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Abstract
This paper is on the problem of Knowledge-
Based Visual Question Answering (KB-VQA).
Recent works have emphasized the significance
of incorporating both explicit (through external
databases) and implicit (through LLMs) knowl-
edge to answer questions requiring external
knowledge effectively. A common limitation
of such approaches is that they consist of rela-
tively complicated pipelines and often heavily
rely on accessing GPT-3 API. Our main contri-
bution in this paper is to propose a much sim-
pler and readily reproducible pipeline which,
in a nutshell, is based on efficient in-context
learning by prompting LLaMA (1 and 2) using
question-informative captions as contextual in-
formation. Contrary to recent approaches, our
method is training-free, does not require access
to external databases or APIs, and yet achieves
state-of-the-art accuracy on the OK-VQA and
A-OK-VQA datasets. Finally, we perform sev-
eral ablation studies to understand important
aspects of our method. Our code is publicly
available at https://github.com/alexandrosXe/A-
Simple-Baseline-For-Knowledge-Based-VQA

1 Introduction

Knowledge-based VQA (KB-VQA) is a recently
introduced VQA task (Wang et al., 2017, 2018;
Marino et al., 2019; Shah et al., 2019) where the im-
age alone is not sufficient to answer the given ques-
tion, but effective utilization of external knowledge
resources is additionally required. To solve such a
task, a model would need not only strong visual per-
ception but also reasoning capabilities while also
being able to effectively incorporate world knowl-
edge from external KBs (e.g. Wikipedia, etc) and
LLMs. Systems capable of answering general and
diverse questions about the visual world find a wide
range of applications: from personal assistants to
aids for the visually impaired and robotics 1.

∗Corresponding author.
1https://www.adelaide.edu.au/aiml/our-research/machine-

learning/vqa-vision-and-language

Recently, several works on KB-VQA (Gui et al.,
2022; Lin et al., 2022) have emphasized the signif-
icance of incorporating both explicit and implicit
knowledge. However, such approaches usually re-
quire complicated pipelines. Firstly, a KB (e.g.
wikidata) covering world knowledge needs to be
maintained and used for knowledge retrieval which
is time-consuming and very sensitive to noise. Sec-
ondly, powerful LLMs such as GPT-3 (Brown et al.,
2020) or OPT-175B (Zhang et al., 2022) are lever-
aged due to the huge amount of implicit knowl-
edge stored in their parameters and their powerful
reasoning capabilities through few-shot in-context
learning. However, the computational or even ac-
tual monetary cost (e.g. cost for API access) as-
sociated with accessing such models renders them
unaffordable for many researchers. Thirdly, it is
crucial to train a fusion mechanism that can effec-
tively reason by combining the retrieved explicit
and implicit knowledge.

Main contributions: We present a simple yet
powerful pipeline for KB-VQA which by-passes
the need for using most of the components of the
above-mentioned systems. Specifically, the pro-
posed system is simply based on few-shot prompt-
ing of LLaMA-13B (Touvron et al., 2023a,b). The
key component of our method is the implementa-
tion of effective in-context learning using question-
informative captions as contextual information
which, as we show, results in large accuracy boosts.

The proposed system features several advan-
tages: (1) it is entirely training-free, requiring
only a few examples for in-context learning; (2)
it is based on the open-source LLaMA-13B (Tou-
vron et al., 2023a,b) (considerably smaller than the
widely-used GPT-3); (3) it is straightforward to re-
produce; and (4) achieves state-of-the-art (SOTA)
accuracy on the widely-used OK-VQA (Marino
et al., 2019) and A-OK-VQA datasets (Schwenk
et al., 2022).
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2 Related Work on KB-VQA

