 3.3). Here, we use Python for
coding and calling API.

3.1 Table Reconstruction

As shown in Figure 2, we reconstruct the table from
JSON-formatted to tuples. For the row and column
headers, we encode each cell as a five-tuple. The
first element in the tuple serves as the label to in-
dicate that it represents the row or column header
(T stands for column header and L stands for row
header). The second element denotes the hierar-
chical index of the cell, while the third element
represents the ordinal number of the cell’s start-
ing row or column. The fourth element signifies
the cell’s ending row or column number, and the
fifth element encapsulates the cell’s value. For non-
header cells, we utilize a quadruple to depict each
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(a) An example of Single-Turn Dialogue. (b) An example of Multi-Turn Dialogue.

Figure 3: Examples of Single-Turn and Multi-Turn Dialogue.

cell. The first element in the tuple designates the
label, indicating that it pertains to a non-header cell.
The second element represents the row number of
the cell, while the third element signifies the col-
umn number of the cell. Lastly, the fourth element
encapsulates the value of the cell. For example, (L,
0, 0, 3, "Compensation cost:") means that the tuple
is a row header with hierarchical-index 0, starting
at row position index 0, ending at row position
index 3, and the value is "Compensation cost:".

We successfully integrate the category informa-
tion, position information, and value of each cell
in the complex table, as well as the hierarchical
information of the row and column headers into the
tuple by table reconstruction. Thus, not only the
information of the whole table is clearly expressed,
but also the problem of token numbers beyond the
limit caused by the information redundancy of the
original format can be solved.

3.2 Single-Turn Prompt
In this section, we adopt a single-turn dialogue
scheme for complex tables that do not exceed the
limit of the API input token. As shown in Figure
3(a), we reformulate the prompt of a single-turn
dialogue into Regulations and Input Context.

• Regulations aim to dictate and guide the be-
havior of GPT-3.5 to make it more capable
of reasoning on complex tables. In Figure
3(a), we make the role assumption of GPT-
3.5, and the reconstructed table is described in
detail and illustrated with examples. Also, we
provide a detailed description of CoT for the
entire Complex Table QA task to drive GPT-
3.5 starting at the top level header, to find the
relevant sub-headers layer by layer and locate
the non-header cells by the location informa-
tion in header tuples. It is worth noting that in
the part of "Output Control", we require the
model to output the selected "Column header",
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"Row header", "Cell", "Operation" and "An-
swer" in return. In this way, we can better
evaluate the reasoning and understanding abil-
ities of the model (See Appendix A.1 for more
details of single-turn prompt).

• Input Context contains a large number of
fill slots, which can be filled at: "title: []",
"column header: []", "row header: []", "Q:
""" according to different QA pairs, where
"title" represents the title of the table, "col-
umn header" and "row header" refers to the
column headers and row headers of the table
respectively, and "Q" denotes the question.
Give the input in Figure 3(a) as an example,
"title: [tab-102]" is generated by filling "title:
[]" with "tab-102".

3.3 Multi-Turn Prompt and Code Assistant

In multi-turn dialogue, as shown in Figure 3(b),
similar to the single-turn dialogue, we partition the
prompt into two components: Regulations and In-
put Context. However, we divide the dialogue into
three turns with four modules. More specifically,
we not only split the Chain-of-thought in the Regu-
lations part of the single-round dialogue and assign
it to the three turns of the multi-turn dialogue, but
also move the Output Control part to the last turn
of the dialogue. It is worth noting that we add a
piece of code in the third module to assist the cell
selection.

• In the first module (i.e., the first prompt turn),
we extract the keywords from the question.

• In the second module (i.e., the second
prompt turn), we pick the relevant tuples in
the row and column header tuples and record
them based on the keywords we select in the
first prompt turn.

• In the third module (i.e., the code assistant
module), we incorporate a code snippet to fa-
cilitate the dialogue. Specifically, we pass
the row and column header tuples selected in
the second round of dialogue into the third
module, extract the row and column position
information in these tuples through the code,
and retrieve the non-header tuples of the ta-
ble based on this position information. All
the tuples matching the location information
are returned and passed to the last module.
This optimization expedites the experiment by

Figure 4: Schematic comparison of the answers gen-
erated by GPT-3.5 with the original answers. GPT-3.5
represents the answers generated by text-davinci-003.
Ori represents the standard answer in the dataset. Texts
in the green background represent the question. Texts
in the blue background represent the answer.

