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Abstract

Pre-trained vision and language models (Chen
et al., 2023b,a; Dai et al., 2023; Li et al.,
2023b) have demonstrated state-of-the-art ca-
pabilities over existing tasks involving images
and texts, including visual question answer-
ing. However, it remains unclear whether these
models possess the capability to answer ques-
tions that are not only querying visual con-
tent but knowledge-intensive and information-
seeking. In this study, we introduce INFOS-
EEK1, a visual question answering dataset tai-
lored for information-seeking questions that
cannot be answered with only common sense
knowledge. Using INFOSEEK, we analyze
various pre-trained visual question answering
models and gain insights into their character-
istics. Our findings reveal that state-of-the-art
pre-trained multi-modal models (e.g., PaLI-X,
BLIP2, etc.) face challenges in answering vi-
sual information-seeking questions, but fine-
tuning on the INFOSEEK dataset elicits models
to use fine-grained knowledge that was learned
during their pre-training. Furthermore, we
show that accurate visual entity recognition can
be used to improve performance on INFOSEEK
by retrieving relevant documents, showing a
significant space for improvement.

1 Introduction

The acquisition of knowledge occurs in the pre-
training of large language models (Brown et al.,
2020; Chowdhery et al., 2022), demonstrated
as their emergent ability to answer information-
seeking questions in the open-world, where the
questioner does not have easy access to the infor-
mation. While prior works have analyzed models’
capabilities to answer textual information-seeking
(or info-seeking) questions, much less is known
for visual info-seeking questions. For example,

∗ Work done when interned at Google
1Our dataset is available at https://

open-vision-language.github.io/infoseek/.

Figure 1: While 70.8% of OK-VQA questions can be
answered by average adults without using a search en-
gine, INFOSEEK poses challenges to query fine-grained
information about the visual entity (e.g., Dominus Flevit

Church), resulting in a sharp drop to 4.4% (§2).

after taking a picture of the specific church in Fig-
ure 1, a person might want to know the date of
construction, or who decorated the interior of the
church. Although the entity is presented in the im-
age (the specific church), the relevant knowledge
(e.g., the date) is not. Given recent advances on
pre-trained visual and language models (Alayrac
et al., 2022; Chen et al., 2023b; Li et al., 2023b),
do these models also understand how to answer
visual information-seeking questions?

To study this research question, a visual question
answering (VQA) dataset focusing on info-seeking
questions is inevitably required. However, not all
VQA datasets meet this criterion. For example,
by design, the majority of questions in datasets
such as VQA v2 (Goyal et al., 2017) focus on vi-
sual attributes and object detection that does not
require information beyond the image to answer.
While models capable of answering these types
of questions have the potential to aid visually im-
paired individuals (Gurari et al., 2018), there is a
broader class of info-seeking questions that can-
not be easily answered by sighted adults. Han-
dling such questions (e.g., When was this building

constructed? 1955) is critical as they come closer to
the natural distribution of human questions.

In this paper, we present INFOSEEK, a natural
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VQA dataset that focuses on visual info-seeking
questions. Different from previous VQA datasets,
the testing subset of INFOSEEK is collected in
multiple stages from human annotators to evalu-
ate VQA where the question can not be answered
from only the visual content (see a comparison of
datasets in § 2). In addition to this manually cu-
rated test set, which enables realistic evaluation of
info-seeking VQA, we also join annotations from
a recent visual entity recognition dataset (Hu et al.,
2023) with the Wikidata database (Vrandečić and
Krötzsch, 2014), and employ human annotators
to write templates to semi-automatically generate
a large corpus of visual info-seeking QA pairs.
Over 1 million {image, question, answer} triplets
are generated to support fine-tuning multimodal
models for info-seeking VQA. We split data to en-
sure memorizing knowledge during fine-tuning is
useless — models either have to learn to use knowl-
edge learned during pre-training or learn to retrieve
knowledge from an external knowledge base.

Using INFOSEEK, we analyze the ability of state-
of-the-art models to answer visual info-seeking
questions. We found pre-trained vision-language
models, such as models pre-trained end-to-end (e.g.,
PaLI-X by Chen et al.), and models pre-trained
with frozen LLM (e.g., BLIP2 by Li et al.), both
struggle to answer info-seeking questions in zero-
shot, though BLIP2 outperforms PaLI-X by a mar-
gin. Surprisingly, after fine-tuning on our (large,
semi-automatically curated) training set, PaLI-X
yields a significant improvement and outperforms
the fine-tuned BLIP2 models on queries that are
unseen during fine-tuning. This suggests that while
pre-trained PaLI-X has a significant amount of
knowledge, it requires a small amount of fine-
tuning data to fully awaken its capabilities. Further-
more, we show that INFOSEEK fine-tuned models
can even generalize to questions and entity types
completely unseen during fine-tuning (e.g., art &
fashion).

When incorporating a visual entity recogni-
tion component, and conditioning models on the
Wikipedia articles of the relevant entities, we
show that models accessing such a knowledge
base (With-KB) perform better overall than those
that rely on knowledge learned during pre-training.
However, end-to-end (No-KB) models were found
better on certain classes of questions that require
coarse-grained answers (“Which continent is this
building located on?”), even on tail entities. Our

Dataset OK-VQA ViQuAE INFOSEEK

PaLM (Q-only) 23.8 31.5 5.6
Current SotA 66.1 22.1 18.2

Require Knowledge† 29.2% 95.2% 95.6%
† :% of questions that require knowledge to answer.
PaLM (Q-only): a question-only baseline using PaLM.

Table 1: Comparison of INFOSEEK and prior KI-VQA
benchmarks. Performances reported in VQA score.

experiment (§5.2) further suggests that improv-
ing visual entity recognition can drastically in-
crease model’s capability in answering visual info-
seeking questions (from 18% to 45.6%), indicating
a promising direction for future development.

2 The Need for a New Visual
Information-seeking Benchmark

While there have been plenty of knowledge-
intensive VQA (KI-VQA) benchmarks, we show
that none of these meet the criteria to effectively
evaluate info-seeking VQA. Early efforts in this
area, such as KBQA (Wang et al., 2015) and
FVQA (Wang et al., 2017), were based on domain-
specific knowledge graphs, while recent datasets
like OK-VQA (Marino et al., 2019) and its vari-
ants such as S3VQA (Jain et al., 2021) and A-
OKVQA (Schwenk et al., 2022) have improved
upon this foundation by incorporating an open-
domain approach and highlighting common-sense
knowledge. Among the existing benchmarks, K-
VQA (Sanket Shah and Talukdar, 2019) and Vi-
QuAE (Lerner et al., 2022) are the most relevant,
but they have severe limitations in their question
generation process, as discussed below.