Methods Without LLMs: Several methods
have been proposed including KRISP (Marino
et al., 2021) which uses a multi-modal pretrained
BERT (Devlin et al., 2019), MAVEx (Wu et al.,
2022) which proposes to validate promising answer
candidates based on answer-specific knowledge
retrieval, and DPR which uses pseudo-relevance
labels integrated with answer generation for end-
to-end training. Typically, these systems are not as
competitive as the ones based on LLMs.
Methods based on LLMs: PICa (Yang et al.,
2022) is the first method to adopt GPT-3 for solv-
ing the KB-VQA task in a few-shot manner by
just providing a few in-context VQA examples.
Gui et al. (2022) proposed to use both implicit (i.e.
GPT-3) and explicit (i.e. KBs) knowledge based
on CLIP retrieval (Radford et al., 2021) which are
combined by a novel fusion module called KAT
(based on T5 or Bart). Lin et al. (2022) proposed to
integrate local visual features and positional infor-
mation (bounding box coordinates), retrieved exter-
nal and implicit knowledge (using a GPT-3) into a
transformer-based question-answering model. Hu
et al. (2023) proposed PromptCap, a novel task-
aware captioning model that uses a natural lan-
guage prompt to control the generation of the visual
content that can be used in conjunction with GPT-3
in-context learning. Img2Prompt Guo et al. (2023)
is a zero-shot VQA method that generates image-
relevant exemplar prompts for the LLM. Their key
insight is that synthetic question-answer pairs can
be generated using image captioning and question-
generation techniques as in-context exemplars from
the provided image. Prophet Shao et al. (2023)
proposes to prompt GPT-3 with answer heuristics
(answer candidates and answer-aware examples)
that are encoded into the prompts to enable GPT-3
to better comprehend the task, thus enhancing its
capacity.

3 Methodology

While explicit knowledge retrieval focuses on se-
mantic matching between an image and knowledge
entries, it lacks implicit commonsense knowledge
(e.g. Lemons are sour) which can be found in
LLMs (Gui et al., 2022). LLMs are critical in ex-
tracting implicit knowledge due to the vast amount
of implicit information embedded in their parame-
ters, and their powerful reasoning capacity through
few-shot in-context learning. Different from pre-

vious work (Yang et al., 2022; Gui et al., 2022;
Lin et al., 2022) we leverage the open-source LLM
LLaMA-13B (Touvron et al., 2023a,b) instead of
GPT-3 as an implicit language knowledge base and
treat VQA as an open-ended text generation task.

Our method builds upon the pipeline of PICa,
which is the pioneering work that utilizes GPT-3
for few-shot in-context learning in order to address
the KB-VQA task. GPT-3 is a decoder-only au-
toregressive LLM of 175B parameters, trained on a
diverse range of data sources, including Common
Crawl, webtexts, books, and Wikipedia (Brown
et al., 2020). During inference, in-context few-shot
learning involves formulating a novel downstream
task as a text sequence generation task using the
frozen GPT-3 model. When provided with a testing
input x, the target y is predicted based on a format-
ted prompt p(h,C,E, c, x). In this prompt, h repre-
sents a prompt head or instruction that describes the
task, while E = {e1, e2, ..., en} represents a set of
n in-context examples (shots), where ei = (xi, yi)
represents an input-target pair of the task, where xi
and yi are the input and target, respectively. These
pairs are constructed manually or sampled from
the training set. C = {c1, c2, ..., cn} represents a
set of generic image captions describing each xi
since images cannot be inputted to GPT-3. The
caption for the test input is labeled as c. The tar-
get y is denoted as a text sequence consisting of L
tokens, expressed as y = (y1, y2, ..., yL). At each
decoding step t, the following conditions apply:

ŷt = argmax
yt

pLLM (yt|p, ŷ<t) (1)

In order to utilize any LLM for the knowledge-
based VQA task, the crucial step is to design suit-
able prompts. When given a question qi and an
image vi as inputs, the VQA task’s objective is
to predict the corresponding answer ai. However,
since LLMs do not inherently comprehend images,
it becomes necessary to convert the image into a
caption ci using a pre-existing captioning model.
While SOTA pretrained captioning models have
demonstrated impressive performance, they are pri-
marily optimized to generate generic image cap-
tions. Unfortunately, these captions often fail to
capture all the specific details required to accu-
rately answer a given question about the image. In
this work, instead of generic captions, we generate
question-guided informative image captions using
the Plug-and-Play VQA (PNPVQA) framework
(Tiong et al., 2022) which identifies the most re-
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lated image patches to the question with a saliency
map-based interpretability technique and generates
captions from these patches only.

