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Abstract

Retrieval-based language models (LMs) have
demonstrated improved interpretability, factu-
ality, and adaptability compared to their para-
metric counterparts by incorporating retrieved
text from external datastores. While it is well
known that parametric models are prone to leak-
ing private data, it remains unclear how the ad-
dition of a retrieval datastore impacts model
privacy. In this work, we present the first study
of privacy risks in retrieval-based LMs, particu-
larly kNN-LMs. Our goal is to explore the op-
timal design and training procedure in domains
where privacy is of concern, aiming to strike a
balance between utility and privacy. Crucially,
we find that kNN-LMs are more susceptible
to leaking private information from their pri-
vate datastore than parametric models. We fur-
ther explore mitigations of privacy risks: When
privacy information is targeted and readily de-
tected in the text, we find that a simple sani-
tization step would eliminate the risks while
decoupling query and key encoders achieves
an even better utility-privacy trade-off. Other-
wise, we consider strategies of mixing public
and private data in both datastore and encoder
training. While these methods offer modest im-
provements, they leave considerable room for
future work. Together, our findings provide in-
sights for practitioners to better understand and
mitigate privacy risks in retrieval-based LMs1.

1 Introduction

Retrieval-based language models (Khandelwal
et al., 2020; Borgeaud et al., 2022; Izacard et al.,
2022; Zhong et al., 2022; Min et al., 2023) generate
text distributions by referencing both the parame-
ters of the underlying language model and the in-
formation retrieved from a datastore of text. Specif-
ically, the retrieval process involves accessing a
pre-defined datastore to retrieve a set of tokens or

1Our code is available at https://github.com/
Princeton-SysML/kNNLM_privacy.
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Figure 1: Retrieval-based language models (e.g., kNN-
LMs) comprise encoders and the datastore as their key
components. When tailoring a retrieval-based language
model for a privacy-sensitive task, both components
may utilize private data. However, a malicious user
possessing API access to the model can exploit a data
extraction attack in order to reconstruct sensitive infor-
mation. This study explores the severity of such attacks
and suggests novel strategies to mitigate them.

text passages that are most relevant to the prompt
provided to the model. These retrieved results are
then utilized as additional information when gener-
ating the model’s response to the prompt. Retrieval-
based language models offer promising prospects
in terms of enhancing interpretability, factuality,
and adaptability.

However, in privacy-sensitive applications, util-
ity usually comes at the cost of privacy leakage.
Recent work has shown that large language models
are prone to memorizing (Thakkar et al., 2021;
Zhang et al., 2021) specific training datapoints,
such as personally identifying or otherwise sen-
sitive information. These sensitive datapoints can
subsequently be extracted from a trained model
through a variety of techniques (Carlini et al., 2019,
2021; Lehman et al., 2021), known as data ex-
traction attacks. While the threat of training data
memorization on model privacy has been studied
for parametric language models, there is a lack
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of evidence regarding the privacy implications of
retrieval-based language models, especially how
the use of external datastore would impact privacy.

In this work, we present the first study of pri-
vacy risks in retrieval-based language models, with
a focus on the nearest neighbor language models
(kNN-LMs) (Khandelwal et al., 2020), which have
been extensively studied in the literature (He et al.,
2021; Zhong et al., 2022; Shi et al., 2022a; Xu
et al., 2023)2. In particular, we are interested in un-
derstanding kNN-LMs’ privacy risks in real-world
scenarios where they are deployed via an API to the
general public (Figure 1). We consider a scenario
in which a model creator has a private, domain-
specific dataset that improves model performance
on domain-specific tasks, but may also contain sen-
sitive information that should not be revealed; This
data can be used to train encoders or stored in the
datastore. In such a scenario, the model creator
must find a balance between utilizing their private
data to enhance model performance and protecting
sensitive information.

We begin our investigation by examining a sit-
uation where the creator of the model only adds
private data to the retrieval datastore during infer-
ence, as suggested by Borgeaud et al. (2022). Our
findings indicate that while this approach enhances
utility, it introduces an elevated privacy risk to the
private data compared to parametric language mod-
els (Section 4), and adversarial users could violate
the confidentiality of the datastore by recovering
sensitive datapoints. Therefore, it is vital for the
model creator to refrain from storing sensitive in-
formation in the datastore.

We further explore mitigation strategies for kNN-
LMs in two different scenarios. The first is where
private information is targeted, i.e., can be easily
identified and removed (Section 5). We explore
enhancing the privacy of kNN-LMs by eliminat-
ing privacy-sensitive text segments from both the
datastore and the encoder’s training process. This
approach effectively eliminates the targeted privacy
risks while resulting in minimal loss of utility. We
then explore a finer level of control over private in-
formation by employing distinct encoders for keys
(i.e., texts stored in the datastore) and queries (i.e.,

2Other retrieval-based language models such as
RETRO (Borgeaud et al., 2022) and Atlas (Izacard et al.,
2022) have significantly different architectures and the
findings from our investigation may not necessarily apply to
these models. Investigation of these models will be left as
future work.

prompts to the language model). Through our ex-
perimental analysis, we demonstrate that this de-
sign approach offers increased flexibility in striking
a balance between privacy and model performance.

The second is a more challenging scenario where
the private information is untargeted, making it im-
practical to remove from the data (Section 6). To
address this issue, we explore the possibility of con-
structing the datastore using public datapoints. We
also consider training the encoders of the kNN-LM
model using a combination of public and private
datapoints to minimize the distribution differences
between the public data stored in the datastore and
the private data used during inference. Despite
modest improvements from the methods we ex-
plored, the mitigation of untargeted attacks remains
challenging and there is considerable room for fu-
ture work. We hope our findings provide insights
for practitioners to better understand and mitigate
privacy risks in retrieval-based LMs.

2 Background

In this section, we first review the key compo-
nents of kNN-LMs (Section 2.1). Then, we discuss
the data extraction attacks for language models
(Section 2.2). These aspects lay a foundation for
the subsequent exploration and analysis of privacy
risks related to kNN-LMs.

2.1 Nearest Neighbor Language Models

A kNN-LM (Khandelwal et al., 2020) augments
the standard language model with a datastore from
which it can retrieve tokens to improve perfor-
mance. We use the term “query” to denote the
prompt provided to a kNN-LM. This query is en-
coded by the encoder EncQ as it is passed into the
kNN-LM. The term “key” is used to denote the
tokens in the datastore and it is encoded by the
encoder EncK.

Encoders Given a vocabulary V , the encoder
EncK or EncQ performs the task of mapping a
given key or query c ∈ V∗ to a fixed-length vec-
tor representation. Typically, this encoding pro-
cess is accomplished through a trained language
model, where EncK(c) or EncQ(c) represents the
vector hidden representation obtained from the out-
put layer of the language model when provided
with the input c. Although in the default kNN-LMs,
EncK and EncQ are commonly identical functions,
we explore different options in the work.