Information Seeking Intent. The evaluation of
models’ ability to answer info-seeking questions
requires fine-grained knowledge, which a person
is unlikely to know off the top of their head. How-
ever, we found that 70.8% of OK-VQA ques-
tions2 can be answered without the need to use
a search engine, indicating the dataset primarily
focuses on knowledge that is commonly known
to people. Most OK-VQA questions are regard-
ing coarse-grained knowledge that many people
already know: What days might I most commonly

go to this building? Sunday. One only needs to
know the building type (e.g., Church) rather than the
specific building (e.g., Dominus Flevit Church). This

2Studied with human on 500 random OK-VQA questions
(see Appendix C.1)
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makes it unsuitable for evaluating pre-trained mod-
els on long-tailed knowledge, where these models
have shown weaknesses (Kandpal et al., 2022).

Reliance on Visual Understanding. In contrast
to OK-VQA, the ViQuAE dataset aims to test fine-
grained knowledge of visual entities by pairing
questions from TriviaQA (Joshi et al., 2017) with
images. However, a significant portion of the Vi-
QuAE questions (e.g., "Who betrayed him for 30

pieces of silver?") can be answered without look-
ing at the images, as the questions often reveal suffi-
cient information to determine the answer. To quan-
tify this observation, we present questions from the
evaluation set to a large language model, PaLM
(540B) (Chowdhery et al., 2022). Results on the
ViQuAE test set are shown in Table 1. Surprisingly,
we find that PaLM can read questions and generate
answers with 31.5% accuracy, outperforming the
SOTA retrieval-based model (Lerner et al., 2022)
(which has access to the image) on this dataset by
9.4%. Although PaLM is a much larger model, this
experiment illustrates that it is possible to achieve
very good performance on ViQuAE without using
information from the image.

Entity Coverage. Current VQA datasets often
cover a limited number of visual entity categories.
For example, K-VQA only focuses on human sub-
jects, while over 43% of questions in ViQuAE re-
volve around human entities (see Table 2). Such
limitations hinder the evaluation of a model’s
knowledge across various entity categories and may
result in reduced task complexity, as the evaluation
may be limited to mere facial recognition.

To address these limitations, we present INFOS-
EEK (§ 3), a new benchmark for pre-trained multi-
modal models on visual info-seeking questions.
Our work builds on top of a visual entity recogni-
tion dataset, OVEN (Hu et al., 2023), which is de-
signed to answer questions related to the identifica-
tion of visual entities. We take visual info-seeking
a step further by benchmarking info-seeking ques-
tions about visual entities, which allows us to test
the pre-training knowledge of models beyond sim-
ply recognizing an entity.

3 INFOSEEK: A VQA Benchmark of
Visual Information-seeking Questions

The INFOSEEK dataset consists of two compo-
nents, (1) INFOSEEK Human: a collection of human-
written visual info-seeking questions (8.9K) to sim-
ulate information seeking intent (see § 3.1); and (2)

Dataset # {I,Q,A} Len of Q/A # Entity # Ent. type

OK-VQA 14K 8.1/1.3 - -⋆

K-VQA 183K 10.1/1.6 18,880 1†

ViQuAE 3.6K 12.4/1.7 2,397 980

INFOSEEK
- Wikidata 1.35M 8.9/1.5 11,481 2,739
- Human 8.9K 7.8/2.3 806 527
⋆: OK-VQA does not specify visual entities.
†: K-VQA only covers entities from the human category.

Table 2: Statistics of INFOSEEK & KI-VQA datasets.

INFOSEEK Wikidata: an automated dataset (1.3M)
to cover diverse entities for large-scale training
and evaluation purposes (see § 3.2). We split the
dataset to ensure memorizing the training set is
useless, thereby emphasizing the importance of
pre-training to acquire knowledge (see § 3.3). Due
to space limitations, we summarize the key essence
in this section and defer details to the Appendix.

Image Sources for Diverse Entity Coverage. We
sourced images from 9 image classification and
retrieval datasets used in Hu et al., including land-
marks (17%), animals (13%), food (5%), aircraft
(3%), etc. We utilize their annotation, which links
visual entities to their corresponding Wikipedia ar-
ticles, to construct our INFOSEEK dataset.

3.1 INFOSEEKHuman: Natural Info-Seeking
VQA Data Annotated by Humans

To ensure INFOSEEK questions rely on visual un-
derstanding and prevent models from taking short-
cuts in the question without using the image, we
employ a two-stage annotation approach inspired
by TyDiQA (Clark et al., 2020). This makes it
unlikely questioners will have prior knowledge of
the answer like SQuAD (Rajpurkar et al., 2016),
ensuring questions with info-seeking intents (Lee
et al., 2019).

Question Writing. Annotators are asked to write
3-5 questions about a visual entity based on their
own curiosity and information needs. To aid the
question-writing process, they are prompted with
visual entity images, a short description (15 words)
about the entity, and a list of Wikipedia section
titles. This ensures that the questions reflect a gen-
uine interest in learning about important aspects of
the entity without seeing the answer. A set of anno-
tation rules is employed to prevent trivial questions,
such as questions about visual attributes.

Answer Labeling. For each entity, we randomly
assign collected questions to a different group of an-
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(a) Models with No KB access (b) Models With KB (Knowledge-base) information

Figure 2: Visual info-seeking models under the proposed No KB and With KB protocols. (a) End-to-end VQA
models (such as PaLI (Chen et al., 2023b) or BLIP2 (Li et al., 2023b)) that directly predict the answer from looking
at the image and question; (b) Pipeline systems with access to a knowledge base (e.g.Wikipedia), with the option to
link the queried subject to the Wikipedia use CLIP (Radford et al., 2021) and perform textual question-answering
using PaLM (Chowdhery et al., 2022) or Fusion-in Decoder (FiD) (Izacard and Grave, 2020).

notators to label answers from Wikipedia. Annota-
tors were shown the Wikipedia article of the entity
and asked to find a concise answer to the ques-
tion: a text span that is as short as possible while
still forming a satisfactory answer. In addition,
annotators categorize questions into three types:
TIME (e.g., year), NUMERICAL (e.g., height) and
STRING (e.g., location).

Finally, we construct {image, question, answer}
(IQA) triples by assigning images for the annotated
QA pair of a visual entity, followed by human veri-
fication and clarification of the questions if multi-
ple objects are presented in the image. Following
TyDiQA (Clark et al., 2020), we measure the cor-
rectness of annotations and take the high accuracy
(95%) as evidence that the quality of the dataset is
reliable for evaluating visual info-seeking models.