Dataset Table
number

QA Pair Average number
of tokens Domain

Train Dev Test Total

HiTAB 3,597 7,417 1,671 1,584 10,672 2,521 Open domain

AIT-QA 116 - - - 515 115 Domain specific

Table 1: Dataset statistics. Average number of tokens
represents the average number of tokens after tokenizing
the table in the original format when calling API.

mitigating the relatively slow API calls, and
significantly enhances the results by reducing
the accumulation of errors resulting from the
multi-turn dialogue.

• In the fourth module (i.e., the third prompt
turn), we prompt GPT-3.5 for all relevant row
headers, column headers, and non-header tu-
ples, ask questions, and require the model to
answer them in our prescribed format.

4 Experiment

4.1 Datasets

We evaluate our approach on Complex Table QA
task with HiTab (Cheng et al., 2022) and AIT-QA
(Katsis et al., 2021). As shown in Table 1, we
provide the statistical results of the datasets and
calculate the average length of the tokenized table.
Moreover, it can be seen in Table 3 that the AIT-QA
dataset is divided into four subsets. According to
whether the question is related to Key Performance
Indicators (KPIs), the dataset is divided into "KPI-
driven" and "Table-driven". Similarly, AIT-QA is
also divided into "Row header hierarchy" and "No
row header hierarchy", according to whether the
answer relies on the row header hierarchy.

It is worth noting that the data in HiTAB comes
from statistical reports across 28 different fields
and Wikipedia, offering rich table information with
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complex structures. In contrast, the data in AIT-
QA are all selected from airline companies, and the
information and hierarchical structures contained in
the tables are relatively simple compared to HiTAB.

4.2 Baselines
Since we have not found any further work related
to HiTAB and AIT-QA, we compare our work
with the evaluation results in their original paper,
including 1) supervision-based method: MAPO
(Liang et al., 2018), TaPas (Herzig et al., 2020),
MML (Dempster et al., 1977) and REINFORCE
(Williams, 1992); and 2) zero-shot-based methods:
TaBERT (Yin et al., 2020), TaPas (Herzig et al.,
2020) and RCI (Glass et al., 2021).

4.3 Evaluation
Because of the presence of a substantial number
of non-numerical type answers in the datasets, di-
rect alignment or similarity evaluation cannot effec-
tively assess our method. As illustrated in Figure 4,
it is evident that the answers generated by GPT-3.5
have essentially the same meaning as the original
answer. However, there exists a notable difference
in their representation. The model-generated an-
swers tend to provide more intricate details, while
the original answers exhibit a more concise nature.
Therefore, we use Accuracy as our evaluation met-
ric following (Cheng et al., 2022), which indicates
the percentage of QA pairs with correct answers,
to align whether the generated answers are equiva-
lent to the original answers in the case of a specific
question and context (i.e., table content).

4.4 Model
We conduct experiments mainly with the text-
davinci-003 from OpenAI, which is improved on
GPT-3 and can understand as well as generate nat-
ural language or code. Text-davinci-003 supports
4,097 input tokens at most, which means that the
combined count of the input tokens and the gener-
ated tokens can not exceed 4,097.

4.5 Results
4.5.1 Main Results
The results on HiTAB are shown in Table 2. Specif-
ically, the absolute accuracy improvement of 5.5 on
the Dev set and 9.3 on the Test set. Specifically, the
absolute accuracy improvement of 5.5 on the Dev
set and 9.3 on the Test set can be observed if com-
pared to the previous best weak supervision method
MAPO with the hierarchy-aware logical form on

Method Dev Test
Weak Supervision MAPO w. original logical form 31.9 29.2
(Cheng et al., 2022) TaPas w/o. logical form 39.7 38.9

MML w. h.a. logical form 38.9 36.7
REINFORCE w. h.a. logical form 42.7 38.4
MAPO w. h.a. logical form 43.5 40.7

Partial Supervision TaPas w/o. logical form 41.2 40.1
(Cheng et al., 2022) MML w. h.a. logical form 45.4 45.1

REINFORCE w. h.a. logical form 44.0 39.7
MAPO w. h.a. logical form 44.8 44.3

Zero-shot Ours w. GPT-3.5 49.0 50.0

Table 2: Accuracy on dev/test of HiTAB. h.a. stands for
hierarchy-aware.