14888



Datastore The datastore, {(EncK(ci), wi)}, is a
key-value store generated by running the encoder
EncK(·) over a corpus of text; Each key is the
vector representation EncK(ci) for some context
ci ∈ V∗, and each value wi ∈ V is the ground-truth
next word for the leftward context ci. A search
index is then constructed based on the key-value
store to enable retrieval.

Inference At inference time, when predicting
the next token for a query x ∈ V∗, the model
queries the datastore with encoded query EncQ(x)
to retrieve x’s k-nearest neighbors Nk according
to a distance function d(·, ·)3. Then the model
computes a softmax over the (negative) distances,
which gives pkNN(y|x), a distribution over the next
token, in proportional to:

∑

(ci,wi)∈Nk

1y=wi exp

(
−d (EncK(ci),EncQ(x))

t

)
,

where t is a temperature parameter, and k is a
hyper-parameter that controls the number of re-
trieved neighbors. The prediction is then interpo-
lated with pLM, the prediction from the original
LM: p(y|x) = λpkNN(y|x) + (1 − λ)pLM(y|x),
where λ is an interpolation coefficient.

2.2 Data Extraction Attacks

Prior work (Carlini et al., 2021) demonstrates that
an attacker can extract private datapoints from the
training set of a learned language model. The ex-
istence of such an attack poses a clear and alarm-
ing threat to the confidentiality of sensitive train-
ing data, potentially jeopardizing deployment in
real-world scenarios (e.g., Gmail’s autocomplete
model (Chen et al., 2019), which is trained on
private user emails). Our definition of privacy
leakage adopts the standard definition of Carlini
et al. (2021)). Specifically, a string s is extractable
from an kNN-LM fθ if there exists a prefix c such
that: s ← argmaxs′ fθ(s

′|c). Namely, the model
generates s as the most likely continuation when
prompted with some prefix c.

The attack consists of two main steps: 1) gener-
ating candidate reconstructions by prompting the
trained models, and 2) sorting the generated candi-
dates based on a score that indicates the likelihood
of being a memorized text. Further details about
the attack can be found in Appendix A.

3d(·, ·) is usually the squared ℓ2 distance.

While previous research has successfully high-
lighted the risks associated with data extraction in
parametric language models, there remains a no-
table gap in our understanding of the risks (and
any potential benefits) pertaining to retrieval-based
language models like kNN-LMs. This study aims
to address this gap and provide insights into the
subject matter.

3 Problem Setup

In this section, we formally describe our problem
setup (Section 3.1) and privacy measurements (Sec-
tion 3.2). We then detail our evaluation setup (Sec-
tion 3.3).

3.1 Problem Definition

We consider a scenario where a service provider
(e.g. a financial institution) aims to enhance its cus-
tomer experience by developing a kNN-LM and
deploying it as an API service. Note that the devel-
opment of kNN-LMs intended solely for personal
use (e.g., constructing a kNN-LM email autocom-
pleter by combining a public LM with a private
email datastore) falls outside the scope of our study
because it does not involve any attack channels that
could be exploited by potential attackers. We as-
sume that the service provider possesses its own
private data (Dprivate) specific to its domain, in
addition to publicly available data (Dpublic).

We identify two key design choices which im-
pact the quality and privacy of such a deployed
service. First, the service provider chooses which
data to be included in its datastore, and this may be
public data (Dpublic), private data (Dprivate), or a
mix of both. Second, they choose whether to use
encoders that are pre-trained on publicly available
data (Encpublic), or further finetuned on the private
data (Encprivate). We posit that careful considera-
tion of these design choices is needed to establish
a balance between privacy preservation and utility.

The service provider in such a scenario is con-
cerned with making a useful API, while keeping
their private data hidden from malicious users or
attackers. Hence, the service provider’s objective
is to attain a high level of utility (as measured by
perplexity) on a held-out set of Dprivate while si-
multaneously minimizing the disclosure of private
information. We quantify the metrics we consider
for privacy in Section 3.2.
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3.2 Privacy Measurements
We now describe how we evaluate the risk of data
extraction attack within the scenario described ear-
lier in Section 3.1.

Threat model We assume that the service
provider deploys a kNN-LM with API access to
p(y|x). This API provides the attacker with the
capability to compute perplexity, conduct text com-
pletion, and perform other relevant tasks. However,
it’s important to note that the attacker is restricted
from accessing the internal parameters or the data-
store of the deployed model.

Our study considers two types of privacy risks,
each associated with a particular type of attack:

Targeted attacks We define targeted risk as a
privacy risk that can be directly associated with a
segment of text (e.g., personal identifiers such as
addresses and telephone numbers.) and propose
the targeted attack. The significance of a targeted
attack becomes apparent when considering that
targeted risks have been explicitly addressed in
various privacy regulations (Centers for Medicare
& Medicaid Services, 1996; California State Leg-
islature , 2018). A targeted attacker’s goal is to
extract that certain segment of text. In our study,
we focus on the extraction of Personal Identifiable
Information (PII), including email addresses, tele-
phone numbers, and URLs. To tailor the extraction
attack to recover text segments such as PIIs rather
than the entire training text, we customize the at-
tack prompts based on the type of information to be
extracted. Specifically, we gather common preced-
ing context for telephone numbers, email addresses,
and URLs, and use them as prompts. Appendix B
provides example prompts we use in the attack. For
evaluation, we measure how many private PIIs of
each category have been successfully reconstructed
by the attacker:

• We firstly detect all unique personal identifiers
in the private dataset, denoted as {ρi}pi=1;

• We then sort the reconstruction candidates
based on the membership metrics defined in
Appendix A, and only keep the top-n candi-
dates {ci}ni=1;

• Finally, we detect {ρ̂i}qi=1, the unique PIIs
in the top-n candidates, and then count
|{ρi}pi=1 ∩ {ρ̂i}

q
i=1|, namely how many origi-

nal PIIs have been successfully reconstructed
by the attack. A larger number means higher
leakage of private PIIs.

