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Abstract
Relation extraction is a crucial task in natu-
ral language processing (NLP) and informa-
tion retrieval (IR). Previous work on event re-
lation extraction mainly focuses on hierarchi-
cal, temporal and causal relations. Such rela-
tionships consider two events to be indepen-
dent in terms of syntax and semantics, but they
fail to recognize the interdependence between
events. To bridge this gap, we introduce a
human-annotated Event Dependency Relation
dataset (EDeR). The annotation is done on
a sample of documents from the OntoNotes
dataset, which has the additional benefit that
it integrates with existing, orthogonal, annota-
tions of this dataset. We investigate baseline
approaches for EDeR’s event dependency rela-
tion prediction. We show that recognizing such
event dependency relations can further bene-
fit critical NLP tasks, including semantic role
labelling and co-reference resolution.

1 Introduction

Events play a critical role in enabling AI agents to
understand and perceive the world, as they provide
information on what happened and the entities in-
volved. An event is composed of a predicate (i.e.,
verb) and arguments, where the predicate indicates
the event’s action and the arguments represent the
subject, object and so on of the predicate (Levin
et al., 1999; Rappaport Hovav et al., 2010).

Previous work on relation extraction mainly fo-
cuses on investigating the relationships between
entities (Miwa and Sasaki, 2014; Huguet Cabot
and Navigli, 2021; Chen et al., 2020; Ma et al.,
2022) rather than events. In the relatively lim-
ited research work that studies the relations be-
tween events, the types of relations considered are
causal (Mariko et al., 2020, 2022; Tan et al., 2022),
temporal (Bethard, 2013; Laokulrat et al., 2013),
and hierarchical (Hovy et al., 2013; Glavaš and Šna-
jder, 2014). Such relationships consider two events
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Figure 1: Examples of the event dependency relations.
Above: Source text. (Event predicates are marked in
boldface and argument spans are marked with brackets.)
Below: Event dependency relations and refined events.

to be independent in terms of syntax and semantics
but overlook the inter-dependence between them.
This disregard for interdependence can potentially
yield incomplete or erroneous narrative interpreta-
tions. Take the sentence “He tried to forgive his
father one time.” from Figure 1, e2 with the predi-
cate “forgive” is the action that he “tried” (e1) to
take. However, there is no temporal or causal or
hierarchical relation between e2 and e1; rather, e2
is the object (syntactically depending) and patient
(semantically depending) of e1. In fact, e2 didn’t
actually happen. Recognizing such relations, that
reveal both semantic and syntactic dependencies, is
an essential, yet challenging task for AI researchers.
Correctly identifying these dependency relations
can enhance language understanding and provide
valuable information for various related NLP tasks.

Motivated by these, we investigate how an event
may be an argument of another as representing
the event dependency relations, rather than being
regarded as independent. Additionally, we dis-
tinguish argument into required argument and
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optional argument events. Required arguments,
like e2 (“forgive”) in e1 (“tried”) from Figure 1,
are present for an event to be complete and mean-
ingful (to “try to”, one has to try to do something).
Optional arguments, such as e13 (“see”) in e12
(“carried”), enhance or clarify the event that it is
an argument of (for example indicating the pur-
pose), and their occurrence isn’t explicitly stated.
Non-argument events, which are conjunctive or
conditional, are often mislabelled as arguments in
the event extraction task, like e9 (“arrived”), a tem-
poral modifier for e10 (“did not [say] anything”),
but is independent.

Argument-event dependency relations are fre-
quent in natural language texts, especially in nar-
rative texts such as news articles, conversations,
and similar. Hence, we present a human-annotated
Event Dependency Relation dataset (EDeR) that
(1) extracts event dependency information based
on a sample of 275 documents spanning seven
genres from OntoNotes (Pradhan et al., 2013)
and integrates with orthogonal annotations of this
dataset, and (2) provides refined semantic role-
labelled event representations based on this infor-
mation. We build the EDeR dataset with 11,852
high-quality annotations, according to the proposed
event relation taxonomy. It can serve as the basis
for an effective automatic classification process.

We apply both EDeR human-annotated and
model-predicted event dependency relations to
enhance a state-of-the-art semantic role labeling
(SRL) model (Zhang et al., 2022)’s event repre-
sentation generation. Experimental results prove
these relations improve event extraction, yield-
ing updated representations from EDeR. These re-
fined event representations were further applied
to the co-reference resolution (CR) task. A per-
formance comparison taking the original and our
updated event representations as inputs on a CR
model (Jiang and Cohn, 2021) affirms the effec-
tiveness and validity of EDeR’s refined represen-
tations. We release EDeR (e.g., dataset, base-
line code, and model) at https://github.com/
RichieLee93/EDeR.

2 Background and Related Work

2.1 Event and Event Representation

Event mentions involve a predicate (usually a
verb or phrasal verb) and a set of labelled argu-
ments (Levin et al., 1999; Rappaport Hovav et al.,
2010). Events can be identified from texts using

datasets reps. relationsverbarg.span
ECB (Bejan and Harabagiu, 2008) ✓ ✗ ✗ H
Hieve (Glavaš et al., 2014) ✓ ✗ ✗ H
IC (Araki et al., 2014) ✓ ✗ ✗ H
TimeBank (Pustejovsky et al., 2003) ✓ ✗ ✗ T
TB-Dense (Cassidy et al., 2014) ✓ ✗ ✗ T
MATRES (Ning et al., 2018b) ✓ ✗ ✗ T
ECD (Do et al., 2011) ✓ ✗ ✗ CA
CiRA (Fischbach et al., 2021) ✗ ✗ ✓ CA
CNC (Tan et al., 2022) ✗ ✗ ✓ CA
FCR (Yang et al., 2022) ✗ ✗ ✓ CA
CATENA (Mirza and Tonelli, 2016) ✓ ✗ ✗ CA+T
ESC (Caselli and Vossen, 2017) ✓ ✗ ✗ CA+T
TCR (Ning et al., 2018a) ✓ ✗ ✗ CA+T
EDeR (Ours) ✓ ✓ ✓ CO+D