Figure 1: Inference-time of our method for n-shot VQA.
The input prompt to LLaMA consists of a prompt head
h (blue box), n in-context examples ({ci, xi, yi}ni=1)
(red boxes), and the VQA input {c, x} (green box).
The answer y is produced in an open-ended text gen-
eration manner. In this example we use two question-
informative captions per example (separated by com-
mas).

For each image-question pair, we first gener-
ate 50 question-guided informative image captions
from the image vi using PNPVQA. We then em-
ploy BLIP’s (Li et al., 2022) text encoder to encode
all the image captions and BLIP’s image encoder to
encode the image vi. We rank the image captions
per image vi according to their cosine similarity
with the image vi and keep the top-m most simi-
lar captions ci per example. After extracting the
top-m most similar captions per image vi we con-
struct a carefully designed text prompt consisting
of a general instruction sentence, the captions C,
the question, the test input’s captions c, and a set
of context-question-answer triplets (shots) taken
from the training dataset that are semantically most
similar to the current image-question pair (see Fig.
1). Then this text prompt is passed to a frozen
LLaMA-13B model and in-context few-shot learn-
ing is performed in order to obtain its output as a
promising answer candidate to the current image-
question pair.

3.1 Selecting Informing Examples For
Few-Shot In-Context Learning

As Yang et al. (2022) notes, feeding more in-
context examples to GPT-3 yields better few-shot
performance. However, the maximum input length
of the model constrains the maximum number of
examples n in the prompt. To better use these avail-
able examples we: (i) improve the example quality
by careful in-context example selection (Liu et al.,
2022; Gui et al., 2022; Shao et al., 2023), and (ii)

Method Knowledge Resources Acc (%)

KRISP Wikipedia+ConceptNet 38.35

MAVEx Wikipedia+ConceptNet+Google Images 39.4

Unified-IO (2.8B) Multimodal Pretraining 54

Flamingo (80B) Multimodal Pretraining 57.8

PICa-Full Frozen GPT-3 (175B) 48.0

KAT_base (single) Wikidata+Frozen GPT-3 (175B) 50.58

KAT_large (single) Wikidata+Frozen GPT-3 (175B) 53.09

KAT_large (ensemble) Wikidata+Frozen GPT-3 (175B) 54.41

REVIVE_large (single) Wikidata+Frozen GPT-3 (175B) 56.6

REVIVE_large (ensemble) Wikidata+Frozen GPT-3 (175B) 58.0

Prophet Frozen GPT-3 (175B) 61.1

Ours Frozen LLaMA (13B) 58.69

Ours + MCAN Frozen LLaMA (13B) 60.02

Ours Frozen LLaMA 2 (13B) 59.07

Ours + MCAN Frozen LLaMA 2 (13B) 61.2

Table 1: Comparison with other methods on the OK-
VQA dataset: Our method with 9 question-informative
captions achieves state-of-the-art performance.

use more examples via multi-query ensemble.
In-context Example Selection tries to search for
the best examples for each inference-time input x
among all available examples (Yang et al., 2022).
We consider in-context examples that have similar
question features as x. More specifically, given
an inference-time question, we use BLIP’s text en-
coder to obtain its textual feature and compute its
cosine similarity with the questions in all available
in-context examples. We then average the ques-
tion text similarity with the image visual similarity
to guide the example selection similarly to Yang
et al. (2022). We select the top-n questions with
the highest similarity and use the corresponding
examples as the in-context examples.
Multi-query ensemble: Given an inference-time
example x, we use k × n in-context examples to
generate k prompts. This way, we prompt LLaMA-
13B for k times and obtain k answer predictions
instead of 1 similar to Yang et al. (2022), where
k is the number of queries to ensemble. Finally,
among the k answer predictions, we select the one
with the most occurrences (majority vote).