3.2 INFOSEEKWikidata: 1 Million Automated
VQA Data from Wikipedia

Human annotation is valuable but costly for large-
scale evaluation. We thus scale up the dataset
using a semi-automated procedure, transforming
knowledge triples in Wikidata (2022-10-03) to nat-
ural language questions with human-authored tem-
plates, resulting in 1.3M examples over 11K visual
entities covering 2.7K entity types (see Table 2).

QA Generation. We convert knowledge triples
(subj, relation, obj) in Wikidata to natural language
question-answer pairs for a selected list of 300 re-
lations. For each relation, annotators write one
or two question templates, which contain a place-
holder for a hypernym of the visual entity (e.g.,
car) and a placeholder for unit measurements (e.g.,
inches) in numerical questions to avoid ambiguity.
Finally, we construct the IQA triples by pairing
images of a visual entity with corresponding QA

pairs.3

QA Pair Filtering and Subsampling. To ensure
the questions are diverse and the answers can be
referenced from Wikipedia, we filter out QA pairs
when answers from Wikidata cannot be found in
the Wikipedia article and subsample questions to
balance the distribution of entities and relations.

3.3 Evaluation of INFOSEEK

Dataset Split. We design the evaluation split to
prevent overfitting to the training set and focus
on evaluating the generalization ability of the pre-
trained models. This includes the ability to answer
questions of new entities and questions not seen
during training. Particularly, we define two evalua-
tion splits: (1) UNSEEN ENTITY, where a portion
of entities are held out during training and only in-
cluded in the evaluation; (2) UNSEEN QUESTION,
where we hold out a portion of the QA pairs of seen
entities for evaluation.

Evaluation Metric. Three types of questions
are evaluated differently: VQA accuracy (Goyal
et al., 2017) for STRING and TIME; Relaxed Accu-
racy (Methani et al., 2020) for NUMERICAL. We
applied different relaxing strategies for each ques-
tion type, and averaged the accuracy for each ques-
tion. Finally, we calculate the accuracy for each
data split (UNSEEN QUESTION and UNSEEN EN-
TITY), and take the harmonic mean of them as the
overall accuracy (see Appendix).

4 Protocols and Models for INFOSEEK

Motivated by previous research on text-based ques-
tion benchmarks (Joshi et al., 2017; Roberts et al.,
2020), we introduce two evaluation protocols, i.e,

3Based on manual inspection of 500 examples, we found
this process rarely produces incorrect examples (≤1.2%).
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Eval Protocol Training/Validation Testing Methods Example Models Knowledge Base

No-KB {I,Q,A} {I,Q} End-to-end Model PaLI, BLIP2 -
With-KB {I,Q,A,E} {I,Q} Pipeline System CLIP→ PaLM / FiD Wikipedia

Table 3: Two evaluation protocols of INFOSEEK. The key difference is whether auxiliary data for visual entity
recognition and knowledge base is available at training. I: image, Q: question, A: answer, E: queried visual entity.

No KB and With KB, to evaluate models with dif-
ferent information accessible from INFOSEEK. Ta-
ble 3 and Figure 2 have provided a comparison for
the two setups. This key design choice is made
to encourage models from different families to be
compared with a clear notion of what information
was accessed. We note that the No KB protocol is
more challenging than the With KB protocol.

The No-KB protocol. Models are tasked to di-
rectly predict the answer by examining the image
and question, similar to traditional VQA systems.
This requires the model to store world knowledge
in its parameters for effective question answering.
The research question focuses on how much knowl-
edge can an end-to-end model memorize in its pa-
rameters during pre-training, and how well can it
utilize this knowledge after fine-tuning? We use
the standard VQA formatted data, i.e, {Image (I),
Question(Q), Answer(A)} triplets for training / val-
idation, and {I,Q} for testing.

The With-KB protocol. The goal is to analyze
headroom for improvement when a viable reason-
ing chain is explicitly provided. Therefore, this
protocol encourages an extra step of visual entity
recognition, grounding the task on a knowledge
base. The VQA task is transformed into a two-step
pipeline, i.e, (1) visual entity recognition; and (2)
language QA with entity information. We provide
training signals to first recognize the queried visual
entity and then leverage the information to query a
large language model for answers, or identify rel-
evant Wikipedia articles for extracting the answer.
Specifically, we provide a 100K Wikipedia KB
(articles and infobox images) that includes visual
entities from INFOSEEK and top frequent entities
from Wikipedia. During training and validation,
With KB protocol provides entity labels for each
queried visual entity. During testing, the model is
evaluated based on the {I,Q} pairs only.

4.1 Models without KB Information

Random & Prior. Random answers sampled from
the training set; The majority answer based on the
question prior, which is calculated using the train-

ing set questions grouped by question 4-gram.

PaLM (Q-only) Model. To validate the impor-
tance of visual content in INFOSEEK, we build a
question-only baseline with PaLM (540B) (Chowd-
hery et al., 2022), using text question as the only
input and with 5-shot in-context-learning.

BLIP2 & InstructBLIP. We utilize two pre-
trained vision-language models, i.e, BLIP2 (Li
et al., 2023b) and InstructBLIP (Dai et al.,
2023). Both models share the same archi-
tecture, which trains a Q-former Transformer
that connects a frozen vision encoder (ViT-g/14)
to a frozen instruction-tuned language model
(Flan-T5XXL (Chung et al., 2022)) to output text based
on an input image and text. Particularly, Instruct-
BLIP fine-tunes the BLIP2 model on 26 vision-
language datasets (e.g., VQAv2, OKVQA) with a text
instruction prefix, and claimed to show improved
zero-shot performance on unseen vision-language
tasks. Following Li et al. (2023b), we fine-tune
the Q-former of both models using the INFOSEEK

Wikidata, for improved performance.

PaLI-17B & PaLI-X. We experiment with two
extra pre-trained vision-language models from the
PaLI (Chen et al., 2023b,a) family given its SOTA
performance. Particularly, we use PaLI-17B (ViT-e
+ mT5XXL (Xue et al., 2020)) and PaLI-X (ViT-
22B (Dehghani et al., 2023) + UL2-33B (Tay et al.,
2022)), which are pre-trained on WebLI (Chen
et al., 2023b) with 1 billion image-text pairs. Both
models, which use non instruction-tuned language
models, exhibit minimal zero-shot performance on
INFOSEEK. Consequently, we fine-tune both mod-
els on the INFOSEEK Wikidata to improve their per-
formance.