Table 1: Comparisons of event representations (reps.)
and relations between our EDeR dataset and other public
event relation datasets. “arg.” is the abbreviation of
argument labels. In the column “relations”, “H”, “T”,
“CA”, “CO” and “D” represent hierarchical, temporal,
causal, conditional and dependency, respectively.

semantic role labelling (SRL) which marks roles
(i.e., predicates and arguments) of words or word
spans in sentences. The OntoNotes dataset uses the
PropBank annotation schema (Bonial et al., 2012)
for SRL, categorizing arguments as text spans, as-
signing numbered arguments (ARG0-ARG5), and
labelling verb modifiers like purpose (PRP) and
location (LOC). Examples are shown in Figure 2.
However, as Table 1 shows, most of the public
event relation datasets, unlike EDeR, solely repre-
sent events as text verbs or spans without identify-
ing arguments and argument labels. This could re-
sult in considerable information loss and increased
ambiguity in the process of understanding an event.

We find that events can be arguments of other
events, though not all events within another’s span
are arguments. This discrepancy can lead to shared
subjects or objects without signifying an argument
relationship. For instance, in Figure 2, the event
“The man [who] works here” is contained in the
event “The man who works here tells me to get out”
but is not an argument of “tells”. These annotations
in the SRL datasets such as OntoNotes overlook
the dependency relationship between events, but
clarifying this relationship allows for a more fo-
cused argument span selection, such as “The man”
for ARG0 (agent) of the event with the predicate
“tells” in the example above.

2.2 Relations Between Events

Several event-event relations have been proposed
in recent. The summary of varied relations of the
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existing datasets is shown in Table 1’s last col-
umn. The TimeBank (Pustejovsky et al., 2003),
TB-Dense (Cassidy et al., 2014) and MATRES
(Ning et al., 2018b) datasets focus on the tempo-
ral relationship which reveals if one event happens
BEFORE, AFTER, etc. another. Logical relation-
ships like causality are also explored in datasets like
ECD (Do et al., 2011), ESC (Caselli and Vossen,
2017), CiRA (Fischbach et al., 2021) and CNC
(Tan et al., 2022). Datasets like CATENA (Mirza
and Tonelli, 2016), ESC (Caselli and Vossen, 2017),
and TCR (Ning et al., 2018a) individually detect
temporal and causal relations based on identical
events. Such relationships regard two events as
syntactically and semantically independent - the
occurrence and actuality of each event are isolated
and not affected by others. Besides, several datasets
propose hierarchical relationships with sub-events
satisfying temporal and spatial conditions within a
super-event (Hovy et al., 2013; Glavaš et al., 2014;
Glavaš and Šnajder, 2014). Bejan and Harabagiu
(2008) and Araki et al. (2014) explore event co-
reference relations - whether two event mentions
refer to the same event. Such hierarchical relations
cannot deal with cases when an event (especially
the verb of the event) requires a clausal comple-
ment, i.e., an argument of the event verb is itself an
event.

3 Dataset

We utilize a subset of OntoNotes documents with
its human-annotated and predicate-argument for-
matted events to extract candidate event pairs,
where one event’s predicate is contained in the span
of another. These pairs, denoted as Event1 and
Event2, are labelled by human annotators to in-
dicate whether Event2 is a required argument of,
an optional argument of, a condition of, or inde-
pendent from Event1. We next detail the way we
collect and pre-process the candidate event pairs
and the human annotation process and construction
of the dataset.

3.1 Data Collection

OntoNotes contains semantic role-formatted event
representations, as the OntoNotes example in Fig-
ure 2 shows. We randomly sampled 275 documents
from seven genres: broadcast news (bn), magazine
(mz), newswire (nw), pivot corpus (pt), telephone
conversation (tc), broadcast conversation (bc), and
web data (wb). Detailed data statistics are shown

Figure 2: Above: A sample sentence with semantic role
labels from the OntoNotes dataset. Below: Correspond-
ing event pairs presented for human annotation with
event dependency relations.

in A.1 Table 6. The number of sampled documents
and the separation of them into training, develop-
ment and test sets under each genre follows their
initial distributions in the OntoNotes dataset.

3.1.1 Candidate Event Pair Extraction
Because arguments are spans of text, part or all of
an extracted event may lie within the argument of
another event. If the verb (i.e., predicate) of ej is
within an argument of ei, we say ej is contained
in ei. This can be nested. Contained events are
candidates for being argument events, but are not
necessarily so. For example, in the top part of
Figure 2, the event in green (e3 = {ARG0: The
man } {R-ARG0: who } {V: works } {ARGM-
LOC: here }) is contained in the span of the event
in blue (e1 = {ARGO: The man who works here }
{V: tells } {ARG2: me } {ARG1: to get the hell
out }), but e3 is not an argument of e1; however,
the event in orange (e2 = {ARG1: me } {V: get }
{ARG2: the hell out }) is an argument of e1.

We select event pairs (ei, ej) where ej’s verb is
contained within the span of an argument of ei as
candidate event pairs for annotation.

3.1.2 Preprocessing
We apply three filters to the selected candidate
event pairs. First, we filter out candidate event
pairs (ei, ej) in which ej does not have any argu-
ments. This typically occurs when ej is a modal
verb indicating the tense of the verb in ei. Second,
events in the OntoNotes dataset sometimes mistake
adjectives for verbs (e.g., “given” in “at any given
time”), so we use the words’ POS tags to filter
these out. The POS tags of the event predicates are
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Figure 3: Illustration of our multi-level qualification-
based annotation procedure.

obtained using the Stanford CoreNLP toolkit (Man-
ning et al., 2014). Third, we remove transitively
contained event pairs, i.e., pairs (ei, ej) such that
there exists another event ek such that the verb of
ek is contained in ei and the verb of ej is contained
in ek. In such cases, (ei, ek) and (ek, ej) may be
candidate pairs, but (ei, ej) is not. For example,
in “[She] {V: try } [to {V: stop } [[them] from {V:
ruining } [...]]]”), “try” and “stop”, and “stop” and
“ruin” are two candidate pairs, but “try” and “ruin”
are not.