4 Experimental Results

Comparative results on OK-VQA: Table 1 sum-
marizes the results of various methods on OK-VQA
including our best method (last row) which uses 9
question-informative captions and 5 query ensem-
bles. When using LLaMA our approach outper-
forms all methods and achieves comparable results
with Prophet especially when using the same shot
selection strategy based on MCAN (Yu et al., 2019).
Moreover, it performs better than Unified-IO and
the 80B Flamingo which have been pre-trained
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Method DA MC

Val Test Val Test

ClipCap 30.9 25.9 56.9 51.4

ViLBERT 30.6 25.9 49.1 41.5

LXMERT 30.7 25.9 51.4 41.6

KRISP 33.7 27.1 51.9 42.2

GPV-2 48.6 40.7 60.3 53.7

Unified-IO - 45.2 - -

Prophet 58.2 55.7 59.3 57.3

Ours (LLaMA) 54.4 53.8 - -

Ours + MCAN (LLaMA) 57.4 55.0 - -

Ours (LLaMA 2) 57.1 55.4 - -

Ours + MCAN (LLaMA 2) 58.6 57.5 - -

Table 2: Comparison with other methods on the A-OK-
VQA dataset: Our method with 9 question-informative
captions achieves state-of-the-art performance at the
direct answer (DA) setting. Note that our method does
not support multiple-choice (MC).

with multimodal objectives. When compared to
methods that rely on GPT-3 for implicit knowl-
edge extraction, our approach outperforms PICa-
Full which only uses generic image captions by
12.02% while outperforming the SOTA supervised
methods KAT and REVIVE by 5.61% and 2.02%
respectively. Finally, when using LLaMA 2 and
MCAN-based shot selection strategy, our method
achieves state-of-the-art accuracy of 61.2%.
Comparative results on A-OK-VQA: Table 2
summarizes the results of various methods on A-
OK-VQA including our best method (last row)
which uses 9 question-informative captions and
5 query ensembles. We compare our method to the
strong baselines in (Schwenk et al., 2022) and the
current state-of-the-art method Prophet (Shao et al.,
2023). When employing LLaMA, our approach
surpasses all other methods on the DA setting
and achieves comparable results to Prophet, par-
ticularly when employing the same shot selection
strategy based on MCAN. Finally, with LLaMA
2 and MCAN our method attains state-of-the-art
performance on both the validation and test sets,
achieving 58.6% and 57.5% accuracy respectively,
demonstrating the effectiveness and robust general-
ization of our proposed method.

5 Ablation Studies

We conduct several ablations on OK-VQA to better
understand the key components of our method.

Effect of question-informative captions: Table 3

Captions n k Acc (%)

Generic 14 5 43.35

Question-informative 14 5 57.56

Table 3: Generic vs. question-informative captions.

shows the performance of our method when using
generic captions vs question-informative captions
for in-context learning which is the key component
of our system. Following Yang et al. (2022); Shao
et al. (2023) we leverage the OSCAR+ (Zhang
et al., 2021) as the captioning model. The results
suggest using question-informative captions results
in huge accuracy boosts (43.35% vs 57.56%).

Shot Selection Strategy Captions m n k Acc (%)

Random Question-informative 1 14 5 53.19

Avg. Question and Image Sim. Question-informative 1 14 5 56.50

MCAN latent space Question-informative 1 14 5 57.56

Table 4: Accuracy when using different shot selection
strategies. Avg. question and image sim. strategy re-
trieves shots based on the average cosine similarity be-
tween the test sample’s question and image, and the
training examples’ question and image. MCAN latent
space strategy retrieves shots that are closer to the test
sample in the trained MCAN’s latent space.