Data subset
Models Ours

TaBERT TaPaS RCI Single-turn Multi-turn All

KPI-driven 41.37 48.26 60.00 76.92 66.67 74.48

Table-driven 31.08 50.0 48.64 76.67 80.00 71.84

Row header hierarchy 21.92 47.26 45.89 61.72 61.11 61.64

No row header hierarchy 38.75 50.39 54.20 82.23 78.95 81.84

Overall 33.98 49.32 51.84 76.73 70.27 76.26

Table 3: Accuracy on AIT-QA. We compare with other
baselines: TaBERT, TaPaS, RCI (Katsis et al., 2021).

HiTAB. Among the partial supervision methods on
HiTAB, our approach still outperforms previous
works by a large margin. Table 3 reports the results
on AIT-QA. In the context of zero-shot learning,
the accuracy of our method outperforms TaBERT,
TaPas, and RCI by 42.28, 26.94, and 24.42 on the
overall dataset, respectively. Combining the results
on these two datasets, it can be demonstrated that
GPT-3.5 can achieve the parsing of complex tables
given appropriate data format and prompt.

4.5.2 Results on HiTAB

As shown in Table 2, our method outperforms all
previous methods by over 3.5 in accuracy across the
board. At the same time, it can be seen from Table
4 that, the results of the single-turn dialogue are
significantly higher than the overall results. These
indicate that our approach of leveraging the Large
Language Model as a parser for complex tables
is effective. In multi-turn dialogue, our method
achieves 43.5 and 47.0 accuracy on the Dev and
Test sets, respectively. Notice that, our work is built
upon the framework of zero-shot learning, differing
from the supervised methods utilized in previous
studies. Even if our results may not consistently
surpass those of these previous works, we assert
our method is still comparable to the SOTA as
reported in the original paper (Cheng et al., 2022)
Although the training set is also applicable, we
find it performs slightly worse partially due to the
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Train Dev Test Overall
Single-turn 52.0 51.1 51.1 51.7
Multi-turn 40.8 43.5 47.0 42.1
Overall 48.9 49.0 50.0 49.3

Table 4: Accuracy of different dialogue schemes on
train/dev/test/overall of HiTAB.

dataset bias.

4.5.3 Results on AIT-QA
We divide the AIT-QA dataset into four subsets
according to the method in the original paper (Kat-
sis et al., 2021), and analyze them separately, as
shown in Table 3. Overall, compared to other mod-
els trained on tabular data, our method soundly
outperforms all previous works. The overall accu-
racy of single-turn dialogue reaches 76.73, and of
multi-turn dialogue, it reaches 70.27, which is a sig-
nificant leap compared to the 51.84 accuracy of the
the previous best method RCI (Glass et al., 2021).
Furthermore, our method achieves the best results
on two subsets "KPI-driven" and "Table-driven",
respectively, as well as on two subsets determined
by whether or not the answer relies on the row
header hierarchy. It is noteworthy that, on the AIT-
QA dataset, GPT-3.5 still exhibits a trend where
the accuracy of single-turn dialogue is generally
higher than that of multi-turn dialogue. We con-
sider that this is due to the inability of multi-turn
dialogue to preserve historical information, result-
ing in information loss and the accumulation of
errors throughout multiple interactions.

In addition, an absolute improvement over pre-
vious work is achieved on all subsets of AIT-QA.
The results on subsets "Row header hierarchy" and
"No row header hierarchy" show that the accuracy
of answers that do not rely on the row header hier-
archy is significantly higher than those that do rely
on it. We attribute this to a bias in the attention of
GPT-3.5 to row and column headers.

4.6 Ablation Study

As shown in Table 5, we conduct ablation exper-
iments on the HiTAB and AIT-QA datasets. The
results indicate that by restructuring the tables and
integrating the restructured structural information
with the CoT design prompts for the Complex Ta-
ble QA task, the ability of GPT-3.5 to parse com-
plex tables is significantly enhanced. Simultane-
ously, there is a notable reduction in the instances
where the model responds with "I don’t know."

Accuracy Idn
HiTAB
Table w. spt & w/o. ref 20.3 9.9
Table w. mpt & w. ref 49.3 0.6
AIT-QA
Table w. spt & w/o. ref 64.7 14.2
Table w. mpt & w. ref 76.3 0.2

Table 5: Ablation sresults on HiTAB and AIT-QA. spt
represents a simple prompt. mpt represents the prompt
that combines the information of the reconstructed table
with the CoT design of Complex Table QA. ref repre-
sents a JSON-formatted table. Idn stands for "I don’t
know". We ask the model to answer "I don’t know" if it
could not infer the answer based on the existing context
in the prompt. Please refer to Appendix A.1, A.2 and
A.3 for more details.

This demonstrates that our method can effectively
improve the perception ability of the model regard-
ing complex table structures, and consequently en-
hance its capacity to analyze complex tables.