3.2 Annotation

3.2.1 Annotation Instruction

We present each candidate pair with the whole span
of both events and highlight the predicate of each
event with “{V: }”, as shown in the lower part
of Figure 2. Annotators can choose one of four
options to answer the relation between the two
events. For the annotation task, we separate the
non-argument case into two: condition and inde-
pendent (“neither an argument nor a condition”).
This made the definitions of the labels easier to
understand, since a condition is also, like argument
events, a hypothetical, rather than actual, event in
the text. Identifying conditional statements in texts
is itself an interesting and active topic of research
(Fischbach et al., 2021; Tan et al., 2022), motivated
in particular by their indication of causality. The
full annotation instructions can be found in A.4.

3.2.2 Annotation Procedure

We adopt a multi-level qualification-based annota-
tion procedure in which annotators’ work is sam-
pled and inspected/corrected in several stages, and
feedback from the inspections is passed back to the
annotators. A schematic of the procedure is shown
in Figure 3. Compared with the commonly-used
crowd-sourcing and voting strategy, this procedure
makes annotators learn to improve throughout the
task. Although in the end not all event pairs have
been annotated by multiple participants, the strict
qualification tests used along the way ensure anno-
tators give their best answers.

Over 80 candidate annotators were recruited
from colleges in China through a data annotation
agency. They are English linguistic-major graduate
students and fluent in English (passed the TEM-8
test1). After reading the instructions, candidates
took a screening test, requiring them to annotate
50 examples, also annotated by authors, and cross-
checked with the linguistic expert. The linguistic
expert who has rich NLP-related annotation experi-
ence was hired via the same data annotation agency.
16 candidates who answered at least 85% of these
questions correctly in the test were selected as an-
notators. Among the 16 annotators, the three with
the highest accuracy were selected as quality in-
spectors (QIs). After further training, in which
the linguistic expert explained the instructions and
their mis-annotated cases from the screening test,
the annotators started the annotation.

The event pairs for annotation were evenly split
into 3 subsets and sequentially released to the an-
notators in 3 stages, each one week apart. In each
stage, 40% of the annotators’ submitted cases were
randomly chosen and annotated by QIs. The expert
reviewed 15-25% of QIs’ inspected cases, provided
feedback on errors, and offered explanations to pre-
vent repetition in subsequent stages. This expert su-
pervision ensures QIs’ quality and prevents unreli-
able labels that could mislead annotators. After the
linguistic expert’s review of the QIs’ annotations, if
the agreement between an annotator’s answers and
the corresponding QI’s is lower than 95%, the an-
notator must re-annotate inconsistencies until this
agreement ratio is met.

The authors also monitor the quality of the an-
notation. In each stage, we sampled and labelled

1Test for English Majors-band 8, the highest level test in
China for English major students that measures the overall
English proficiency.
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5% of the once-only annotated results from each
annotator. If the accuracy achieved by an annota-
tor is below 85%, the work of that annotator was
discarded, and the annotator was dismissed from
subsequent stages. Only one annotator failed this
test and was removed after the first stage. Not
counting the author-inspected cases, 4,771 (40.2%
of all) cases received at least four times annotation.

3.2.3 Event Representation Refinement
As described in the second annotation example in
Figure 2, one event (predicate) can be contained
in another event but actually not an argument of
it. For the event pairs that annotators label as inde-
pendent, we further ask them to refine containing
event (“Event 1”) by removing the span of the con-
tained event (“Event 2”) from it. However, the
contained event often shares the subject or object
with the containing event, so annotators will keep
any shared parts in Event 1 and remove the only
remaining Event 2 spans. This manual event repre-
sentation refinement proceeds simultaneously with
the annotation of the event dependency relation and
is inspected by the QIs and the linguistic expert as
well.

Events tagged as conditions typically don’t share
subjects or objects with their enclosing events. We
found automatic revision of the enclosing event
feasible, hence didn’t request annotators for it. If
the conditional event ej and its containing event ei
appear in the sentence as one of the subsequences
(1) ei s ej or (2) s ej ei or (3) ej , ei, where s is
one of the signal words/phrases “if”, “whenever”,
“as long as”, “on [the] condition that”, “unless”,
or “provided that”, then we first remove all words
in ei that are within the span of ej , and, second,
remove any signal word/phrase that is antecedent
and adjacent to ej . In the few cases when no signal
word or phrase was detected in the second step, we
manually checked and revised the containing event.

3.3 Analysis

Table 2 shows the distribution of event pairs clas-
sified under each label in the annotated dataset, as
well as the number of event pairs in the training,
development and test document subsets.

It is not surprising that the distribution is bi-
ased, with a majority (just over 75%) of event
pairs labelled as “argument”. The predicate-within-
containing-event-span relation between events in
the pairs we selected for annotation is a necessary
condition for them to be dependent. Of the 2,901

pairs labelled as non-argument (condition or inde-
pendent), 2,490 distinct events’ representations are
refined by the annotators and by our automated
method.

argument non-argument overall
required optional cond. indep.

train 4,096 2,837 335 1,861 9129 (77%)
dev 635 421 41 355 1,452 (12.3%)
test 594 368 70 239 1271 (10.7%)
overall 5,325 3,626 446 2,455 11,852

(44.9%) (30.6%) (3.8%) (20.7%)

Table 2: Distribution of event pairs in the annotated
EDeR dataset across labels and across the training, de-
velopment and test subsets.