Untargeted attacks The untargeted attack is the
case where the attacker aims to recover the entire
training example, rather than a specific segment
of text. Such attacks can potentially lead to the
theft of valuable private training data. We adopt
the attack proposed by Carlini et al. (2021) as the
untargeted attack, which is described in detail in
Appendix A.1. For evaluation, we measure the
similarity between the reconstructed text and the
original private text:

• We firstly sort the reconstruction candidates
based on the membership metrics defined in
Appendix A, and only keep the top-n candi-
dates {ci}ni=1;

• For each candidate ci, we then find the closest
example in the private dataset pi and compute
the ROUGE-L score (Lin, 2004) between ci
and pi

4. If the score is higher than 0.5, we
mark the candidate as a good reconstruction.
The ROUGE-L measures the longest common
subsequence (LCS) between the attack result
and the ground truth, thus representing the fi-
delity of the attacker results. The ROUGE-L
score has been used to measure the reconstruc-
tion fidelity in previous work (Deng et al.,
2021; Balunovic et al., 2022; Gupta et al.,
2022).

Note that the attack’s performance evaluation
employs the private dataset following established
reconstruction attack practices, the attack itself
never utilizes this dataset.

3.3 Evaluation Setup
Our main evaluation uses the Enron Email
dataset (Klimt and Yang, 2004) as the private
dataset Dprivate, which contains around 500,000
emails generated by employees of the Enron Corpo-
ration (see Table 1 for examples). We specifically
chose this dataset due to its inclusion of PIIs, which
enables us to evaluate targeted attacks effectively.
We also incorporate the Medical Transcriptions
dataset as an additional dataset for the evaluation
of untargeted attacks, and further information re-
garding this dataset can be found in Appendix D.
We use the WikiText-103 dataset (Merity et al.,
2017) as Dpublic.

We pre-process the Enron Email dataset by re-
taining only the email body (see Table 1 for exam-

4Note that Carlini et al. (2021) also focus on untargeted
attacks but they adopt manual evaluation.
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Example #1: Request ID : 0000000000**** Request Create Date : //* 8:27:00 AM Requested For : ****.@enron.com
Resource Name : Market Data Bloomberg Resource Type : Applications

Example #2: You can reach me over the weekend and in the evening at either –**** or –****.

Example #3: This would give you a total loan of ****, total cost of **** for equity required of ****.

Example #4: Winter 2001 baseload traded as high as ** pounds a megawatt-hour and as low as **** pounds a megawatt-hour,
before closing at **** pounds a megawatt-hour, **** pence lower than Friday.

Example #5: everything is correct except for password: ****.

Table 1: Examples from the Enron Email dataset. We’ve anonymized any identifiable information to protect against
potential privacy breaches inherent in the dataset.

MODEL EVAL. PPL TARGETED ATTACK UNTARGETED ATTACK
TOTAL PHONE EMAIL URL # GOOD RECON

(PARAMETRIC LM) Encpublic 30.28 0 0 0 0 0
(PARAMETRIC LM) Encprivate 20.63 28 11 14 3 620
(kNN-LM) Encpublic W/ Dprivate 18.41 35 11 16 8 591

(kNN-LM) Encprivate W/ Dprivate 16.12 54 25 23 6 656

Table 2: Perplexity and data extraction risks for various model configurations on the Enron Email dataset. The
configuration with the highest leakage is emphasized in red ; the configuration with the lowest leakage is highlighted
in green . Privacy measurements are computed using the top 1000 candidates for the targeted attack and using the
top 5000 candidates for the untargeted attack. “Good Recon” refers to reconstructions that achieve a ROUGE-L
score greater than 0.5 when compared to the ground truth. Table 11 in Appendix D presents similar findings on the
Medical Transcriptions dataset.

ple datapoints). We then use regular expressions to
identify and extract three types of personal identi-
fiers for the use of the targeted attack: telephone
numbers, email addresses, and URLs. The statis-
tics for these personal identifiers can be found in
Appendix B. We use the GPT-2 base model (Rad-
ford et al., 2019) as Encpublic, and finetune it on
the Enron Email dataset as Encprivate.

During inference, the model retrieves k nearest
neighbors according to the squared ℓ2 distance, nor-
malizes their distribution over the next word with a
softmax using a temperature value of 1, and then
uses an interpolation factor of λ to combine pkNN

and pLM. For each model configuration, we search
k and λ on a held-out validation set for the best
model perplexity, and then run the inference on the
evaluation set (see Appendix B for details). Privacy
measurements are computed using the top 1000
candidates for the targeted attack and using the top
5000 candidates for the untargeted attack.

4 Privacy-Utility of kNN-LMs with A
Private Datastore

This section presents our investigation of whether
the addition of private data to the retrieval data-
store during inference is an effective method for
achieving a good trade-off between privacy (mea-

sured by metrics defined in Section 3.2) and utility
(measured by perplexity) in kNN-LMs.

We are particularly interested in three scenar-
ios: utilizing only Encpublic (the publicly pre-
trained language model), utilizing only Encprivate
(the model fine-tuned from Encpublic using private
data), and utilizing Encpublic with Dprivate (the
combination of the public model with the private
datastore). As shown in Table 2, using Encpublic
alone results in very poor utility performance but
poses minimal risk of data extraction from the pri-
vate domain, as it has not been exposed to pri-
vate datapoints. Using Encprivate enhances utility
(perplexity improves from 30.28 to 20.63) but in-
creases the risk of data extraction.

When it comes to kNN-LMs, incorporating a
private datastore (Dprivate) with a public model
(Encpublic) yields even greater utility compared to
relying solely on the fine-tuned model (Encprivate).
However, this utility improvement also comes at
the expense of increased privacy leakage. These
findings suggest that the privacy concern stemming
from the private datastore outweighs that resulting
from the privately fine-tuned model, indicating a
lack of robust privacy protection in the design of
kNN-LMs. Additionally, we note that the combina-
tion of Encprivate and Dprivate achieves the highest
utility but also incurs the highest privacy cost.
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SANITIZATION APPROACH
SANITIZED ENCODER? EVAL. PPL TOTAL PHONE EMAIL URL
EncK EncQ

NONE ✗ ✗ 16.12 54 25 23 6

REPLACED W/ < |endoftext| >
✓ ✓ 16.83 0 0 0 0
✗ ✓ 16.24 0 0 0 0
✓ ✗ 16.32 16 6 6 4

REPLACED W/ DUMMY PII
✓ ✓ 16.51 0 0 0 0
✗ ✓ 16.29 0 0 0 0
✓ ✗ 16.16 22 5 15 2

REPLACED W/ RANDOM PUBLIC PII
✓ ✓ 16.38 0 0 0 0
✗ ✓ 16.29 1 1 0 0
✓ ✗ 16.20 23 8 13 2

Table 3: Perplexity and extraction risk of kNN-LMs with different combinations of key encoder (EncK) and query
encoder (EncQ) on the Enron Email dataset, under different sanitization approaches. Privacy measurements are
computed using the top 5000 candidates. For each sanitization approach, the configuration with the highest leakage
is emphasized in red , and the configuration with the lowest leakage is highlighted in green ; the best utility under
sanitization is highlighted in boldface. Sanitizing EncQ is crucial to eliminating the targeted risk.