5 Analysis

The results show that our method proposed for com-
plex table parsing based on GPT-3.5 effectively out-
performs the optimal methods on the existing two
complex table datasets. However, compared to the
significant performance with single-turn dialogue,
the accuracy with multi-turn dialogue, especially
on the HiTAB dataset, performs slightly worse. We
further analyze the results in this section.

5.1 Effects of the Input Token Limit
Due to the inherent length of complex tables, as
seen in Table 1, filling them into prompt templates
increases the likelihood of exceeding the input to-
ken limit of GPT-3.5, which has the following im-
plications for our task.

5.1.1 Context Truncation
The excessive length of the input text leads to con-
text truncation, resulting in the omission of critical
information. As shown in Table 5, the accuracy
on the HiTAB dataset is quite low without table
reconstruction, which is attributed to the fact that
after filling the prompt template slot with the table
information, a large number of prompts exceed the
input token limit, and the direct truncation of the
context leads to the missing of valuable informa-
tion. As a solution, we employ a combination of
single-turn and multi-turn dialogues to accomplish
complex table QA.
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Figure 5: An example of hallucination of GPT-3.5.

5.1.2 Trade-off between Depth and Breadth
When opting for single-turn dialogue for Complex
Table QA, we input all information at once. The
model is exposed to a wide and comprehensive
range of information sources, but due to the ab-
sence of interactive prompts, its ability to focus
on key information in the questions and tables is
limited. In contrast, when employing multi-turn
dialogue, through continuous interactive prompt-
ing, we consistently guide the model to identify
key information from each dialogue turn. We then
utilize this information to further prompt the model
in subsequent turns. Multi-turn dialogue enables
the model to be more focused on key information,
but there is a possibility that it may overlook the
global context.

Additionally, given that GPT-3.5 cannot auto-
matically retain historical conversations, errors ac-
cumulate as dialogue turns increase, rendering the
answers increasingly prone to inaccuracy.

5.1.3 Prompt Design Limitation
(Pan et al., 2023) pointed out that providing both ex-
amples and descriptions in prompt can effectively
improve the performance of ChatGPT. However,
due to the length of the complex table, we cannot
provide an example with complete dialogue and
description in the prompt concurrently.

5.2 Effect of Hallucination

Hallucination refers to the generation of content
that may seem plausible but is not grounded in the
source information or is outright incorrect. As seen
in the Figure 5, when we pose the question, "were
women still living in a private dwelling on census
day 2011 more likely to be unmarried or were those
living in an nh at the time of the cchs interview?",
GPT-3.5 responded with "Women" and further pro-
vided a detailed explanation stating "(57.5% vs
72.4%)". Evidently, if we make our selection based
on the analysis provided in the answer, the appro-
priate response would be "women living in an n",

which refers to a "nursing home".

5.3 Effect of Hierarchical Row Header
In conjunction with Table 3, it can be observed
that the performance of not only our method but
also others on the subset "Row header hierarchy"
begins to decline when the answer relies on the row
header hierarchy compared with the subset "No
row header hierarchy".

During the analysis of experimental results on
the HiTAB dataset, we also encountered the same
issue: the model exhibits different levels of atten-
tion to row headers and column headers in tables.
Under the same data format and prompt conditions,
GPT-3.5 typically tends to focus more on column
headers. We consider that this behavior might be
attributed to the inherent ability of GPT-3.5 to in-
terpret tables in markdown format, which typically
only has column headers or places emphasis on
them. Consequently, when attempting to under-
stand tables in a new format, GPT-3.5 may transfer
its prior knowledge, thereby affecting its parsing
of the new tables.

5.4 Error Analysis
We randomly sample 50 instances, each from the
erroneous results of single-turn dialogue and multi-
turn dialogue, and analyze them in terms of the
accuracy in the row and column header localiza-
tion and cell selection. The results indicate that
the errors are primarily attributed to the model ei-
ther locating incorrect row and column headers or
locating too few row and column headers.