For human-annotated datasets, there is always
a trade-off between the number of instances being
annotated and the quality of annotations (Kryscin-
ski et al., 2019; Cui et al., 2020). The size
of our dataset is constrained by the annotation
method. But it is comparable with or larger than
many other human-annotated event relations rea-
soning datasets, e.g., Glavaš et al. (2014); Cassidy
et al. (2014); Mirza and Tonelli (2016); Ning et al.
(2018b); Tan et al. (2022). We conducted various
kinds of inspections to ensure the quality of EDeR.
The statistics are as follows: (1) Among the 4,771
samples (40.2% of the total 11,852 cases) from
EDeR that have received the three Quality Inspec-
tors’ annotations, only 31 (0.65%) of them received
three different labels from the three QIs; (2) we ran-
domly sampled 417 cases that received at least four
annotations; the accuracy of the annotated labels is
90.65% (378/417); (3) a 5.2% sample of the over-
all annotations was double-checked by the authors,
with larger than 88% accuracy. These results show
that the multi-level iterative annotation procedure
produces high-quality annotation results.

4 Experiment: Event Dependency
Relation Prediction

Given two events ei and ej from a sentence X ,
the basic task is to predict whether ej is an argu-
ment of ei or not. In this section, we evaluate the
performance of several baseline methods on this
task. The best achieves an accuracy of just over
82%. In Section 5, we show that even this binary
classification of events into dependent and indepen-
dent is sufficient to improve performance in two
further NLP tasks: event representation extraction
and co-reference resolution.
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The task can be refined into a 3-way classifica-
tion task, by distinguishing required and optional
arguments, and into a 4-way classification task by
distinguishing also the two types of non-argument
events: conditions and independent events. The
3- and 4-way classification tasks are significantly
harder. A summary of results is presented in Sec-
tion 6, and full details in Appendix A.2.

4.1 Baseline Models

We evaluate several pre-trained language models,
and a rule-based heuristic method.

The language models include discriminative
models BERT (Devlin et al., 2019), Distil-
BERT (Sanh et al., 2019), XLNet (Yang et al.,
2019), RoBERTa (Zhuang et al., 2021); as well as
two auto-regressive generative models GPT-2 (Rad-
ford et al., 2019) and ChatGPT2 (i.e., GPT-3.5-
turbo). Specifically, we feed ChatGPT four exam-
ples from the annotation instruction, representing
each of the four relations used in the annotation as
the prompt, along with the ground truth dependency
labels, employing a “few-shot learning” approach.
The implementation settings can be found in A.3.

We also design an unsupervised heuristic rules-
based method method. The rules are: If any of
them is satisfied, a contained event ej is an argu-
ment of the containing event ei: (i) The syntactic
dependency relation from the predicate of ei to the
predicate of ej is the clausal complement (ccomp or
xcomp) or clausal subject (csubj). (ii) The syntactic
dependency relation from the predicate of ej to the
predicate of ei is copula (cop). (iii) All of ej is
contained in an argument of ei that is labelled with
either ARGM-PRP (“purpose”) or ARGM-PNC
(“purpose not cause”). The syntactic dependency
relations are obtained by the Stanford CoreNLP
dependency parsing (Manning et al., 2014).

4.2 Input Variations

Besides various baseline models, we also explore
the influence of different types of input.

Event-Event Span We also create the two
events’ span style input. For the mentioned ex-
ample, the Event-Event Span style input becomes
“‘The man who works here {V: tells} me to get the
hell out. [SEP] me {V: get} the hell out” – using a
special token “[SEP]” for separation.

Event-Event-SRL For further checking the in-
fluence of the SRL labels, we add the argument

2https://chat.openai.com/chat

label of the argument where the contained event
predicate is in the containing event. We also add a
special token “[SRL]” for model recognition. E.g.,
“The man who works here V: tells me to get the hell
out. [SEP] me V: get the hell out [SRL] ARG1.”

Event-Event-SRL-DEP Based on the Event-
Event-SRL Input, we further add the syntactic de-
pendency relation information of the two event
predicates. A special token “[DEP]” is added. For
instance, “The man who works here V: tells me to
get the hell out. [SEP] me V: get the hell out [SRL]
ARG1 [DEP] xcomp.”

Marked-Predicate Sentence Inspired by the
success of MarkedBERT (Boualili et al., 2020), we
add special marks to emphasize the predicate to-
kens in the sentence. For example, the sentence
“The man who works here tells me to get the hell
out.” with event predicates “tells” and “get” be-
comes “The man who works here [V1] tells [\V1]
me to [V2] get [\V2] the hell out.”

4.3 Results and Analysis

Table 3 shows different models’ performance based
on different inputs. The heuristic rules-based
method achieves the highest precision of 97.67%,
yet the recall is considerably low at only 34.93%.
We observe that adding the event predicate’s syn-
tactic dependency and the (semantic) argument
label information improves the performance of
most of the models. However, using the marked-
predicate single sentence as input is more effective
than these event-event style inputs. Taking the
marked-predicate sentence as input, the BERT and
RoBERTa models outperform others.

GPT-2 underperforms compared to discrimina-
tive models, indicating its generative architecture
struggling with classification tasks such as detect-
ing event dependencies. Similarly, ChatGPT’s per-
formance is also unsatisfactory, suggesting that its
few-shot learning approach, despite leveraging a
powerful pre-trained model, is inadequate for com-
prehending the dataset. The highest baseline ac-
curacy reaches 82.61%, revealing that EDeR is
sufficient for training a good predictor for recog-
nizing the event dependency relations based on the
language model’s pre-train&fine-tune mechanism.