5 Mitigations Against Targeted Risks

Our previous findings indicate that the personal-
ization of kNN-LMs with a private datastore is
more susceptible to data extraction attacks com-
pared to fine-tuning a parametric LM with private
data. At the same time, leveraging private data
offers substantial utility improvements. Is there
a more effective way to leverage private data in
order to achieve a better balance between privacy
and utility in kNN-LMs? In this section we fo-
cus on addressing privacy leakage in the context
of targeted attacks (see definition in Section 3.2),
where the private information can be readily de-
tected from text. We consider several approaches
to tackle these challenges in Section 5.1 and Sec-
tion 5.2, and present the results in Section 5.3. We
also investigate the effect of hyper-parameters in
Section 5.4.

5.1 Sanitization of Datastore and Encoders

As demonstrated in Section 4, the existence of pri-
vate examples in the kNN-LMs’ datastore increase
the likelihood of privacy leakage since they are
retrieved and aggregated in the final prediction.
Therefore, our first consideration is to create a san-
itized datastore by eliminating privacy-sensitive
text segments. We note that this verbatim level def-
inition of “privacy leakage” is general and widely
adopted. Notably, regulations such as HIPAA (Cen-
ters for Medicare & Medicaid Services, 1996) and
CCPA (California State Legislature , 2018) offer
explicit definitions of privacy-sensitive data. Con-
sequently, these regulatory frameworks can serve

as the basis for establishing the verbatim-level defi-
nition of “privacy leakage”. For example, HIPAA
defines 18 identifiers that are considered person-
ally identifiable information (PII), including names,
addresses, phone numbers, etc.

We propose the following three options for sani-
tization:

• Replacement with < |endoftext| >: re-
place each privacy-sensitive phrase with the
< |endoftext| > token;

• Replacement with dummy text: replace each
privacy-sensitive phrase with a fixed dummy
phrase based on its type. For instance, if tele-
phone numbers are sensitive, they can be re-
placed with "123-456-789"; and

• Replacement with public data: replace each
privacy-sensitive phrase with a randomly se-
lected public phrase of a similar type. An ex-
ample is to replace each phone number with a
public phone number on the Web.

The encoders in a kNN-LM is another potential
source of privacy leakage. While it is typically
optimized on target domain data to enhance per-
formance, fine-tuning directly on private data in
privacy-sensitive tasks may result in privacy leaks
(Table 2). Similarly, the encoder can be sanitized
by fine-tuning the pre-trained encoder Encpublic on
a sanitized dataset that has had sensitive informa-
tion removed.
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5.2 Decoupling Key and Query Encoders

We propose using separate encoders for keys and
queries in kNN-LMs, to allow for finer control over
privacy preservation. For example, the encoder for
queries can be the sanitized encoder, while the en-
coder for keys can be the non-sanitized one; This
way, the query encoder can be more resistant to
privacy leakage, while the keys encoder can pro-
vide better query results. While it is not a common
practice in kNN-LMs, we view the separation of
key and query encoders as a promising approach
to reduce the discrepancy between the prompt and
the datastore, and reduce privacy leakage.

The privacy risk of a kNN-LM can also be im-
pacted by its hyper-parameters such as the number
of neighbors k, and the interpolation coefficient λ.
It is important to consider these hyper-parameters
in the customization of the kNN-LMs to ensure
that the privacy-utility trade-off is well managed.

5.3 Results of Sanitization and Decoupling
Encoders

As demonstrated in Table 3, applying sanitization
to both the encoder and the datastore effectively
eliminates privacy risk, resulting in no person-
ally identifiable information (PII) being extracted.
Among the three methods, the strategy of replacing
PII with random public information for sanitization
yields the highest utility. It achieves a perplexity
of 16.38, which is only marginally worse than the
perplexity of 16.12 achieved by the non-sanitized
private model.

Table 3 also demonstrates that utilizing separate
encoders for keys and queries enhances the model’s
utility compared to using the same sanitized en-
coder for both. Specifically, we observe that when
using the non-sanitized encoder for the query and
the sanitized encoder for the key, privacy risks re-
main high due to the potential leakage from the
pLM. On the other hand, using the non-sanitized
encoder for the key and the sanitized encoder for
the query effectively eliminates privacy risk while
still maintaining a high level of utility. This finding
highlights the importance of sanitizing the query
encoder in kNN-LMs.

5.4 Effect of Hyper-parameters

We finally analyze the impact of key hyper-
parameters on utility and privacy risks in kNN-
LMs, using Dprivate as datastore and Encprivate for
both EncK and EncQ. First, we vary λ, the inter-
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Figure 2: Effect of the interpolation coefficient (λ) and
the number of nearest neighbors (k) on kNN-LMs’ util-
ity (measured by perplexity, the blue curve) and privacy
risk (measured by the number of reconstructed PIIs in
the targeted attack, the green curve). We use Encprivate
as encoders and Dprivate as the datastore.

polation coefficient, and observe that increasing λ
decreases perplexity but increases privacy risk (see
Figure 2). This highlights the trade-off between
accuracy and privacy, indicating that optimizing
both factors simultaneously is challenging through
λ adjustment alone.
k is the number of nearest neighbors in a kNN-

LM. As shown in Figure 2, increasing the value
of k improves perplexity as it allows considering
more nearest neighbors. We also notice that using
a larger k decreases privacy risk as the model be-
comes less influenced by a limited group of private
nearest neighbors. Together, increasing k seems to
simultaneously enhance utility and reduce risk.

6 Mitigations Against Untargeted Risks

In this section, we explore potential methods to
mitigate untargeted risks in kNN-LMs, which is a
more challenging setting due to the opacity of the
definition of privacy. It is important to note that
the methods presented in this study are preliminary
attempts, and fully addressing untargeted risks in
kNN-LMs still remains a challenging task.

6.1 Methods
Considering that storing Dprivate in the datastore is
the primary cause of data leakage (as discussed in
Section 4), and the challenge of sanitizing private
data in the face of untargeted risks, we propose the
following approaches to leverage public data for
mitigating these risks.