Effect of shot selection strategy: Table 4 shows
that selecting random shots during in-context learn-
ing hurts the accuracy, confirming the findings of
Yang et al. (2022). Retrieving shots based on the
similarity between the test sample and the train-
ing examples yields a significant accuracy boost.
Prophet’s shot selection strategy based on MCAN
also seems to be effective but we note that it is
based on pre-training a vanilla VQA model on a
different dataset (VQA-v2).
Effect of number of question-informative
captions: Fig. 2 (a) shows the accuracy when
we increase the number of captions per sample
in the prompt during in-context learning. Here,
we are using k = 5, and n = 10 when using 1-10
captions, and n = 5 when using more than 10
captions due to max. sequence length constraints.
More captions provide more information for
each example helping the model to make a more
accurate prediction based on context. As shown in
the figure, the validation accuracy keeps increasing
up to 60.02%. When using more than 10 captions,
the accuracy decreases but this also can be
attributed to the fact that we are also decreasing
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(a) (b)

Figure 2: (a) Accuracy vs number of question informa-
tive captions used per shot during few shot in-context
learning. (b) Accuracy vs number of prompts k used
during in-context learning.

the number of shots to 5.
Effect of multi-query ensemble: Fig. 2 (b) shows
the accuracy as the number of prompts, k, increases.
As anticipated, employing multiple prompts of
LLaMA instead of just one yields improved ac-
curacy. However, beyond k = 6, the accuracy
begins to fluctuate. It is important to note that this
fluctuation could be attributed to the retrieval of
noisy (irrelevant to the question) context examples
as the value of k increases.
Effect of explicit knowledge: We also tried to
use KAT’s (Gui et al., 2022) KB and trained a T5
(Raffel et al., 2020) in order to integrate explicit
knowledge into our model. For each image, we
used BLIP to extract explicit knowledge via image-
to-text retrieval. We used 40 retrieved passages
and LLaMA predictions as explicit and implicit
knowledge, respectively. We achieved an accuracy
of 58.70% which shows that our model does not
benefit from such an approach.
Effect of size of LLM: We also used a LLaMA-
7B model using 9 question-informative captions,
n = 10 and k = 5. Reducing the size of the LLM
leads to decreased accuracy but the drop is not
large, still obtaining 57.99% accuracy.

6 Conclusions

We proposed a simple yet effective baseline for
KB-VQA. Our training-free method is based on
in-context few-shot learning of the open-source
LLaMA using question-informative captions. We
show that this is sufficient to achieve SOTA re-
sults on the widely used OK-VQA and A-OK-VQA
datasets.

Limitations

It is important to acknowledge that we have not
explored the utilization of any other medium-sized

LLMs apart from LLaMA, which presents a lim-
itation of our study. Lastly, due to limitations in
resources, we were unable to conduct experiments
with larger sizes beyond 13B. However, it would
indeed be intriguing to observe the performance
when employing LLaMA models of sizes such as
30B or 65B.

Ethics Statement

The authors of this paper recognize the importance
of responsible AI in both research and development
endeavors. We are committed to ensuring that the
model we develop is not only accurate but also
fair and unbiased. We understand the potentially
significant impact of VQA technology on society
and, therefore, pledge to maintain transparency by
sharing our findings and progress with relevant
researchers and stakeholders.
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A Example Appendix

A.1 Implementation Details
We used the Huggingface Transformers library2 in
order to run LLaMA models. We used beam search
with beam size = 2 during generation and max new
tokens = 5 while using the default values for all the
other parameters in the generate method. We run
our model on a 40-GB VRAM A-100 GPU card.

2https://huggingface.co/transformers/

14877

http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068