Impact of Sentence Length and Predicate Dis-
tance. Figure 4 (left) illustrates the performance of
the baseline models across sentences with different
lengths, given the input as the marked-predicate
sentences. Consistent with human intuition, the
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Input Model P (%) R (%) F1(%) Acc(%)
Majority 75.50 100.00 86.04 75.50

Sentence+predicates Rule-based 97.67 (1) 34.93 51.46 50.08

Event-Event Span

DistilBERT 82.75 90.23 86.33 78.35
BERT 87.53 85.34 86.42 79.69
RoBERTa 84.71 87.53 86.10 78.58
XLNet 83.61 89.60 86.5 78.82
GPT-2 85.91 86.80 86.35 79.21
ChatGPT 76.33 85.14 80.49 68.76

Event-Event-SRL

DistilBERT 84.75 87.84 86.27 78.82
BERT 85.96 87.21 86.58 79.53
RoBERTa 82.89 91.16 (3) 86.83 80.06
XLNet 82.00 93.76 (1) 87.49 (3) 79.69
GPT-2 86.60 85.97 86.28 79.29
ChatGPT 80.19 89.60 84.63 75.37

Event-Event-SRL-DEP

DistilBERT 85.48 87.53 86.49 79.29
BERT 85.26 89.60 87.38 80.39
RoBERTa 83.21 91.16 (3) 87.00 80.37
XLNet 83.11 91.06 86.90 79.21
GPT-2 85.89 87.94 86.90 79.92
ChatGPT 82.01 52.60 64.09 55.39

Marked-predicate Sentence

DistilBERT 82.13 93.14 (2) 87.29 79.45
BERT 91.30 (2) 85.14 88.11 (1) 82.61 (1)
RoBERTa 89.87 (3) 85.85 87.81 (2) 81.97 (2)
XLNet 88.22 86.38 87.29 80.94 (3)
GPT-2 85.26 89.60 87.38 80.39
ChatGPT 75.83 80.87 78.27 66.01

Table 3: Comparison of the performance on the test set based on varying method and input combinations for the
event dependency relation extraction task. The top-3 best results in each column are highlighted. Note: The majority
classifier predicts all cases as argument.

Figure 4: Model performances (accuracy) across differ-
ent ranges of sentence length (Left) and different ranges
of predicates’ distance (Right).

performance of all the models (except for Chat-
GPT) decreases when the sentence length increases.
Longer sentences may contain more complex struc-
tures, which are challenging for models to capture.
Similarly, Figure 4 (right) shows a decrease in ac-
curacy with an increasing distance (i.e., the number
of words) between two predicates, illustrating the
models’ struggle with distant dependencies. Specif-
ically, few-shot-learning ChatGPT often performs
better with moderate sentence length and predicate
distance due to challenges with limited information
from short sentences and complexity in understand-
ing complex event structures.

5 Benefit to Related NLP Tasks

In this section, we show how EDeR data can be
used to improve performance on two related NLP
tasks.

5.1 Event Representation Extraction
As mentioned in Section 3.2.3, in addition to the
classification of event dependencies, in the in-
stances where the contained event is not an argu-
ment, our data set includes more precise argument
spans, which omit parts unique to the contained
non-argument event, for containing events. We
evaluate the performance of a state-of-the-art Se-
mantic Role Labelling (SRL) system on the result-
ing refined event extraction task. Our results show
that the refined task is harder, and that giving the
system access to the dependency classification (an-
notated or predicted) improves it.

We selected a SOTA SRL system – CRFSRL
(Zhang et al., 2022) as the baseline. CRFSRL pro-
cesses a sentence with a marked event predicate
(p) by predicting a labelled tree of syntactic depen-
dencies between words, and extracting sub-trees as
argument spans. This is illustrated in the top part of
Figure 5. Our revised system, CRFSRL with Event
Dependency information (w/ ED), prunes sub-trees
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Figure 5: An example of the event representation output
by the CRFSRL system (Zhang et al., 2022) (above)
and this system equipped with our event dependency
relation information (below).

rooted at non-argument predicates, as shown in
the bottom part of Figure 5. In the following, w/
ED (G) uses the gold-standard event dependency
information from the EDeR annotation, while w/
ED (P) uses predicted predicted event dependency
relations, from the baseline model with the highest
accuracy.

System Precision Recall F1-score
Test set: subset of OntoNotes corresponding to EDeR-test(a).

CRFSRL (OntoNotes-trained) 77.07 81.03 79.00
Test set: EDeR-test.

CRFSRL (EDeR-trained) 74.19 78.45 76.26
– w/ ED (P) 74.35 78.53 76.38
– w/ ED (G) 76.09 78.81 77.43

Test set: events with refined argument only(b).
CRFSRL (EDeR-trained) 67.34 65.73 66.53
– w/ ED (P) 81.14 67.97 73.97
– w/ ED (G) 88.11 69.51 77.71

Table 4: Performance of the CRFSRL system (Zhang
et al., 2022), and our CRFSRL systems with predicted
(w/ ED (P)) and annotated (w/ ED (G)) event depen-
dency information on the refined event extraction task.
(a) For comparison, performance of the CRFSRL sys-
tem on the original (unrefined) event extraction task.
This system is trained on the subset of OntoNotes corre-
sponding to EDeR-train, i.e., with unrefined argument
spans, and tested on the subset corresponding to EDeR-
test. (b) This is the subset of EDeR-test containing only
events with at least one refined argument span (i.e., that
differ from the original OntoNotes annotation).

We train both the CRFSRL and CRFSRL w/ ED
systems on the training portion of the EDeR data
set. Thus, both systems are trained to predict the
refined argument spans. For comparison, we also
trained a version of CRFSRL on the correspond-

Figure 6: An example shows how EDeR-refined event
representations help the coref-HGAT model to get the
correct output, unlike when using OntoNotes’ original
representations.

ing subset of the unmodified OntoNotes data set.
The evaluation was done using the scripts provided
for the CoNLL-2012 shared task3. Table 4 sum-
marises the result. CRFSRLs performance on the
refined extraction task, compared to the original
task, suggests that the system finds it more chal-
lenging to model the refined event representations
in the EDeR dataset. However, results also show
that giving the system access to the event depen-
dency information allows some of that drop to be
recovered. The performance gap is much more no-
ticeable on the subset of events in EDeR-test with
at least one refined argument span (shown in the
bottom part of Table 4). In these cases, using either
the baseline model-predicted or human-annotated
event dependency feature, CRFSRL w/ ED (P) and
(G) both improve significantly (increases of 13.8%
and 20.77% in precision, and 7.44% and 11.18% in
F1-score) over the CRFSRL system without event
dependency information.