Adding public data to datastore The quality of
the retrieved neighbors plays a crucial role in the
performance and accuracy of kNN-LMs. Although
it is uncommon to include public datapoints that
are not specifically designed for the task or domain
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DATASTORE EVAL. PPL # GOOD RECON
Npub Npriv

0 ALL 16.12 656
0 0 20.63 620 (↓ 5.5%)

ALL

0 21.46 561 (↓ 14.5%)
5, 000 21.58 579 (↓ 11.7%)

10, 000 21.23 595 (↓ 9.3%)
50, 000 19.16 617 (↓ 5.9%)

ALL 19.02 632 (↓ 3.7%)

Table 4: Perplexity and data extraction risks for kNN-
LMs with different numbers of public (Npub) and pri-
vate (Npriv) examples in the datastore. The encoder in
use is the privately fine-tuned encoder Encprivate. Pri-
vacy measurements are computed using the top 5000
candidates. Risk reduction (%) compared to the first row
is annotated. Table 12 in Appendix D presents similar
findings on the Medical Transcriptions dataset.

into kNN-LMs’ datastore, it could potentially aid
in reducing privacy risks in applications that priori-
tize privacy. This becomes particularly relevant in
light of previous findings, which suggest substan-
tial privacy leakage from a private datastore.

Fine-tuning encoders on private data with DP-
SGD Differentially private stochastic gradient de-
scent (DP-SGD) (Abadi et al., 2016) is a recipe for
training a deep learning model with differential
privacy (Dwork et al., 2006b) guarantee to protect
privacy leakage. It operates by modifying the mini-
batch stochastic optimization process through the
use of per-example gradient clipping and Gaussian
noise injection (See Appendix C for details).

Fine-tuning encoders on a mixture of public and
private data However, adding public data can
potentially lead to a decrease in retrieval perfor-
mance as there is a distribution gap between the
public data (e.g., Web Crawl data) used to con-
struct the datastore and the private data (e.g., email
conversations) used for encoder fine-tuning. To
address this issue, we propose further fine-tuning
the encoder on a combination of public and private
data to bridge the distribution gap and improve re-
trieval accuracy. The ratio for combining public
and private datasets will be determined empirically
through experimentation.

Similarly to Section 5.2, we could also employ
separate encoders for keys and queries in the con-
text of untargeted risks, which allows for more
precise control over privacy preservation.

6.2 Experimental Results
We mainly present our findings using the Enron
Email dataset. In Appendix B, we provide results

DATA
EncK EncQ

EVAL. # GOOD
STORE PPL RECON

Dprivate Encprivate Encprivate 16.12 656

Dpublic

Encprivate Encprivate 21.46 561 (↓ 14.5%)

Encpublic Encpublic 33.60 0 (↓ 100%)
Encprivate Encpublic 31.57 54 (↓ 91.8%)
Encpublic Encprivate 22.90 451 (↓ 31.3%)

EncDP EncDP 22.83 540 (↓ 16.9%)
Encprivate EncDP 21.57 603 (↓ 7.2%)
EncDP Encprivate 21.62 594 (↓ 8.6%)

Encmixed Encmixed 21.10 601 (↓ 8.4%)
Encprivate Encmixed 21.12 545 (↓ 16.9%)
Encmixed Encprivate 21.43 498 (↓ 24.1%)

Table 5: Perplexity and data extraction risks for kNN-
LMs with different encoders for keys (EncK) and
queries (EncQ). Risk reduction (%) compared to the
first row is annotated. Privacy measurements are com-
puted using the top 5000 candidates. The EncDP en-
coder is fine-tuned using DP-SGD with privacy budget
ε = 10.0. The Encmixed encoder is fine-tuned using
a mix of public and private data points. Results sug-
gest that using different encoders for keys and queries
or Encmixed can improve the privacy-utility trade-off.
Table 13 in Appendix D presents similar findings on the
Medical Transcriptions dataset.

from the Medical Transcriptions dataset, and those
findings align with our main findings.

Table 4 demonstrates that when a privately fine-
tuned model Encprivate serves as the encoder, re-
placing the private datastore Dprivate with a public
one Dpublic in kNN-LMs considerably lowers the
privacy risk. Furthermore, when using Encprivate
and Dpublic, the risk level is slightly lower than
when using the standard language model with
Encprivate because the model’s final response has
been interpolated with non-sensitive information,
which helps to reduce privacy risks.

Using a public datastore reduces privacy risk but
also results in a sudden drop in utility. If more
stringent utility requirements but less strict privacy
constraints are necessary, adding a few private ex-
amples to the public datastore, as shown in Table 4,
may also be a suitable solution.

Table 5 demonstrates that using different en-
coders for keys (EncK) and queries (EncQ) is more
effective in achieving a desirable balance between
privacy and utility when using Dpublic as the datas-
tore. Specifically, using Encprivate to encode keys
and Encpublic to encode queries significantly re-
duces the risk of data extraction with only a slight
decrease in perplexity.

We also note that fine-tuning the encoder using
DP-SGD only helps slightly reduce the extraction
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risk, despite the relatively strict privacy budget ε =
10.0. This is because due to the existence of a
private datastore, each inference query in the kNN-
LM process incurs supplementary privacy costs,
leading to the final kNN-LM model not satisfying
the ε-Differential Privacy criteria.

We further try fine-tuning the encoder using a
combination of public and private data, which re-
sults in Encmixed. The training dataset comprises
the entire set of private data of size Npriv and
Npriv × r public data, where r takes values from
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}. We present at-
tack results using r = 0.05 as it achieves the best
perplexity. As shown in Table 5, when the encoder
is fine-tuned using a combination of public and
private data, the perplexity can be enhanced from
21.46 to 21.10 while simultaneously reducing pri-
vacy risk. This is because Encmixed helps close the
distribution gap between private and public data
thus improving the retrieval results. Similarly, us-
ing separate EncK and EncQ also helps further
reduce the privacy risk.

7 Related Work
7.1 Retrieval-based Language Models

Retrieval-based language models (Khandelwal
et al., 2020; Borgeaud et al., 2022; Izacard et al.,
2022; Zhong et al., 2022; Min et al., 2023; Shi
et al., 2023) have been widely studied in recent
years. These models not only rely on encoder for-
ward running but also leverage a non-parametric
component to incorporate more knowledge from an
external datastore during inference. The retrieval
process starts by using the input as a query, and
then retrieving a set of documents (i.e., sequences
of tokens) from a corpus. The language model
finally incorporates these retrieved documents as
additional information to make its final prediction.
While the deployment of retrieval-based language
models has been shown to lead to improved perfor-
mance on various NLP tasks, including language
modeling and open-domain question answering, it
also poses concerns about data privacy.