In the analysis of single-turn dialogue and multi-
turn dialogue, it can be found that errors are mainly
caused by incorrect localization of row and col-
umn headers. When the model locates non-header
tuples based on incorrect or incomplete row and
column header tuples, it tends to make erroneous
selections. Furthermore, when the model selects a
broad range of row and column headers, the num-
ber of non-header tuples that are selected based on
them increases. The excess information can also
lead to incorrect selections (another main reason
for the erroneous answers of the model). This sug-
gests that the comprehension capability of GPT-3.5
might decline when the input content is lengthy
and complex. In addition, the model sometimes
chooses the wrong cells even under the guidance of
correct row and column headers, such as generat-
ing fictitious answers on their own, indicating that
GPT-3.5 is sometimes prone to hallucinations.
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6 Conclusion

Inspired by the powerful reasoning and genera-
tion capabilities of LLMs, we propose to lever-
age GPT-3.5 as a parser for complex tables with
table reformat and prompt design. Extensive ex-
periments show that our method achieves the best
performance on HiTAB and AIT-QA. However,
limited by the input length and inability to store
historical information of GPT-3.5, how to utilize
multi-turn dialogue to obtain more valuable context
for Complex Table QA remains to be explored.

Limitations

When utilizing GPT-3.5, a generative model, for
the Complex Table QA task, comparing its gener-
ated outputs to the original answers is an important
issue.

• GPT-3.5 typically generates answers in its
own words. When paraphrasing the informa-
tion from the context or that it has learned
during training, it may provide details that
do not align in granularity with the original
answer.

• GPT-3.5 is unstable. When posing the same
question within the same context, it does not
always provide consistent responses.

• GPT-3.5 is prone to hallucinations. It is ca-
pable of generating answers that bear no rel-
evance to the original text or the original an-
swer.

Given these issues, it is important to define an
evaluation metric that takes into account the com-
plexity and variability of the responses generated
by GPT-3.5.

Acknowledgements

We deeply indebted to the anonymous reviewers
from EMNLP for their constructive feedback. We
are also express our gratitude to our tutors and
peers for their invaluable insights and unflagging
support throughout the course of this research. This
work is also supported by National Natural Science
Foundation of China (No.62172101); and by the
Science and Technology Commission of Shanghai
Municipality (No.22511106000); and Regional so-
cial experimentation with the "Clinical Decision
Support System for Paediatric Outpatient Clinics"

(PROJECT NO: 21002411800); and Auxiliary Di-
agnosis and Rare Disease Screening System for
Children’s Pneumonia (No.yg2022-7).

References
Mostafa M. Amin, Erik Cambria, and Björn W. Schuller.

2023. Will affective computing emerge from foun-
dation models and general ai? a first evaluation on
chatgpt.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan
Xu, and Pascale Fung. 2023. A multitask, multilin-
gual, multimodal evaluation of chatgpt on reasoning,
hallucination, and interactivity.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Wenhu Chen. 2023. Large language models are few(1)-
shot table reasoners.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Wang. 2020. Hybridqa: A
dataset of multi-hop question answering over tabular
and textual data. arXiv preprint arXiv:2004.07347.

Zhe Chen and Michael Cafarella. 2014. Integrating
spreadsheet data via accurate and low-effort extrac-
tion. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 1126–1135.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2022. Hitab: A hierarchical table
dataset for question answering and natural language
generation.

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
1977. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical
society: series B (methodological), 39(1):1–22.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou,
Anda Zhou, Fan Zhou, Ao Liu, Shi Han, and Dong-
mei Zhang. 2022. Table pretraining: A survey
on model architectures, pretraining objectives, and
downstream tasks. arXiv preprint arXiv:2201.09745.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023.
Self-collaboration code generation via chatgpt.

14794

http://arxiv.org/abs/2303.03186
http://arxiv.org/abs/2303.03186
http://arxiv.org/abs/2303.03186
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2210.06710
http://arxiv.org/abs/2210.06710
http://arxiv.org/abs/2108.06712
http://arxiv.org/abs/2108.06712
http://arxiv.org/abs/2108.06712
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2304.07590


Julian Martin Eisenschlos, Maharshi Gor, Thomas
Müller, and William W Cohen. 2021. Mate: multi-
view attention for table transformer efficiency. arXiv
preprint arXiv:2109.04312.

Jinglong Gao, Xiao Ding, Bing Qin, and Ting Liu.
2023a. Is chatgpt a good causal reasoner? a compre-
hensive evaluation.

Yuan Gao, Ruili Wang, and Feng Hou. 2023b. How to
design translation prompts for chatgpt: An empirical
study.

Michael Glass, Mustafa Canim, Alfio Gliozzo, Sa-
neem Chemmengath, Vishwajeet Kumar, Rishav
Chakravarti, Avi Sil, Feifei Pan, Samarth Bharad-
waj, and Nicolas Rodolfo Fauceglia. 2021. Cap-
turing row and column semantics in transformer
based question answering over tables. arXiv preprint
arXiv:2104.08303.