These findings underline the importance of event
dependency relation information in enhancing the
SRL system for event representation extraction,
especially for refined events.

5.2 Co-reference Resolution

To further investigate whether the refined event
representations from EDeR are more reasonable
than OntoNotes’ original version, we apply them to
a downstream task: co-reference resolution (CR).

Given a text, CR aims to identify all men-
tions that refer to the same entity. We use coref-
HGAT (Jiang and Cohn, 2021), a SOTA CR model,
initially trained on OntoNotes CR annotations.
This model incorporates both event semantic role
and word syntactic dependency information in het-
erogeneous graphs, creating contextualized embed-

3https://www.cs.upc.edu/ srlconll/
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dings to identify co-reference links. However, the
model can misinterpret unrelated entities as co-
referents. Figure 6 show an example, where “the
girl” is wrongly linked to “she”. In this example,
there is a sentence, “She went to visit them”, prior
to the input sentence, and “she” in the input sen-
tence actually refers to “She” in this prior sentence.
In this case, EDeR’s refined event representation
removes the distracting potential referent, leading
the model to accurately identify “she” and “the girl”
as separate entities. While it is also possible that
the reduced event representation prunes informa-
tion that is important for identifying co-referents,
our results show that the cases that benefit from it
are at least more frequent.

Input Precision Recall F1-score
OntoNotes Event Reps. (G) 67.73 65.41 66.50
EDeR Event Reps. (G) 69.14 65.69 67.40
OntoNotes Event Reps. (P) 64.82 63.79 64.28
EDeR Event Reps. (P) 67.79 64.42 65.96

Table 5: Comparison of coref-HGAT model’s co-
reference resolution performance using annotated (G)
and predicted (P) event representations from OntoNotes
and EDeR.

We conduct this CR task using the annotations
from the same 275 OntoNotes documents and use
the CoNLL-2012 official scripts for evaluation.

As Table 5 shows, The EDeR annotated updated
event representations (i.e., EDeR Event Reps. (G))
boost the coref-HGAT model’s precision, recall,
and F1-score by 1.41%, 0.28%, and 0.9%, respec-
tively, when compared with the original event rep-
resentations (i.e., OntoNotes Event Reps. (G)).
This proves the refined event representations en-
hance co-reference resolution, demonstrating their
validity.

Furthermore, the coref-HGAT model with CRF-
SRL w/ ED (P) predicted updated events (i.e.,
EDeR Event Reps. (P)) also reveals enhanced
precision, recall, and F1-score by 2.97%, 0.63%,
and 1.68%, compared with the model with CRF-
SRL predicted OntoNotes original events (i.e.,
OntoNotes Event Reps. (P)), as the last two lines
in Table 5) shows. Despite model prediction errors,
these results are even comparable to the perfor-
mance of using OntoNotes Event Reps. (G). This
highlights the feasibility of applying the CR model
more widely, by substituting the original annotated
event inputs with our predicted refined event repre-
sentations.

6 Conclusion

In this paper, we introduced EDeR, a high-
quality human-annotated event dependency rela-
tion dataset. We presented a thorough description
of the dataset construction process followed by a
detailed analysis. We implement various language
models and one unsupervised rule-based method,
to establish benchmark performance against the
dataset. The experimental results of these competi-
tive baselines, along with the evident improvements
in some related NLP tasks such as semantic role
labelling and cor-reference resolution, demonstrate
the utility and benefit of the EDeR dataset. We
hope that EDeR facilitates future research in un-
covering potential relations among events, thereby
enriching the understanding of our linguistic world.

Limitations

As described, for our EDeR dataset, the argu-
ment label can be further categorized into two fine-
grained classes: required argument and optional
argument. We apply the introduced baseline mod-
els and inputs to this three-way classification task.
The experimental results and some case study de-
tails are in A.2. Overall, compared with the binary
classification on argument/non-argument, the per-
formance is significantly dropped - the highest ac-
curacy is 70.79% and the ChatGPT few-shot learn-
ing results are much worse. It demonstrates that
the three-way classification is more challenging for
our current baseline models. Such a significant per-
formance gap will direct our further investigation.

Ethical Considerations

We annotate the proposed EDeR dataset based on
OntoNotes 5.0, without copyright constraints for
academic uses. During the human annotation pro-
cedure (cf. Section 3), the annotators, quality in-
spectors, and the linguistic expert are only required
to label factual information (i.e., the dependency
relations between events and refined event represen-
tations). The annotators and quality inspectors are
all anonymous and the annotation does not involve
any personally sensitive information.
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A Appendix

A.1 Statistics of Documents for Data
Collection

OntoNotes contains semantic role-formatted event
representations, as the OntoNotes example in Fig-
ure 2 shows. We randomly sampled 275 docu-
ments from seven genres: broadcast news (bn),
magazine (mz), newswire (nw), pivot corpus (pt),
telephone conversation (tc), broadcast conversation
(bc), and web data (wb). Data statistics of the 275
raw documents are shown in Table 6. The num-
ber of sampled documents and the separation of
them into training, development and test sets under
each genre follows their initial distributions in the
OntoNotes dataset.

A.2 Fine-grained Event Dependency Relation
Extraction

As described, for our EDeR dataset, the argument
label can be further categorized into two more fine-
grained classes: required argument and optional
argument. Likewise, the non-argument label can be
further separated into the two classes condition and
independent. We apply the baseline models and
inputs also to these 3-way and 4-way classification
tasks.