7.2 Privacy Risks in Language Models

Language models have been shown to tend to mem-
orize (Carlini et al., 2019; Thakkar et al., 2021;
Zhang et al., 2021; Carlini et al., 2023; Asai et al.,
2023) their training data and thus can be prompted
to output text sequences from its training data (Car-
lini et al., 2021), as well as highly sensitive informa-

tion such as personal email addresses (Huang et al.,
2022) and protected health information(Lehman
et al., 2021; Pan et al., 2020). Recently, the mem-
orization effect in LMs has been further exploited
in the federated learning setting (Konečnỳ et al.,
2016), where in combination with the information
leakage from model updates (Melis et al., 2019;
Huang et al., 2020), the attacker is capable of recov-
ering private text in federated learning (Gupta et al.,
2022). To mitigate privacy risks, there is a grow-
ing interest in making language models privacy-
preserving (Yu et al., 2022; Li et al., 2022; Shi
et al., 2022b; Yue et al., 2023; Cummings et al.,
2023) by training them with a differential privacy
guarantee (Dwork et al., 2006b; Abadi et al., 2016)
or with various anonymization approaches (Naka-
mura et al., 2020; Biesner et al.).

Although previous research has demonstrated
the potential risks of data extraction in parametric
language models, our study is the first investigation
of the privacy risks associated with retrieval-based
language models; we also propose strategies to
mitigate them. The closest effort is Arora et al.
(2022), which explores the privacy concerns of
using private data in information retrieval systems
and provides potential mitigations. However, their
work is not specifically tailored to the context of
retrieval-based language models.

8 Conclusion
This work presents the first study of privacy risks in
retrieval-based language models, specifically focus-
ing on kNN-LMs. Our objective is to investigate
designs and training methodologies for kNN-LMs
that strike a better privacy-utility trade-off.

There are several conclusions from our investi-
gation. First, our empirical study reveals that in-
corporating a private datastore in kNN-LMs leads
to increased privacy risks (both targeted and un-
targeted) compared to parametric language mod-
els trained on private data. Second, for targeted
attacks, our experimental study shows that sanitiz-
ing kNN-LMs to remove private information from
both the datastore and encoders, and decoupling
the encoders for keys and queries can eliminate the
privacy risks without sacrificing utility, achieving
perplexity of 16.38 (vs. 16.12). Third, for untar-
geted attacks, our study shows that using a public
datastore and training the encoder on a combina-
tion of public and private data can reduce privacy
risks at the expense of reduced utility by 24.1%,
with perplexity of 21.12 (vs. 16.12).

14895



Limitations

We discuss the limitations of this work as follows.

• The current study mainly demonstrates the
privacy implications of nearest neighbor lan-
guage models, but there are many other vari-
ants of retrieval-based language models, such
as RETRO (Borgeaud et al., 2022) and At-
las (Izacard et al., 2022). Further study is
needed to understand privacy implications of
these models and whether our findings apply.

• In the current study, we use WikiText-103
as the public domain for Enron Email, and
PubMed-Patients for Medical Transcriptions.
While we believe that these choices of public
datasets are realistic, it is important to recog-
nize that this selection may restrict the gener-
alizability of our findings. We acknowledge
this limitation and leave the exploration of al-
ternative options for the public dataset as a
direction for future work.

• Furthermore, an unexplored aspect of our
study is the potential combination of pro-
posed strategies, such as decoupling keys and
query encoders, with more diverse privacy-
preserving techniques.
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A Training Data Extraction Attack

A.1 Untargeted Attack
Carlini et al. (2021) proposes the first attack that
can extract training data from a trained language
model. The attack consists of two steps: 1) gen-
erate candidate reconstructions via prompting the
trained models, and 2) sort the generated candi-
dates using a score that implies the possibility of
being a memorized text.

Generate candidate reconstructions The at-
tacker generates candidates for reconstructions via
querying the retrieval-augmented LM’s sentence
completion API with contexts. Following Carlini
et al. (2021)5, we randomly select chunks from a
subset of Common Crawl 6 to feed as these con-
texts.

Sort candidates by calibrated perplexity The
second step is to perform membership inference
on candidates generated from the previous step.
We are using the calibrated perplexity in our study,
which has been shown to be the most effective
membership metric among all tested ones by Car-
lini et al. (2021).

The perplexity measures how likely the LM
is to generate a piece of text. Concretely, given
a language model fθ and a sequence of tokens
x = x1, . . . , xl, Perplexity(fθ,x) is defined as
the exponentiated average negative log-likelihood
of x:

exp

(
− 1

n

l∑

i=1

log fθ (xi | x1, . . . , xi−1)

)
(1)

A low perplexity implies a high likelihood of the
LM generating the text; For a retrieval-augmented
LM, this may result from the LM has been trained
on the text or has used the text in its datastore.

However, perplexity may not be a reliable indica-
tor for membership: common texts may have very
low perplexities even though they may not carry
privacy-sensitive information. Previous work (Car-
lini et al., 2019, 2021) propose to filter out these
uninteresting (yet still high-likelihood samples) by
comparing to a second LM which never sees the

5They have empirically show that sampling conditioned on
Internet text is the most effective way to identify memorized
content, compared with top-n sampling (Fan et al., 2018) and
temperature-base sampling (see Section 5.1.1 in their paper).

6Common Crawl is a nonprofit organization that crawls the
web and freely provides its archives and datasets to the public.
See their webpage for details: http://commoncrawl.org/
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Phone Email URL

If you have questions, please feel free to
give me a call at

For more information, send email to The site can be found at

Please advise or call me at For more information please email us at For more information, visit
Please call us at Suggestions and feedback are welcome at Please visit our web site at
I can be reached at For more information please email us at Visit our home page at
If you have any questions, please call Please forward this e-mail to For more details go to

Table 6: Example extraction prompts for different types of PIIs.

MODEL EVAL. PPL TARGETED ATTACK UNTARGETED ATTACK
TOTAL PHONE EMAIL URL # GOOD RECON

kNN-LM Encprivate W/ Dprivate 16.12 54 25 23 6 656
kNN-LM, EncDP,ε=5.0 W/ Dprivate 29.17 7 3 1 3 54
kNN-LM, EncDP,ε=5.0 W/ Dprivate 17.55 44 21 17 6 651

Table 7: Perplexity and data extraction risks for original and DP models on the Enron Email dataset.

private dataset. Specifically, given a piece of text
x and the target model fθ, and the reference LM
f ref
θ , the calibrated perpelxity computes the ratio
Perplexity(fθ,x)/Perplexity(f

ref
θ ,x).

A.2 Targeted Attack

The untargeted attack has demonstrated the fea-
sibility of recovering an entire sentence from the
deployed retrieval-augmented LM. However, it is
possible that only a small segment of a sentence
contains sensitive information that can act as per-
sonal identifiers, and thus be of interest to the at-
tacker. Therefore, we also consider the type of
attack which specifically targets this type of infor-
mation.

We define personal identifiers and describe the
attack method and evaluation subsequently.

A.2.1 Definition of Personal Identifiers
Personal Identifiable Information (PII) refers to
any data that can be used to identify a specific indi-
vidual, such as date of birth, home address, email
address, and telephone number. PII is considered
sensitive information and requires proper protec-
tion to ensure privacy.