4.2 Models with KB Information

In this protocol, we explicitly model the path to
answer info-seeking questions with two decou-
pled sub-tasks: (1) recognizing the visual entity
grounded to the KB and (2) textual reasoning to
answer the question. A hidden benefit of such
pipeline systems is improved interpretability, be-
cause it is easier to locate the source of errors by
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Model LLM # Params
INFOSEEKWikidata INFOSEEKHuman OK-VQA VQAv2

UNSEEN UNSEEN Overall UNSEEN UNSEEN Overall Accuracy AccuracyQUESTION ENTITY QUESTION ENTITY

Random - - 0.1 0.1 0.1 0.2 0.1 0.1 - -
Prior - - 3.9 2.7 3.2 0.3 0.3 0.3 - 32.1 †

PaLM (Q-only) PaLM 540B 5.1 3.7 4.3 4.8 6.6 5.6 23.8 43.0

BLIP2 Flan-T5XXL 12B 14.5 13.3 13.9 10.0 8.9 9.4 54.7 82.3
InstructBLIP Flan-T5XXL 12B 14.3 13.2 13.7 10.6 9.3 9.9 55.5 -
PaLI-17B mT5XXL 17B 20.7 16.0 18.1 13.3 5.9 8.2 64.8 84.6
PaLI-X UL232B 55B 23.5 20.8 22.1 12.9 9.3 10.8 66.1 86.1
†: Numbers adopted from Agrawal et al.

Table 4: Results of No-KB models fine-tuned on INFOSEEK. Baselines including Random, Prior (majority answer
with 4-gram question prior), and a question-only model using PaLM (Q-only) with 5-shot prompting. VQA accuracy
of models on OK-VQA (Marino et al., 2019) and VQAv2 (Goyal et al., 2017) are for comparison.

diagnosing each sub-task component.

Sub-task #1: Visual Entity Recognition. We
follow the entity recognition task defined in
OVEN (Hu et al., 2023), and use an image and
a text query (e.g., “What is this building?") as
model inputs, and predict entities among 100K
multi-modal Wikipedia entries. Particularly, we
employ the pre-trained CLIP (Radford et al., 2021)
model (ViT-L/14), as our visual entity recognition
model, because of its strong generalization capabil-
ity. Specifically, we follow the CLIP2CLIP model
described in Hu et al., to fine-tune CLIP to en-
code multi-modal representations (image, question)
from our dataset as query, and (Wikipedia image,

Wikipedia title) from the KB as candidates. We
then retrieve the top k=5 most similar entities based
on weighted cosine similarity scores computed be-
tween the query and candidates.

Sub-task #2: Language QA with LLM or KB
Reader. Through visual entity recognition, we can
now represent the queried visual information as its
textual description. This enables us to investigate
the language reasoning component independently
to understand how much improvement a strong
LLM or a KB reader can bring.
• PaLM: Large Language Model. We use PaLM

(540B) to investigate the amount of knowledge
that can be memorized in the model’s parame-
ters from pre-training on text corpora. Given a
question and the queried entity name (from en-
tity recognition), we prompt PaLM to predict the
answer using 5-shot in-context examples with
the prompt format: “question: This is {entity}

{question} answer:”.

• Fusion-in Decoder (FiD): KB Reader. We
experiment with a SOTA retrieval-augmented

model, which reads information from a KB, to
understand the value of Wikipedia articles in the
KB. Specifically, the FiD (Izacard and Grave,
2020) model is employed, which takes N=100 re-
trieved articles as input and generates an answer.
The model is pre-trained with a T5Large (Raffel
et al., 2020) backbone (660M) on Natural Ques-
tions (Kwiatkowski et al., 2019) and fine-tuned
on INFOSEEK. During inference, we retrieve the
first 20 passages from Wikipedia for k=5 visual
entities (from entity recognition) and feed 100
passages to FiD to generate the answer.

5 Experiments

5.1 Results for No-KB Models

Main results. Table 4 presents the results of end-
to-end models on INFOSEEK. The best pre-trained
model in this setting is PaLI-X, although the abso-
lute number on the model’s overall performance
remains low. This is partially due to the fact that
INFOSEEK questions often require identifying enti-
ties and retrieving specific information relevant to
the question, making it a challenging task for end-
to-end models. As PaLI-X is pre-trained on a large
corpus with more model parameters, it demon-
strates better generalization ability on the UNSEEN

ENTITY split compared to PaLI-17B. Meanwhile,
there remains a noticeable gap in performance
on the UNSEEN QUESTION and UNSEEN ENTITY

splits, indicating that models struggle with gen-
eralization to new visual entities from the train-
ing set. We also present models’ results on OK-
VQA (Marino et al., 2019) and VQAv2 (Goyal
et al., 2017) for comparison and observe a dras-
tic performance gap, emphasizing the difficulty of
visual info-seeking questions.
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Figure 3: Zero-shot & fine-tuned performances on
INFOSEEK. Fine-tuning on INFOSEEK elicits knowl-
edge from PaLI models to answer fine-grained visual
info-seeking questions.

Fine-tuning elicits knowledge from the model.
To demonstrate the value of INFOSEEK training
data, we report the zero-shot performance of mod-
els in Figure 3. Specifically, we find that with-
out fine-tuning, both PaLI models produce a neg-
ligible overall performance, which is significantly
worse than the fine-tuned counterpart. This pro-
vides evidence to support the hypothesis that fine-
tuning has helped elicit knowledge from the pre-
trained PaLI models. On the other hand, BLIP2
and InstructBLIP show compelling zero-shot per-
formance on INFOSEEK as they adopt a frozen
instruction fine-tuned LLM (i.e, Flan-T5) and In-
structBLIP is further instruction-tuned on a col-
lection of VQA benchmarks. The performance of
BLIP2 models is further improved after fine-tuning
on INFOSEEK with a small number of steps, show-
ing strong generalization results to the Human split.
In Figure 10, we present examples of BLIP2 pre-
dicting the “country location” of an unseen entity
(i.eAmberd) and show the accuracy was improved
from 18% to 92% after fine-tuning, despite not see-
ing this entity in the training set. Finally, we con-
ducted a real-world evaluation on out-of-domain
images unavailable from the Internet (not from any
models’ pre-training data). Particularly, we evalu-
ate fine-tuned PaLI with 90 questions on 30 images
captured by the authors, on visual entities outside
of the INFOSEEK training corpus. As a result, PaLI-
17B and PaLI-X answered 22.2% and 38.9% of
questions correctly. Figure 4 presents examples of
PaLI and BLIP2 predictions on two out-of-domain
entities (artwork and fashion product).