The 3-way classification results of the baseline
language models taking various types of inputs are
shown in Table 7. First, the Event-Event-SRL-DEP
input achieves overall better performance than oth-
ers in this task. Besides the useful information pro-
vided by the syntactic dependencies as discussed
in Section 4.4, another possible reason is that in the
EDeR dataset, the predicates of over 95.79% of the

Figure 7: Case study for fine-grained event dependency
relation extraction.

events labelled as required arguments are located
within the numbered arguments (ARG0–ARG5) of
their containing events. Second, like in the binary
classification task, the BERT and RoBERTa models
outperform the others. RoBERTa achieves the best
overall precision, recall, F1-score and accuracy re-
sults, which reveals its better relation reasoning
capacity. Third, the overall precision and recall
results for the “required argument” label tend to
be higher in comparison to other labels, likely as a
result of its preponderance in the dataset.

Finally, the overall performance on both the 3-
way and 4-way classification tasks is lower than
for binary classification – the highest accuracy
achieved are 70.79% and 69.69%, respectively –
indicating that these tasks are harder.

A.2.1 Case Study

We identify two phenomena from the Event-Event-
SRL-DEP based RoBERTa model for the fine-
grained event dependency relation extraction:

Syntactic Dependency Parsing Errors Some
incorrect (three-way) classification results may be
because of the misleading syntactic dependency
parsing results. As shown in the first case of Fig-
ure 7, the off-the-shelf dependency parser wrongly
assigns syntactic dependency relation between the
two event predicates “work” and “have”, which
could affect the model prediction.

Event Argument Labelling Errors Further-
more, as the second case of Figure 7 shows, the se-
mantic labels provided by OntoNotes for the event
predicate “had” is incorrect (e.g., “the group” is
missing as the ARG0). It may prevent the model
from accurately predicting the event dependency
relation types.
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bn mz nw pt tc bc wb overall
# documents 104 7 107 31 7 3 16 275
# documents-train 90 5 89 24 5 1 13 227
# documents-dev 7 1 9 4 1 1 2 25
# documents-test 7 1 9 3 1 1 1 23
avg # sentences per doc 6.2 48.9 14.4 40.7 71.7 203.8 59.3 24.9
avg # words per doc 139.7 1599.7 418.7 657.0 1089.4 4045.8 1509.3 543.4
avg # events per doc 23.6 202.1 58.3 148.7 362.1 1058.6 268.5 93.5

Table 6: Statistics of the documents (under each genre and all) that we sampled from the OntoNotes dataset for
annotation: number of documents and the number of documents split into different sets (train, development and
test), and average number of sentences, words and events per document.

Input Model Precision (%) Recall (%) F1(%) Accuracy(%)
required optional non-arg. overall required optional non-arg. overall

1

DistilBERT 76.06 52.04 55.06 61.05 81.31 45.11 56.49 60.97 60.90 64.80
BERT 82.90 58.48 54.62 65.33 85.69 44.02 67.21 65.64 64.92 69.13
RoBERTa 83.47 54.01 59.41 65.63 83.33 54.89 58.44 65.56 65.59 69.06
XLNet 80.46 50.71 56.39 62.52 83.16 48.37 55.84 62.46 62.47 66.46
GPT-2 76.41 52.01 56.68 61.70 82.32 45.65 56.49 61.49 61.49 65.43
ChatGPT 47.63 31.08 32.08 36.93 52.53 47.55 37.59 35.19 32.32 39.65

2

DistilBERT 75.04 51.50 64.68 63.74 84.51 55.98 42.21 60.90 61.41 65.98
BERT 84.59 54.55 57.89 65.68 83.16 53.80 60.71 65.89 65.77 69.21
RoBERTa 83.75 58.13 56.37 66.08 84.18 50.54 64.61 66.44 66.08 69.69
XLNet 81.66 59.27 56.20 65.71 84.68 44.29 69.16 66.04 65.28 69.21
GPT-2 76.12 54.75 58.25 63.04 82.66 47.01 58.44 62.70 62.73 66.46
ChatGPT 54.55 32.45 26.92 37.97 65.66 46.74 2.27 38.22 34.02 44.77

3

DistilBERT 77.27 53.93 60.23 63.81 81.82 55.98 50.65 62.82 63.15 66.77
BERT 81.51 56.42 60.70 66.21 85.35 51.36 61.69 66.13 66.12 69.76
RoBERTa 83.20 59.38 59.04 67.21 85.86 52.45 63.64 67.31 67.15 70.79
XLNet 86.27 53.68 58.07 66.01 82.49 55.43 60.71 66.21 66.08 69.37
GPT-2 78.58 53.42 56.57 62.86 82.15 46.74 60.06 62.99 62.82 66.54
ChatGPT 55.07 26.18 27.39 36.21 19.19 37.77 47.25 34.74 31.36 31.39

4

DistilBERT 73.07 51.91 61.57 62.18 81.31 48.10 53.57 60.99 61.40 64.96
BERT 85.26 53.80 58.66 65.91 81.82 50.00 68.18 66.67 66.13 69.29
RoBERTa 84.32 56.93 56.23 65.83 84.18 51.36 62.99 66.17 65.89 69.53
XLNet 84.75 55.34 54.41 64.83 80.47 46.47 70.13 65.69 64.78 68.11
GPT-2 77.00 50.00 55.11 60.70 45.38 57.79 79.46 60.88 60.74 64.33
ChatGPT 37.68 28.42 25.00 32.39 17.51 66.03 11.33 33.22 27.54 31.86

Table 7: Comparison of the performance for the 3-way event dependency relation classification task. Input data
types are: 1 Event-Event Span; 2 Event-Event-SRL; 3 Event-Event-SRL-DEP and 4 Marked-predicate Sentence.
The precision and recall results for particular labels are presented as columns under “required”, “optional” and
“non-argument”. The best results in each column are highlighted. The overall precision, recall and F1-score results
are macro-averaged.
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A.3 Implementation Settings

We employ the distilbert-base-cased, bert-
large-cased, roberta-large, xlnet-large-
cased and gpt2-large in HuggingFace’s Trans-
former Library (Wolf et al., 2020) as represent-
ing the DistilBERT, BERT, RoBERTa, XLNet and
GPT-2 baseline models in the experiment. For the
fairness of comparison, all the models use the same
optimization method as AdamW (Loshchilov and
Hutter, 2017) which is adopted with an initial learn-
ing rate of 1e−5 and a batch size of 4 and a number
of epochs of 4 during the finetuning process. The
model with the highest F1-score on the develop-
ment set is selected.