The exact definition of PII can vary depend-
ing on the jurisdiction, country, and regulations
in place. One of the clearest definitions of PII
is provided by Health Insurance Portability and
Accountability Act (HIPAA) (Centers for Medi-
care & Medicaid Services, 1996), which includes
name, address, date, telephone number, fax num-
ber, email address, social security number, medical
record number, health plan beneficiary number, ac-
count number, certificate or license number, vehicle

identifiers and serial numbers, web URL, IP Ad-
dress, finger or voice print, photographic image,
and any other characteristic that could uniquely
identify the individual. In our study, we focus on
three frequently investigated PII in previous lit-
erature (Huang et al., 2022; Carlini et al., 2021),
including email addresses, telephone numbers, and
URLs.

A.2.2 The Attack

It’s important to note that our approach differs from
the work of Huang et al. (2022), which aims to re-
construct the relationship between PIIs and their
owners7. Instead, our study focuses on reconstruct-
ing the actual values of PIIs. This is because, even
if the attacker cannot determine the relationship
through the current attack, the reconstruction of
PIIs is already considered identity theft8. Further,
the attacker can use the linkage attack(Narayanan
and Shmatikov, 2008) with the aid of publicly avail-
able information to determine the relationship be-
tween PIIs and their owners.

PII extraction. Similar to the training data ex-
traction attack, the PII extraction attack consists of
two steps: 1) generate candidate reconstructions,
and 2) sort them using membership metrics.

To tailor the attack to recover personal identifi-
able information rather than the entire training text,
we customize the attack prompts based on the type
of information to be extracted.

7This threat model requires additional information about
the presence of the owners in the dataset.

8https://en.wikipedia.org/wiki/Identity_theft.
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PII # EMAILS CONTAINING PII # UNIQUE VALUES

EMAIL 1,013 758
PHONE 1,921 1,621
URL 1,641 1,396

Table 8: Number of PIIs in the Enron Email dataset.

MODEL EVAL. PPL

(PARAMETRIC LM) Encpublic,WikiText 31.42
(PARAMETRIC LM) Encpublic,PubMed 23.83

(kNN-LM) Encpublic,WikiText W/ Dprivate 14.75
(kNN-LM) Encpublic,PubMed W/ Dprivate 9.70

Table 9: Evaluation perplexity of parametric LMs and
kNN-LMs with different choices of Dpublic. Using
PubMed as Dpublic results in better perplexity.

B Experimental Details

Hyper-parameters For each model con-
figuration, we search hyper-parameters
k ∈ {64, 128, 256, 512, 1024, 2048} and
λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} on a held-out
validation set for the best model perplexity.

PIIs in Enron Email dataset We use regular
expressions to identify and extract three types of
personal identifiers from the Enron Email training
dataset for the use of the targeted attack, including
telephone numbers, email addresses, and URLs.
Table 8 provides statistics for these personal identi-
fiers.

Prompts for the targeted attack We gather
common preceding context for telephone num-
bers, email addresses, and URLs, and use them
as prompts for the targeted attack. Table 6 provides
example prompts we use in the attack.

Attack parameters For the untargeted attack, we
generate 100,000 candidates, and for the targeted
attack, we generate 10,000 candidates. We use
beam search with repetition penalty = 0.75 for the
generation.

C Defending the Untargeted Attack with
Differential Privacy

C.1 Differential privacy and DP Stochastic
Gradient Descent

Differential privacy (DP) (Dwork et al., 2006b,a)
is a mathematical framework for ensuring the pri-
vacy of individuals in datasets. It can provide a
strong guarantee of privacy by allowing data to be
analyzed without revealing sensitive information

about any individual in the dataset. Formally, a ran-
domized algorithm A is (ε, δ)-DP if for any two
neighboring datasets D and D′ (i.e., datasets that
differ by a single individual’s data), and any subset
S of outputs, it holds that

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] + δ.

Here, ε ∈ R>0, δ ∈ [0, 1) are privacy parameters
quantifying the privacy guarantee of the algorithm.

DP Stochastic Gradient Descent (DP-
SGD) (Abadi et al., 2016) is a recipe for
training a deep learning model with DP by
modifying the mini-batch stochastic optimization
process through the use of per-example gradient
clipping and Gaussian noise injection. When
training an ML model f parameterized by θ with
the per-example loss function ℓ(·, ·)9 on dataset
D, each optimization step t involves randomly
sampling a mini-batch Bt. Given Bt, DP-SGD
starts by computing the per-example gradient for
each (xi, yi) ∈ Bt, where xi is the feature vector
and yi is the corresponding label, as follows:

gt (xi, yi)← ∇θtℓ (fθt(xi), yi) .

It then clips the gradient ℓ2-norm to a maximum
ℓ2-norm of C:

[gt(xi, yi)]C := gt(xi, yi)/max(1, ∥gt(xi,yi)∥2
C ).

Finally, it produces the private gradient ĝt by
injecting Gaussian noise into the sum of the clipped
per-example gradients:

ĝt ← 1
∥Bt∥

(∑
i[gt (xi, yi)]C +N

(
0, σ2C2I

))
,

where (0, σ2C2I) is a Gaussian distribution with
mean 0 and covariance σ2C2I, and the noise multi-
plier σ is computed from (ε, δ) by inverse privacy
accounting (e.g., Abadi et al. (2016)).

C.2 Results

We also evaluate whether DP can mitigate extrac-
tion risks in kNN-LMs. Specifically, we fine-tune
the pre-trained LM on the private dataset with DP-
SGD. We vary the privacy budget ε and fix the
failure probability δ to be 1/N , where N is the
number of training examples. It’s important to ac-
knowledge that due to the utilization of a private
datastore, each inference query in the kNN-LM

9The specific loss depends on the particular task and model
(e.g. cross-entropy loss for classification)
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Example #1: PAST MEDICAL HISTORY:, He has difficulty climbing stairs, difficulty with airline seats, tying shoes, used to public seating, and lifting objects off
the floor. He exercises three times a week at home and does cardio. He has difficulty walking two blocks or five flights of stairs. Difficulty with snoring. He has
muscle and joint pains including knee pain, back pain, foot and ankle pain, and swelling. He has gastroesophageal reflux disease...

Example #2: HISTORY OF PRESENT ILLNESS: ,This is a 55-year-old female with a history of stroke, who presents today for followup of frequency and urgency
with urge incontinence. This has been progressively worsening, and previously on VESIcare with no improvement. She continues to take Enablex 50 mg and has not
noted any improvement of her symptoms. The nursing home did not do a voiding diary. She is accompanied by her power of attorney...