Why does instruction-tuned BLIP2 obtain worse
zero-shot INFOSEEK results? One surpris-
ing finding from Figure 3 caught our attention
and reveals an important criterion to be consid-

Q: what year was this painting
created?
PaLI-17B: 1884 ✓
PaLI-X: 1884 ✓
BLIP2: 1887 ✗

Q: which year was this brand
established?
PaLI-17B: 1915 ✗
PaLI-X: 1854 ✓
BLIP2: 1854 ✓

Figure 4: Predictions on out-of-domain visual entities
(art & fashion) collected from real-world images by
authors, using INFOSEEK fine-tuned models.

Q: Which body of water is this
mountain located in or next to?
A: Lake Como
BLIP2(0-shot): lake como
InstructBLIP(0-shot): lake

Q: Who designed this bridge?

A: Thomas Telford
BLIP2(0-shot): john nash
InstructBLIP(0-shot): architect

Figure 5: InstructBLIP(0-shot) makes less fine-
grained predictions compared to its initial model
(BLIP2), after instruction-tuned on prior VQA datasets.

ered for future model development. We found
InstructBLIP0-shot performs significantly worse
than its initial checkpoint, BLIP2 (7.4 vs 11.3

on InfoSeek Wikidata), which contradicts the superior
zero-shot performances of InstructBLIP in Dai et al.
(2023). We conduct manual analysis and detect a
common error made by InstructBLIP is its pref-
erence for generating coarse-grained predictions
compared to BLIP2 (e.g., architect vs a person’s

name). This leads to a performance drop on IN-
FOSEEK, which emphasizes fine-grained answers
(see Figure 5). We hypothesize that this can be
attributed to the instruction tuning datasets used for
InstructBLIP (e.g., VQAv2 and OK-VQA), which share
a less fine-grained answer distribution. Fortunately,
fine-tuning on INFOSEEK Wikidata helps close the
gap.

5.2 Results for With-KB Models

Models with KB access perform better. Table 5
presents the results for pipeline models with ac-
cess to knowledge base (KB) information, along
with the best results from the No-KB setting for
reference. Notably, the pipeline models outper-
form the best No-KB models on the challenging
INFOSEEK Human split significantly. This highlights
the pipeline systems’ ability to answer visual info-
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Model INFOSEEK INFOSEEK ENTITY
Wikidata Human Accuracy

Best No-KB 22.1 10.8 -

With-KB Setting
CLIP → PaLM 20.1 15.2 22.2CLIP → FID 19.3 18.2
Oracle → FID 52.0 45.6 100

Table 5: Results of With-KB setting. CLIP →
PaLM/FID: a two-stage pipeline system (visual entity
recognition → text QA). PaLM: 5-shot prompting. FID:
Fusion-in Decoder to read from KB using T5large. Ora-
cle: an artificial upper-bound using oracle entities.

Model TIME NUMERICAL STRING
(Acc.) (Relaxed Acc.) (Acc.)

No-KB Setting
Prior 0 4.4 5.0
PaLM (Q-only) 0 11.4 4.0
InstructBLIP 7.9 7.5 17.8
BLIP2 6.9 5.8 18.5
PaLI-17B 3.8 18.4 27.4
PaLI-X 7.7 16.1 30.0

With-KB Setting
CLIP → PaLM 12.5 27.7 21.7
CLIP → FiD 12.3 23.4 23.9

Table 6: Results w.r.t. each question types on the
INFOSEEKWikidata val set of unseen question split, show-
ing a big headroom for improvements on TIME and
NUMERICAL for all end-to-end models.

seeking questions by effectively utilizing visual
recognition and language reasoning, specifically
using the names of visual entities to convey infor-
mation across modalities. When comparing the
two Language QA models, we observe that the FiD
model, which reads the Wikipedia article, achieves
the highest generalization performance on INFOS-
EEK Human by a significant margin. This suggests
that access to relevant text content plays a crucial
role in answering visual info-seeking questions.

Large headroom for improvement. Table 5
demonstrates an artificial upper-bound (Oracle →
FiD) on INFOSEEK, indicating substantial room for
performance improvement if an oracle entity recog-
nition model were available. By simulating the
visual entity recognition’s accuracy improvement
(from 22% using CLIP to 100%), the INFOSEEK accu-
racy can be improved from ∼20% to ∼50%, within
the same FiD model.

Analysis on each question type. Table 6 shows
a breakdown of results under different question
types, evaluated on INFOSEEK Wikidata. Comparing
No KB and With KB models, we found that end-

0 20 40 60 80

What is the mountain
range..?

Which continent..?

Which country..?

Which brand..?

Accuracy %

With-KB
No-KB

Figure 6: No-KB (PaLI-17B) outperforms With-KB
(CLIP→FiD) models on questions that query less fine-
grained attributes.

to-end models such as PaLI, have a short barrel
on fine-grained knowledge-intensive questions (i.e,
TIME and NUMERICAL). It can perform well on
other questions, which are more about querying at-
tributes or resolving relations between entities (see
Figure 6). Comparing With KB models, PaLM
and FiD perform on par with each other on this au-
tomated evaluation data. However, when evaluated
on the natural info-seeking human queries, FiD
has a better generalization, outperforming PaLM
on TIME (21.5 vs 14.6) and NUMERICAL (25.6
vs 21.3) questions from INFOSEEK Human signif-
icantly. One possible reason is that natural info-
seeking questions written by people focus more
on very fine-grained information, which is rare
and hard to memorize for PaLM. In contrast, FiD
can leverage Wikipedia articles to predict answers.
Finally, we analyze the performance of different
models according to the visual entity popularity
and found unique advantages of end-to-end models
(see Appendix).

Performance on Head vs. Tail entities. Al-
though pipeline models with KB access are overall
stronger, surprisingly, we observe that end-to-end
models have a unique advantage for info-seeking
VQA, particularly on the tail entities. Figure 7
presents a comparison of models, with group-wise
performances on Wikipedia entities that are least
popular (less monthly page views) to most popu-
lar (more monthly page views). The histogram is
generated based on the average monthly Wikipedia
pageviews in 2022, following (Mallen et al., 2022).
Surprisingly, the results show that PaLI-17B out-
performs the pipeline systems by a large margin
on the tail entities, particularly for questions re-
lated to geographical information. We show some
qualitative examples in Figure 9, for entities from
baskets of different monthly page views. This sug-
gests that there are many different routes to answer
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Figure 7: INFOSEEK results w.r.t. visual entities
of different popularity. End-to-end model outper-
forms pipeline systems on tail entities (low monthly
pageviews) but overturned on more popular entities
(high monthly pageviews).

visual info-seeking questions and that pipeline sys-
tems that rely on an explicit decomposition of the
VQA task may be redundant and susceptible to
error propagation from the entity linking stage.
Whereas for end-to-end models such as PaLI, it
is flexible to decide which route of reasoning is
more appropriate to answer a given question. For
example, one can answer geographical questions
without knowing the identity of the visual entity,
if other relevant visual clues are presented. Mean-
while, on the more popular head visual entities, a
clear trend emerged showing that pipeline systems
outperform end-to-end PaLI by a big margin.