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. arXiv preprint arXiv:2004.02349.

Nengzheng Jin, Joanna Siebert, Dongfang Li, and Qing-
cai Chen. 2022. A survey on table question answer-
ing: Recent advances.

Yannis Katsis, Saneem Chemmengath, Vishwajeet Ku-
mar, Samarth Bharadwaj, Mustafa Canim, Michael
Glass, Alfio Gliozzo, Feifei Pan, Jaydeep Sen,
Karthik Sankaranarayanan, et al. 2021. Ait-qa: ques-
tion answering dataset over complex tables in the
airline industry. arXiv preprint arXiv:2106.12944.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc V Le, and Ni Lao. 2018. Memory augmented
policy optimization for program synthesis and se-
mantic parsing. Advances in Neural Information
Processing Systems, 31.

Seung-Jin Lim and Yiu-Kai Ng. 1999. An automated
approach for retrieving hierarchical data from html
tables. In Proceedings of the eighth international
conference on Information and knowledge manage-
ment, pages 466–474.

Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang,
Haibo Hu, Xiaohong Zhang, and Meng Yan. 2023a.
Improving chatgpt prompt for code generation.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023b. Evaluating the logical
reasoning ability of chatgpt and gpt-4.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Paula Maddigan and Teo Susnjak. 2023. Chat2vis: Gen-
erating data visualisations via natural language us-
ing chatgpt, codex and gpt-3 large language models.
IEEE Access.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria
Lin, Neha Verma, Rui Zhang, Wojciech Kryściński,
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A Appendix

A.1 Single-Turn Prompt
The Regulation and Input Context parts of the
single-turn dialogue prompt are detailed in Tables
6 and 7, respectively.

A.2 Multi-Turn Prompt
As shown in 8, 9 and 10, we describe the prompt
of the first, second and third prompt turn in detail.

A.3 Simple Prompt
Table 11 shows the full text of a specific prompt
designed for the original table format.
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Regulations

# Role play
Suppose you are an expert in statistical analysis.
You will be given a table described in a special format.
Your task is to answer the questions based on the content of the table.
# Table Description
The table is described as follows:
1. The title means the title of the table.
2. A tuple (T, T1, T2, T3, T4) represents a column header, where T indicates it’s a column header,
T1 denotes its level, T2 and T3 indicate the start and end column of the header, and T4 specifies the
content.
3. A tuple (L, L1, L2, L3, L4) represents a row header, where L indicates it’s a row header, L1
denotes its level, L2 and L3 indicate the start and end row of the header, and L4 specifies the
content.
4. We represent non-header tuples as (C, C1, C2, C3), where C denotes a non-header tuple, C1
denotes the row, C2 denotes the column, and C3 denotes the content. C1 corresponds to the row
header tuple’s L2 and L3 that are related to it, while C2 corresponds to the column header tuple’s
T2 and T3 that are related to it.
5. The tuple of a column header contains T1, representing the level of the header, with 0 being the
highest level and larger T1 indicating lower levels. If the T2 and T3 of tuple A are between T2
and T3 of tuple B (can be equal), then there is a parent-child relationship between A and B, A is a
sub-header of B, B is a parent-header of A, and A’s T1 must be smaller than B’s T1. The lowest
level header’s tuple has T2=T3. Similarly for row headers. The specific tuples are in Table Content.
# Examples
For examples:
The tuple (T, 1, 0, 0, g) denotes a column header with level 1, spanning from column 0 to column 0,
with the content "g".
The tuple (L, 0, 6, 6, karlsruher sc) denotes a row header with level 0, spanning from row 6 to row
6, with the content "karlsruher sc".
The tuple (C, 7, 0, 416) represents a non-header cell at row 7, column 0, with a value of 416.
Make sure you read and understand these instructions carefully.
# Chain-of-thought
Let’s think step by step as follows and give full play to your expertise as a statistical analyst:
1. Clearly understand the question and the information needed to answer the question to determine
the necessary information to extract.
2. Have a comprehensive understanding of the data in the table, including the meaning, data types,
and formats of each column and row tuples (Note: There are usually summative tuples in the table,
such as all, combine, total, sum, average, mean, etc. These tuples help you skip a lot of operations).
3. Based on the question, select the row and column header tuples that are most relevant to the
question and then locate the non-header tuples based on the row and column header tuples you
selected before.
4. Perform statistical, calculation, sorting, grouping, or other operations on the tuples you selected
before to extract useful information based on the question’s requirements.
# Output Control
You MUST answer each question in the format below line by line (Note: Keep your answer
concise):
1. Column header: The column header tuples most relevant to the answer.
2. Row header: The row header tuples most relevant to the answer.
3. Cell: The non-header tuples most relevant to the answer.
4. Operation: the operation you performed on the tuples you selected.
5. Answer: your answer (A number, noun, phrase, or set of data).
And if the answer is not contained within the context, say "I don’t know".