Example #3: EXAM: , Ultrasound examination of the scrotum.,REASON FOR EXAM: , Scrotal pain.,FINDINGS: ,Duplex and color flow imaging as well as real
time gray-scale imaging of the scrotum and testicles was performed. The left testicle measures 5.1 x 2.8 x 3.0 cm. There is no evidence of intratesticular masses.
There is normal Doppler blood flow. The left epididymis has an unremarkable appearance. There is a trace hydrocele...

Example #4: TESTICULAR ULTRASOUND,REASON FOR EXAM: ,Left testicular swelling for one day.,FINDINGS: ,The left testicle is normal in size and
attenuation, it measures 3.2 x 1.7 x 2.3 cm. The right epididymis measures up to 9 mm. There is a hydrocele on the right side. Normal flow is seen within the testicle
and epididymis on the right.,The left testicle is normal in size and attenuation, it measures 3.9 x 2.1 x 2.6 cm...

Example #5: PHYSICAL EXAMINATION: , The patient is a 63-year-old executive who was seen by his physician for a company physical. He stated that he was in
excellent health and led an active life. His physical examination was normal for a man of his age. Chest x-ray and chemical screening blood work were within normal
limits. His PSA was elevated.,IMAGING:,Chest x-ray: Normal.,CT scan of abdomen and pelvis: No abnormalities...

Table 10: Examples from the Medical Transcriptions dataset.

MODEL EVAL. PPL # GOOD RECON

(PARAMETRIC LM) Encpublic 23.83 0
(PARAMETRIC LM) Encprivate 12.00 769
(kNN-LM) Encpublic W/ Dprivate 9.70 122

(kNN-LM) Encprivate W/ Dprivate 6.61 812

Table 11: Perplexity and data extraction risks for various model configurations with the medical transcription dataset.
The configuration with the highest leakage is emphasized in red ; the configuration with the lowest leakage is
highlighted in green . Privacy measurements are computed using the top 5000 candidates for the untargeted attack.

DATASTORE EVAL. PPL # GOOD RECON
Npub Npriv

0 ALL 6.61 812
0 0 12.00 769 (↓ 5.3%)

ALL

0 11.32 759 (↓ 6.5%)
1, 000 10.54 773 (↓ 4.8%)
2, 000 9.29 787 (↓ 3.1%)
3, 000 8.26 799 (↓ 1.6%)

ALL 6.84 804 (↓ 1.0%)

Table 12: Perplexity and data extraction risks for kNN-
LMs with different numbers of public (Npub) and pri-
vate (Npriv) examples in the datastore. The evaluation
uses the medical transcription dataset. The encoder in
use is the privately fine-tuned encoder Encprivate. Pri-
vacy measurements are computed using the top 5000
candidates.

process incurs supplementary privacy costs, lead-
ing to the final kNN-LM model not satisfying the
(ε, δ)-Differential Privacy criteria.

As demonstrated in Table 7, when ε is set to 5.0,
the model showcases minimal utility alongside a
marginal privacy risk. Conversely, with ε raised to
10.0, the utility closely resembles that of utilizing
Encprivate in conjunction Dprivate, while concur-
rently slightly reducing the associated risk. These
results suggest that DP is also a viable alternative in
improving the utility-privacy trade-off in kNN-LM.

EncK EncQ EVAL. PPL # GOOD RECON

Dprivate W/ Encprivate 6.61 812

Encprivate Encprivate 11.32 759 (↓ 6.5%)

Encpublic Encpublic 22.55 0 (↓ 100%)
Encprivate Encpublic 23.01 7 (↓ 99.1%)
Encpublic Encprivate 11.36 689 (↓ 15.1%)

Encmixed Encmixed 12.32 773 (↓ 4.8%)
Encprivate Encmixed 12.47 707 (↓ 12.9%)
Encmixed Encprivate 12.36 692 (↓ 14.8%)

Table 13: Perplexity and data extraction risks for kNN-
LMs with different encoders for keys (EncK) and
queries (EncQ). The datastore in use is the public data-
store Dpublic. The evaluation uses the medical tran-
scription dataset. Privacy measurements are computed
using the top 5000 candidates. The Encmixed encoder is
fine-tuned using a mix of public and private data points.
Results suggest that using different encoders for keys
and queries or Encmixed can potentially improve the
privacy-utility trade-off.

D Untargeted Attacks on Medical
Transcriptions Dataset

We primarily showcase our findings using the En-
ron Email dataset in the main paper, as its inclu-
sion of personally identifiable information (PII)
enables us to effectively evaluate both targeted and
untargeted attacks. To validate our findings, we
hereby replicate our experiments specifically for
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untargeted attacks on the Medical Transcriptions
dataset.

D.1 Experimental setup
The Medical Transcriptions dataset10 contains
5,000 medical transcriptions for various medical
specialties. We use a subset of 4,500 examples
for training and the rest for evaluation. Table 10
provides examples from the dataset. When using
the Medical Transcriptions dataset as Dprivate, we
opt for PubMed-Patient11 as Dpublic, rather than
WikiText. This choice is motivated by the fact
that PubMed-Patient exhibits closer semantic align-
ment with the Medical Transcriptions, leading to
enhanced utility in our evaluation. Further insights
and justifications regarding this dataset selection
can be found in Table 9. We use the GPT-2 base
model (Radford et al., 2019) as Encpublic, and fine-
tune it on the Medical Transcriptions dataset as
Encprivate.

D.2 Results
The preliminary findings presented in Table 11
align with the observations outlined in Section 4,
highlighting a deficiency in the robustness of pri-
vacy protection within the design of kNN-LMs.
Specifically, these results indicate that the pri-
vacy concern stemming from the private datastore
Dprivate outweighs that resulting from the privately
fine-tuned model Encprivate.

One approach to address this issue is to incor-
porate a public datastore (Section 6), which helps
mitigate privacy risks - A small number of private
examples can be introduced to the public datas-
tore, striking a balance between utility and privacy
considerations. Table 12 demonstrates the effec-
tiveness of this approach, offering a promising com-
promise.

We also observe on the Medicial Transcriptions
dataset that separating the key and query encoders
yields better results in striking a favorable trade-off
between privacy and utility. As shown in Table 5,
employing distinct encoders, e.g., Encprivate for
encoding keys and Encpublic for encoding queries,
substantially diminishes the likelihood of data ex-
traction while only marginally affecting perplexity.

10https://www.kaggle.com/datasets/tboyle10/
medicaltranscriptions

11PubMed-Patients is derived from 167,000 patient sum-
maries extracted from case reports in PubMed Central. Fur-
ther details about this dataset can be found at: https://
huggingface.co/datasets/zhengyun21/PMC-Patients
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