6 Related Work

Pre-trained Vision Language Models. There
has been significant growth in the development of
vision-language models pre-trained on large-scale
image-text datasets (Lu et al., 2022; Bao et al.,
2021; Wang et al., 2022; Zhou et al., 2020; Radford
et al., 2021). One line of research aims to augment
a pre-trained language model with visual modality
by learning a mapping from an external visual en-
coder to the frozen large language model (Alayrac
et al., 2022; Li et al., 2023b; Koh et al., 2023), to
fully leverage textual knowledge from the language
model (Xu et al., 2023; Dai et al., 2023; Liu et al.,
2023; Zhu et al., 2023; Ye et al., 2023).

Knowledge-based VQA Models. Various
approaches have been proposed to address
knowledge-based VQA tasks (Marino et al., 2019)
by incorporating external knowledge into vision-
language models. One approach is to retrieve infor-
mation from an external KB (Marino et al., 2021;
Hu et al., 2022b; Wu and Mooney, 2022) and em-

ploy a model (Izacard and Grave, 2020) to per-
form language QA (Gui et al., 2022; Lin et al.,
2022). Other approaches transform the image into
a text caption and use an LLM (Brown et al., 2020;
Chowdhery et al., 2022) to answer questions (Yang
et al., 2022; Hu et al., 2022a). We utilize both
approaches to study the ceiling for improvement
on INFOSEEK with the OVEN model (Hu et al.,
2023).

Another concurrent work (Mensink et al., 2023)
investigates similar challenges but emphasizes scal-
ability and relies on model-generated annotations,
as opposed to our human-annotated info-seeking
queries.

7 Conclusion

We introduced INFOSEEK, a large-scale VQA
dataset that focuses on answering visual informa-
tion seeking questions. With INFOSEEK, we found
that current state-of-the-art pre-trained visual-
language models struggle to answer visual info-
seeking questions requiring fine-grained knowl-
edge, such as questions about time and numerical
information of a visual entity. Our analysis using
pipeline systems, which ground visual entities to
an external knowledge base, suggests that incorpo-
rating fine-grained knowledge into the pre-training
process holds significant potential to improve end-
to-end pre-training models.

8 Limitation

INFOSEEK is limited to English language and fu-
ture research could expand it to a multilingual set-
ting, leveraging articles in Wikipedia supported
in other languages. While the primary focus of
this work is on knowledge derived from Wikipedia,
future investigations could explore extensions to
other domains, such as medical information, and
artwork, and incorporate emerging updates in
Wikipedia (Iv et al., 2022).
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#UNSEEN #Total Question Type #Entity
QUESTION/ENTITY TIME/NUM./STR.

Train - / - 934,048 4.4/20.4/ 75.2% 5,549
Val 18,656/54,964 73,620 4.6/ 21.6/ 73.8% 1,794
Test 98,901/249,079 347,980 4.8/22.9/72.3% 8,905
Human 3,248/5,683 8,931 26.8/ 26.4/46.8% 806

Table 7: INFOSEEK Dataset statistics. Average ques-
tion per image rate is 1.4 and 1.0 for Wikidata and
Human split, respectively.

A Details of the Dataset.

In this section, we provide more details of the hu-
man annotation quality control and automatic data
generation process. We summarize the statistics
of INFOSEEK in Table 7 and show question prefix
distribution in Figure 11 and entity distribution in
Figure 12.

A.1 Human Annotation Quality Control

Instruction and Training. We hire 30 full-time
in-house annotators to collect questions and an-
swers in INFOSEEKHuman. Annotators are native
English speakers in the U.S. and are aware of the
purpose of the collected data. To ensure the qual-
ity of annotations in the INFOSEEKHuman dataset,
a comprehensive training process was designed
and implemented for our annotators. This process
involved a pilot study, in which annotators read
the instructions and annotated a few sample ex-
amples, followed by a tutorial session and a quiz.
The tutorial was conducted through an online video
session and provided a comprehensive overview
of the instructions while addressing common mis-
takes identified in the pilot study. Only annotators
who passed the quiz were selected to work on the
main task, with 30 annotators completing the train-
ing. We hire annotators at $17.8 per hour, which
is higher than the minimum wage in the U.S., to
fairly compensate annotators for their time and ef-
fort. The average completion time for stages one
and two of the annotation task was 12 and 10 min-
utes, respectively. A screenshot of the annotation
interface is provided in Figure 13.

Annotation Procedure
Stage 1 (Question Writing): As shown in Figure 13
(Top), annotators are shown with images of a
visual entity on the left-hand side with a short
description of the entity from Wikipedia below.
On the right, we show a list of Wikipedia section
titles of the entity and ask annotators to write
relevant questions next to the section title. We
prevent annotators from asking binary questions,

Correct Incorrect

Percentage 95% 5%

Table 8: Expert judgments of answer accuracy based on
a sample of 200 examples from INFOSEEK Human.

asking visual attributes (such as color), writing
questions by rephrasing the description, copying
entity names and section titles into the question,
and avoiding writing ambiguous questions.

Stage 2 (Answer Labeling): As shown at
the bottom of Figure 13, annotators are present
with info-seeking questions to the entity collected
from Stage 1 and a Wikipedia link of the entity.
For each question, annotators are asked to find a
short span of answers (less than 10 words) from
the Wikipedia page. They are asked to answer
two questions: (1) “Can you derive the answer
from the given Wikipedia page?” and (2) “What
is the type of this question?” and select from
three options (TIME, NUMERICAL, OTHERS). For
each answer, they will then fill in the answer box
(TIME: [year, month, day], NUMERICAL: [min,

max, unit], OTHERS: [string]) and copy paste
a short sentence from Wikipedia that contains
the answer to the evidence section. We decided
to exclude questions without answer spans from
Wikipedia following TyDiQA-GoldP as the dataset
is already hard enough and reserve these questions
for future work.