Table 6: Full text of the "Regulations" part of the single-turn dialogue prompt. The text in "[]" can be replaced
according to the specific information in the QA process.
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Input Context
# Table Title
Title: [TABLE_TITLE_HERE]
# Column Header
Column header: [TABLE_COLUMN_HEADER_HERE]
# Row Header
Row header: [TABLE_ROW_HEADER_HERE]
# Non-Header
Non-header: [TABLE_NON_HEADER_HERE]
# Question
Q: [QUSTION_HERE]
A:

Table 7: Full text of the "Input Context" part of the single-turn dialogue prompt. The text in "[]" can be replaced
according to the specific information in the QA process.
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Regulations

# Role play
Suppose you are an expert in statistical analysis.
You will be given a table described in a special format.
Your task is to answer the questions based on the content of the table.
# Table Description
The table is described as follows:
1. The title means the title of the table.
2. A tuple (T, T1, T2, T3, T4) represents a column header, where T indicates it’s a column header,
T1 denotes its level, T2 and T3 indicate the start and end column of the header, andT4 specifies the
content.
3. A tuple (L, L1, L2, L3, L4) represents a row header, where L indicates it’s a row header, L1
denotes its level, L2 and L3 indicate the start and end row of the header, and L4 specifies the
content.
4. We represent non-header tuples as (C, C1, C2, C3), where C denotes a non-header tuple, C1
denotes the row, C2 denotes the column, and C3 denotes the content. C1 corresponds to the row
header tuple’s L2 and L3 that are related to it, while C2 corresponds to the column header tuple’s
T2 and T3 that are related to it.
5. The tuple of a column header contains T1, representing the level of the header, with 0 being the
highest level and larger T1 indicating lower levels. If the T2 and T3 of tuple A are between T2
and T3 of tuple B (can be equal), then there is a parent-child relationship between A and B, A is a
sub-header of B, B is a parent-header of A, and A’s T1 must be smaller than B’s T1. The lowest
level header’s tuple has T2=T3. Similarly for row headers. The specific tuples are in Table Content.
# Examples
For examples:
The tuple (T, 1, 0, 0, g) denotes a column header with level 1, spanning from column 0 to column 0,
with the content "g".
The tuple (L, 0, 6, 6, karlsruher sc) denotes a row header with level 0, spanning from row 6 to row
6, with the content "karlsruher sc".
The tuple (C, 7, 0, 416) represents a non-header cell at row 7, column 0, with a value of 416.
Make sure you read and understand these instructions carefully.
Input Context #1
# Abstract Keywords
Extract the key words in the question.
Q: [QUESTION_HERE]
A:

Table 8: Full text of the first prompt turn of the multi-turn dialogue. The text in "[]" can be replaced according to the
specific information in the QA process.
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Regulations and Historical Dialogue

# Role play
Suppose you are an expert in statistical analysis.
You will be given a table described in a special format.
Your task is to answer the questions based on the content of the table.
# Table Description
The table is described as follows:
1. The title means the title of the table.
2. A tuple (T, T1, T2, T3, T4) represents a column header, where T indicates it’s a column header,
T1 denotes its level, T2 and T3 indicate the start and end column of the header, andT4 specifies the
content.
3. A tuple (L, L1, L2, L3, L4) represents a row header, where L indicates it’s a row header, L1
denotes its level, L2 and L3 indicate the start and end row of the header, and L4 specifies the
content.
4. We represent non-header tuples as (C, C1, C2, C3), where C denotes a non-header tuple, C1
denotes the row, C2 denotes the column, and C3 denotes the content. C1 corresponds to the row
header tuple’s L2 and L3 that are related to it, while C2 corresponds to the column header tuple’s
T2 and T3 that are related to it.
5. The tuple of a column header contains T1, representing the level of the header, with 0 being the
highest level and larger T1 indicating lower levels. If the T2 and T3 of tuple A are between T2
and T3 of tuple B (can be equal), then there is a parent-child relationship between A and B, A is a
sub-header of B, B is a parent-header of A, and A’s T1 must be smaller than B’s T1. The lowest
level header’s tuple has T2=T3. Similarly for row headers. The specific tuples are in Table Content.
# Examples
For examples:
The tuple (T, 1, 0, 0, g) denotes a column header with level 1, spanning from column 0 to column 0,
with the content "g".
The tuple (L, 0, 6, 6, karlsruher sc) denotes a row header with level 0, spanning from row 6 to row
6, with the content "karlsruher sc".
The tuple (C, 7, 0, 416) represents a non-header cell at row 7, column 0, with a value of 416.
Make sure you read and understand these instructions carefully.
# Output of Turn 1
Extract the key words in the question.
Q: [QUESTION_HERE]
A: [ANSWER_OF_TURN_1]
Input Context #2
# Select Headers
Here are table title and the tuples of the table’s rows and headers, please try to locate the lowest
level of headers that match the question and keywords you extracted:
"Title": [TABLE_TITLE_HERE]
"Column header": [TABLE_COLUMN_HEADER_HERE]
"Row header": [TABLE_ROW_HEADER_HERE]
# Output Control
You MUST output your selection in the following format:
1. Column header:
2. Row header:

Table 9: Full text of the second prompt turn of the multi-turn dialogue. The text in "[]" can be replaced according to
the specific information in the QA process.
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Regulations and Historical Dialogue

# Role play
Suppose you are an expert in statistical analysis.
You will be given a table described in a special format.
Your task is to answer the questions based on the content of the table.
# Table Description
The table is described as follows:
1. The title means the title of the table.
2. A tuple (T, T1, T2, T3, T4) represents a column header, where T indicates it’s a column header,
T1 denotes its level, T2 and T3 indicate the start and end column of the header, andT4 specifies the
content.
3. A tuple (L, L1, L2, L3, L4) represents a row header, where L indicates it’s a row header, L1
denotes its level, L2 and L3 indicate the start and end row of the header, and L4 specifies the
content.
4. We represent non-header tuples as (C, C1, C2, C3), where C denotes a non-header tuple, C1
denotes the row, C2 denotes the column, and C3 denotes the content. C1 corresponds to the row
header tuple’s L2 and L3 that are related to it, while C2 corresponds to the column header tuple’s
T2 and T3 that are related to it.
5. The tuple of a column header contains T1, representing the level of the header, with 0 being the
highest level and larger T1 indicating lower levels. If the T2 and T3 of tuple A are between T2
and T3 of tuple B (can be equal), then there is a parent-child relationship between A and B, A is a
sub-header of B, B is a parent-header of A, and A’s T1 must be smaller than B’s T1. The lowest
level header’s tuple has T2=T3. Similarly for row headers. The specific tuples are in Table Content.
# Examples
For examples:
The tuple (T, 1, 0, 0, g) denotes a column header with level 1, spanning from column 0 to column 0,
with the content "g".
The tuple (L, 0, 6, 6, karlsruher sc) denotes a row header with level 0, spanning from row 6 to row
6, with the content "karlsruher sc".
The tuple (C, 7, 0, 416) represents a non-header cell at row 7, column 0, with a value of 416.
Make sure you read and understand these instructions carefully.
# Output of Turn 2 and Code
Here are all the tuples relevant to the question:
[ANSWER_OF_TURN_2]
Non-header: [OUTPUT_OF_CODE]
Input Context #2
# All Headers
"Column header": [TABLE_COLUMN_HEADER_HERE]
"Row header": [TABLE_ROW_HEADER_HERE]
# Output Control
You MUST answer each question in the format below line by line (Note: Keep your answer
concise):
1. Column header: The column header tuples most relevant to the answer.
2. Row header: The row header tuples most relevant to the answer.
3. Cell: The non-header tuples most relevant to the answer.
4. Operation: the operation you performed on the tuples you selected.
5. Answer: your answer (A number, noun, phrase, or set of data).
And if the answer is not contained within the context, say "I don’t know".
Notes:
1. In the row and column header tuples, the third and fourth elements represent the row and column
position information.
2. You must output non-header tuples that are valid in the above tuples.

Table 10: Full text of the third prompt turn of the multi-turn dialogue. The text in "[]" can be replaced according to
the specific information in the QA process.

14801



Regulations
The text provided describes a table in json format, answer the question as truthfully as possible
using the provided text and don’t omit the decimal point, and if the answer is not contained within
the text below, say "I don’t know".
# Content [ORIGINAL_TABLE]
Q: [QUESTION_HERE]
A:

Table 11: Full text of the simple prompt. The text in "[]" can be replaced according to the specific information in the
QA process.
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