A.4 Annotation Instructions

An event is composed of a verb and arguments,
where the verb indicates the event’s action and the
arguments represent the subject, object and so on
of the verb. This task requires you to determine
whether, in a pair of events (Event 1, Event 2)
from the same sentence, Event 2 is an argument
or a condition of Event 1, and if it is an argument,
whether it is required or optional.
• Required argument: Event 2 is required for the
verb of Event 1 to be complete and meaningful.
For example,
Sentence: Jenny tries to stop them from ruining
her family.
Event 1: Jenny V: tries to stop them from ruining
her family.
Event 2: Jenny V: stop them from ruining her
family. (“V: ...” marks the verb of each event.)
Explanation: Event 2 is a required argument. If
it is removed, Event 1 becomes just “Jenny tries
(to)”, which is incomplete and not meaningful (to
“try to”, one has to try to do something).
Another example of the required argument:
Sentence: Krishna suggests Ramesh to send his
liquor to town.
Event 1: Krishna V: suggests Ramesh to send his
liquor to town.
Event 2: Ramesh V: send his liquor to town.
Explanation: Event 2 is a required argument. If it
is removed, Event 1 becomes “Krishna suggests
Ramesh”, which is not meaningful (to suggest to
someone, one must should suggest something).
The third example of the required argument:
Sentence: “The stock price is unstable.” Mr. Jones
says.
Event 1: “The stock price is unstable.” Mr. Jones

V: says.
Event 2: The stock price V: is unstable.
Explanation: Event 2 is a required argument. If
it is removed, Event 1 would become “Mr. Jones
says”, which is incomplete and not meaningful
(one must say something, “something” is missing
if Event 2 is omitted).
• Optional argument: Event 2 is an argument of
the verb of Event 1, but Event 2 only provides
additional or clarifying information about Event
1 (for example, Event 2 may indicate the purpose
or goal of Event 1). Event 1 is still syntactically
complete and meaningful, although it may not keep
the exact same meaning, if Event 2 is removed.
For example,
Sentence: A power failure with the docking door
forces Brodski to go EVA to fix it.
Event 1: Brodski V: go EVA to fix it.
Event 2: Brodski V: fix it.
Explanation: Event 2 is an optional argument,
indicating the purpose of Event 1. Removing it
leaves Event 1 "Brodski go(es) EVA", which is still
a syntactically complete and meaningful clause.
Another example of the optional argument relation:
Sentence: It is a good opportunity, as eventually
turned out to be.
Event 1: It V: is a good opportunity, as eventually
turned out to be.
Event 2: eventually V: turned out to be.
Explanation: Event 2 is an optional argument,
adding information about the timing of Event 1.
Removing it leaves Event 1 "It is a good opportu-
nity", which is still a syntactically complete and
meaningful clause.
• Condition: Event 2 describes a condition for the
occurrence of Event 1.
For example,
Sentence: Joe will hate her if she tells the truth.
Event 1: Joe will V: hate her if she tells the truth.
Event 2: she V: tells the truth.
Explanation: Event 2 is a condition of Event 1; it
is not an argument.
Another example,
Sentence: Should problems arise, we will seek
professional help.
Event 1: Should problems arise, we will V: seek
professional help.
Event 2: Should problems V: arise.
Explanation: Event 2 is a condition of Event 1; it
is not an argument.
• Neither an argument nor a condition: Event
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2 is not an optional or required argument, or
condition of Event 1. It is an independent/separate
event, which happens to be mentioned in the
same sentence. Like an optional argument or
condition, removing Event 2 still leaves Event
1 complete and meaningful. The difference to
Event 2 being an optional argument is that when
Event 2 is not an argument it does not add any
information/clarification about the verb of Event 1;
it may still add some information about one of the
arguments of Event 1.
For example,
Sentence: Julia, who has fallen in love with
Barnabas, discovers his dalliance with Maggie.
Event 1: Julia, who has fallen in love with
Barnabas, V: discovers his dalliance with Maggie.
Event 2: Julia, who has V: fallen in love with
Barnabas
Explanation: Event 2 is unrelated to Event 1; it
is a separate event that happens to share the same
subject. Whether Julia falls in love with Barnabas
or not does not affect whether, how, or when, she
discovers his dalliance with Maggie.
Another example:

Sentence: It increases the discount rate it offers
to known customers.
Event 1: It V: increases the discount rate it offers
to known customers.
Event 2: the discount rate it V: offers to known
customers.
Explanation: Event 2 is unrelated to Event 1; it is
a separate event that only describes the object (the
discount rate) of Event 1. Event 2 does not affect
the verb of Event 1 “increases”.
The third example of neither an argument nor a
condition:
Sentence: After an opening-credits montage of
the major players demonstrating their abilities, the
story begins.
Event 1: After an opening-credits montage of the
major players demonstrating their abilities, the
story V: begins.
Event 2: an opening-credits montage of the major
players V: demonstrating their abilities.

Explanation: Event 2 is a separate/independent
event that happens before Event 1. Event 2 only
adds some description of the opening-credits mon-
tage; it does not add information about Event 1
("The story begins"). The ordering between the

two events does not make Event 2 an argument of
Event 1.
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