Expert Feedback and Correction. Expert annota-
tors provided regular feedback during annotation
and conducted thorough post-annotation verifica-
tion. The data was split into three batches, with
annotators flagged and provided feedback for those
who consistently made similar mistakes. After the
completion of stage 1, questions that revealed the
entity name, asked about the color or shape of
an object, or were binary were automatically re-
jected. After stage 2, three expert annotators re-
viewed and processed the question-answer pairs,
removing unqualified pairs and verifying the an-
swer span from the annotated evidence sentence.
Rejected pairs may have included questions that
were not answered by the annotated answer or were
too general and resulted in an ambiguous answer.
The expert annotators also corrected the question
type annotation and edited the answer span into
the correct format, such as adding units for numeri-
cal questions or shortening long answer spans that
exceeded ten tokens. Finally, the expert annota-
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Figure 8: Random examples from the training set of INFOSEEK Wikidata.
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Figure 9: Examples of predictions of PaLI-17B and CLIP→FID on INFOSEEK (left to right shows tail to head
entities).

Figure 10: Examples of predictions of BLIP2(0-shot) and BLIP2 on INFOSEEK (Entity: Q457057). Fine-tuning
improves the accuracy from 2/11 to 10/11, despite it being an UNSEEN ENTITY (not in the training set). We show
training set entities that are located in Armenia and images of Amberd on the internet.

Figure 11: Question prefix distribution in INFOSEEK Wikidata (left) and INFOSEEK Human (right).
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Figure 12: Distribution of the entities in INFOSEEK
(Grouped by their super category).

tors reviewed the image-question-answer triples
to reject bad images or clarify the question when
multiple objects were present in the image. For
example, a building was specified when multiple
buildings were present in the image. On average, it
took 1.5 hours to verify 1000 triples, as the majority
of images contained a single object.

Following TyDiQA (Clark et al., 2020), we ana-
lyze the degree to which the annotations are correct
instead of the inter-annotator agreement since the
question may have multiple correct answers. In
Table 8, human experts carefully judged a sam-
ple of 200 examples from INFOSEEK Human split.
For each example, the expert reads through the
Wikipedia page of the queried visual entity and
finds the answer to the question. They then indi-
cate whether the annotated answer is correct. We
take the high accuracy (95%) as evidence that the
quality of the dataset offers a valuable and reliable
signal for evaluating visual info-seeking models.

A.2 Filtering and Subsampling

Filtering. To test the models’ ability to answer
visual information-seeking questions that require
fine-grained knowledge, which can be learned from
the pre-training corpus such as Wikipedia, we need
to verify the consistency of answers between Wiki-
data and Wikipedia. Given that Wikidata and
Wikipedia are crowd-sourced independently, some
QA pairs created from Wikidata may not be present
in the Wikipedia article or may have different an-
swers. Therefore, we filtered out QA pairs where
the answer could not be found in the Wikipedia
article of the entity. We performed an exact string
match to verify answers for string questions and

used fuzzy string matching 4 with a substring ra-
tio greater than 0.9 if an exact match could not be
found. For time questions, we applied an exact
match to verify the year, month, and date. In some
cases, the year of construction of a building varied
by a year, so we allowed a +/- 1 year deviation
for the time question. For numerical questions, we
used exact matching to verify the numbers in the
article. However, in many cases, the units were
different (meters or inches), or a range with a min-
imum and maximum was given. We used regular
expressions to extract the number or range from
the Wikipedia article and filter out the QA pairs
if it is counted as incorrect based on the “Relaxed
accuracy” in Section 3.3 in the main text. Based
on a manual analysis of 200 randomly sampled QA
pairs, we found that 97% of the answers of the IN-
FOSEEK Wikidata could be found in the Wikipedia
article.

Subsampling Questions. In order to achieve a
more diverse set of questions in INFOSEEK, we ap-
plied a subsampling method to address the skewed
distribution of crowd-sourced knowledge triples
in Wikidata. The method followed the approach
used in Zhong et al. (2022). This involved defin-
ing P (r, c) as the percentage of triples that con-
tain the relation r and the subject entity’s cate-
gory as c. The P ′(r, c) = 1/|(r, c)| was cal-
culated as the average probability of a relation-
category pair and Image-Q-A triples were removed
with increasing likelihood based on the probability
r = 1−min(1, P (r, c)′/P (r, c))1/2. Additionally,
the same subsampling method was applied to bal-
ance the answer distribution for each relation. This
resulted in the question prior baseline achieving a
relatively low score (3.2) in INFOSEEK Wikidata, as
shown in Table 4 in the main text.

A.3 Evaluation Metric.

There are three types of questions, i.e, STRING,
TIME, and NUMERICAL, which are evaluated
differently. Particularly, we adopt the VQA
accuracy (Goyal et al., 2017; Marino et al.,
2019) against multiple references for STRING

and TIME questions, and utilize Relaxed Accu-
racy (Methani et al., 2020; Masry et al., 2022) for
NUMERICAL questions. For STRING questions,
we use the alias of answers from Wikidata
as multiple references for INFOSEEK Wikidata
(#avg = 4.5), and the human-annotated multiple

4SequenceMatcher from difflib library
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Figure 13: Annotation Interface for Stage 1 (Top) and Stage 2 (Bottom).

references for INFOSEEK Human (#avg = 2.4).
Exact Match: Correct if the prediction matches any one of the
references exactly.

• prediction=“USA", references=[“USA", “U.S.", “United
States of America", ...] →✓

For TIME questions, the answer references ac-
count for different date formats of year/month/day.
Meanwhile, we perform a relaxed match (with a
one-year error tolerance) to measure the model’s
prediction, because it is quite often that historical
events are only associated with estimated time.

Exact Match: Correct if the prediction matches any one of the
references exactly.

• prediction=“1991", references=[“1990", “1991", “1992"])
→✓
• prediction=“1991 6 11", references=[“1991 6 11", “1991
June 11", “11 June 1991", ...] →✓

For NUMERICAL questions, the exact match
would not be able to handle the case where a range
(e.g., a pair of minimum and maximum values) is
provided as annotated ground truth. To account
for this, we make a slight modification to the
Relaxed Accuracy with a 10% tolerance range.
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Relaxed Accuracy: correct if the prediction is in the reference
range or the prediction range overlaps with the reference
range of more than 50%
1) ref_min ≤ pred ≤ ref_max;
2) IoU([pred_min, pred_max], [ref_min, ref_max]) ≥ 50%

• reference= 10 cm → reference= [9, 11] # 10% tolerance
• prediction= 10, reference= [9, 11] →✓
• prediction= [5, 6], reference= [9, 11] → ×

A single value prediction is counted as correct
if it falls within the answer range, and a range
prediction is correct if the intersection-of-union
between the prediction and answer is greater than
or equal to 50%. Finally, we calculate the accuracy
for each data split (UNSEEN QUESTION and
UNSEEN ENTITY), and take the harmonic mean of
them as the overall accuracy.

A.4 Image Sources.

Image Recognition (or Retrieval) Datasets:
ImageNet21k-P (Russakovsky et al., 2015;
Ridnik et al., 2021), iNaturalist2017 (Van Horn
et al., 2018), Cars196 (Krause et al., 2013),
SUN397 (Xiao et al., 2010), Food101 (Bossard
et al., 2014), Sports100 (Gerry, 2021), Air-
craft (Maji et al., 2013), Oxford Flower (Nilsback
and Zisserman, 2008), Google Landmarks
v2 (Weyand et al., 2020).

B Implementation details of the baseline
systems

In this section, we provide complete implemen-
tation details of baseline models for the INFOS-
EEK task. We summarize hyperparameters for fine-
tuning in Table 9.

B.1 without-KB Models

PaLI and PaLI-X. We fine-tuned a 17B
PaLI (Chen et al., 2023b) and 55B PaLI-X (Chen
et al., 2023a) on INFOSEEK training set using the
“answer in en: [question] <extra_id_0>” prompt.

BLIP2 and InstructBLIP. We fine-tuned a
BLIP2 (Li et al., 2023b) and InstructBLIP (Dai
et al., 2023) on INFOSEEK training set using the
“Question: [question] Short answer:” prompt with
the LAVIS library (Li et al., 2023a). The length
penalty is set to -1. Since BLIP2 models present
zero-shot capabilities on INFOSEEK, we employ
early stopping to prevent over-fitting on the train-
ing set based on the performance on the validation
set.

OFA. We fine-tuned the OFAlarge (Lu et al., 2022)
model for 20k steps. During inference, we apply

beam search decoding with a beam size set to 5.
OFA achieves 11.7 and 4.0 on INFOSEEK Wikidata
and Human split, respectively.

mPLUG-owl. We fine-tuned mPLUG-owl (Ye
et al., 2023) for 10k steps with a learning rate of
2e-4 and batch size of 1 using LoRA (Hu et al.,
2021). mPLUG-owl achieves 7.7 on INFOSEEK

Human split.

PaLM(Q-Only). We use PaLM 540B (Chowdhery
et al., 2022) in-context learning under the 5-shot
setting with the following prompt:
Please answer the following question.
question: {Question_1}. answer: { Answer_1}.
...
question: {Question_i}. answer:

B.2 With-KB Models

PaLI PaLI-X (Instruct)BLIP2 OFA FID

Optimizer Adafactor Adafactor Adam Adam Adafactor
Batch size 128 128 16 512 64
Train steps 10k 800 400 20k 200
LR 1e-4 1e-4 5e-5 5e-5 2e-4
LR scheduler linear decay constant constant polynomial decay constant
Warmup steps 1000 1000 - 1000 -
Image size 224 224 224 480 -
Beam size 5 5 5 5 5
Vision backbone ViT-e ViT-22B ViT-g ResNet152 -
LM backbone mT5XXL UL2-32B Flan-T5XXL BARTlarge T5large
#Params 17B 55B 12.1B 0.4B 0.4B
Computing 32 TPUv4 64 TPUv4 A40 8 A100 64 TPUv4
Time 6 hours 1 hour 1 hour 48 hours 1 hour

Table 9: Hyperparameters for fine-tuning models on
INFOSEEK.

PaLM. We use PaLM 540B (Chowdhery et al.,
2022) in-context learning under the 5-shot setting
with the prompt present below. The Entity_1 is
the gold entity provided in the training set (with
KB setting). The Entity_i is the top-1 prediction
from the entity linking stage of the queried image.
Please answer the following question.
question: {This is Entity_1. Question_1}. answer: {
Answer_1}.
...
question: {This is Entity_i. Question_i}. answer: {

FID. The T5large FID (Izacard and Grave, 2020)
model was fine-tuned in two stages using 100
passages with a maximum input length of 192
tokens. To form synthetic training data with
(passage, question, answer) triples, we combine
oracle entity passage with linked entity (from
EntLinker) passages. We fine-tune the model on
Natural Questions (Kwiatkowski et al., 2019) for
10k steps and then continue to fine-tune it on
INFOSEEK for 200 steps with a batch size of 64.
question: This is Entity. Question. context: Passage
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C Additional Experiment Results

Complete numbers for With-KB Models. We
show the complete results for With-KB models in
Table 10.
Complete numbers for INFOSEEK Wikidata Val-
idation set. We show the complete Validation re-
sults for Without-KB and With-KB models in Ta-
ble 11 and question type score of unseen entity split
in Table 12.

C.1 OK-VQA Annotation Guidelines
Five adult annotators each annotate 100 examples
(500 in total) sampled from the OK-VQA training
set. Annotators are instructed to categorize each
example into one of three categories (see Table 13).
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Model # Params Components use KB
INFOSEEKWikidata INFOSEEKHuman

UNSEEN UNSEEN Overall UNSEEN UNSEEN OverallQUESTION ENTITY QUESTION ENTITY

CLIP → PaLM 540B CLIP 21.9 18.6 20.1 15.6 14.9 15.2
CLIP → FiD 1B CLIP & FiD 20.7 18.1 19.3 18.9 17.6 18.2

Table 10: INFOSEEK full results on With-KB setting.

Model
INFOSEEKWikidata

UNSEEN UNSEEN OverallQUESTION ENTITY

Without-KB Setting
Prior 4.6 2.5 3.2
PaLM (Q-only) 5.5 4.2 4.8
InstructBLIP 15.0 14.0 14.5
BLIP2 15.0 14.2 14.6
PaLI-17B 24.2 16.7 19.7
PaLI-X 25.8 22.4 24.0

With-KB Setting
CLIP → PaLM 22.7 18.5 20.4
CLIP → FiD 23.3 19.1 20.9
Oracle → FiD 52.1 53.0 52.5

Table 11: INFOSEEK full results on Wikidata validation
set.

Model TIME NUMERICAL STRING
(Acc.) (Relaxed Acc.) (Acc.)

No-KB Setting
Prior 0 3.5 2.3
PaLM (Q-only) 4.6 11.0 2.7
InstructBLIP 6.6 8.2 16.1
BLIP2 5.6 6.0 17.0
PaLI-17B 1.0 14.8 18.2
PaLI-X 8.1 17.2 24.8

With-KB Setting
CLIP → PaLM 17.8 21.3 17.7
CLIP → FiD 13.8 15.2 20.5

Table 12: Results w.r.t. each question types on the
INFOSEEKWikidata val set of unseen entity split.

Question Category Percentage

Answered directly by looking at the corresponding image 50.8%
Answered without looking at the image (Q-only) 20%
Requiring a Google search for an answer 29.2%

Table 13: OK-VQA annotation results.
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